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ABSTRACT

One potential approach for crime analysis that has shown promising results is data analytics, 
particularly descriptive and predictive techniques. Data analytics can explore former criminal incidents 
seeking hidden correlations and patterns, which potentially could be used in crime prevention and 
resource management. The purpose of this research is to build a crime analysis model using supervised 
techniques to predict the arrest status of serious crimes in Chicago. This is based on specific indicators, 
such as timeframe, location in terms of district, community, and beat, and crime type among others. 
We used time series and clustering techniques to help us identify influential features. Supervised 
machine learning algorithms then modelled the subset of features against incidents related to battery 
and assaults in specific timeframes and locations to predict the arrest status response variable. 
The models derived from Naïve Bayes, Decision Tree, and rule induction algorithms reveal a high 
predictive accuracy rate at certain times in some communities within Chicago. This information can 
benefit the city’s law enforcement to optimize resource allocation, such as patrols, new stations, and 
prevention strategies. 
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INTRODUCTION

A crime is an unlawful act by an individual that is contrary to the laws of a region or a country. Crime 
is a significant issue, notably since the 1960s, that negatively affects the social fabric and economy of 
countries, and attributable to greed, poverty, and economic distress (Saleh & Khan, 2019). Crimes, 
such as assault, homicide, theft, battery, and those involving narcotics have grown rapidly in Chicago, 
USA; for example, reported robberies in 2016-2017 exceeded 16,000 cases (Saleh & Khan, 2019). 
Battery is a criminal charge for the illegal use of violence toward the body of another citizen resulting 
in violent interaction or physical harm (Castillo, 2015). According to the New Zealand Police (2020), 
even for small countries like New Zealand, the ratio of crimes committed in 2019 was 10% greater 
than that of 2018.



International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

2

Crimes affect people’s quality of life and the economic growth of a country. People often consider 
crime rates within the city as a primary factor for moving so that they can avoid areas where crime 
rates are high (Chalom et al., 2002). Furthermore, the Global Peace Index organised by the Institute of 
Economics and Peace (IEP, 2019) utilizes crime rates as an indicator when globally ranking countries. 
Security is a major concern worldwide (Malathi, & Babo, 2011).

The need for more police patrols burdens governments financially. High crime rates negatively 
affect the distribution of public funds to public services, such as emergency, education, fire, and 
healthcare (Ahishakiye et al., 2017).

Crime analysis is the process of differentiating and evaluating patterns related to crime past crime 
data. According to Ahishakiye et al. (2017), the patterns discovered when conducting crime analysis 
help managers allocate resources effectively and also support the police to apprehend criminals. Data 
analysis techniques, such as artificial intelligence (AI) and visualization, play a vital role in the process 
of crime analysis providing exceptional search capabilities to derive valuable results (Sharma et al., 
2021; Bunker, & Thabtah, 2017).

Applying AI techniques to crime data is possible due to high incidences of crime. AI methods, 
such as machine learning, explore crime datasets to find concealed correlations that can be utilized by 
analysts to take appropriate actions related to arrests and resource management (Abbass et al., 2020). 
For example, Shah et al., (2021) investigated machine learning and computer vision approaches to 
improve crime detection rate. In addition, a recent research work by Abbas et al., (2020) revealed 
that predictive machine learning models can be used for predicting crimes occurring on social media 
such as Cyber Scam, Cyber stalking and Cyber Hacking among others.

Chicago is the third largest city in the USA; in 1974, when the population reached 3 million, 
970 murders were recorded, resulting in a murder rate of 29 deaths per 100,000. This rate gradually 
declined in the mid-2000s, but a huge rise in violent crimes reoccurred, i.e., 749 murders in 2016; 
this is more than the number of murders in the largest cities of New York and Los Angeles with 334 
and 294 murders, respectively (BBC, 2017). A BBC article in 2017 reported that Chicago Police 
were turning to big data to help predict times and locations where crimes might occur (BBC, 2017). 
Ahishakiye et al. (2017) stated that in a statistical sense, crime is predictable mainly because criminals 
tend to stay in their zone of comfort. This assumption was strongly supported with evidence that certain 
crimes occurred in similar timeframes and around common districts as where they were successfully 
committed previously. In this research, we pursue this assumption by developing a supervised learning 
model to predict arrest status based on Chicago crime data for three consecutive years (2017-2019). 
To achieve the aim, we initially explore correlations between crime type, timeframe during the day 
(24 hours), and locations (beats, communities, districts) to offer law enforcement analysts in the 
Chicago Police Department (PD) useful insights. A beat is the smallest police geographic area and 
usually supported with a single police car (Crimes - 2001 to present, 2020). More importantly, the 
new predictive model will be able to predict arrest status using features, such as types of crimes, 
timeframe within a day, location, etc. These features have been identified using computational 
intelligence methods to ensure that only highly influential features are offered to the machine learning 
algorithm. Therefore, models derived will improve the predictive power of arrest status, particularly 
for harmful crimes, such as battery and assault, within peak time zones at hot districts in Chicago.

Section 2 provides literature related to crime analysis using data anlaytics and supervised learning. 
The methodology is discussed in Section 3, and Data pre-processing is discussed in Section 4. In 
Section 5, experimentations and result analyses are conducted along with descriptive and predictive 
analysis; finally, we conclude in Section 6.

LITERATURE REVIEW

Iqbal et al. (2013) conducted research to predict the crime category for various US states on real crime 
data using Decision Tree (Quinlan, 1993) (UCI Machine Learning Repository, 2012). The authors 
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compared Decision Tree with Naïve Bayes (Duda & Hart, 1973) to determine the ideal model for 
predicting the crime category. The results in terms of classification accuracy showed 70.81% and 
83.95% for models derived by Naïve Bayes, and Decision Tree, respectively.

Ahishakiye et al. (2017) investigated crime analysis on a ‘Crime and Communities’ dataset (UCI 
Machine Learning Repository, 2017) using several machine learning algorithms including Decision 
Tree, Multi-layered Perceptron (MLP), Naïve Bayes, and Support Vector Machine (SVM) (Quinlan, 
1993; Rosenblatt, 1957; Duda & Hart, 1973; Cortes & Vapnik, 1995). After experimentations using 
80% training and 20% testing subsets, the Decision Tree classification model was selected by the 
author for crime analyses on the dataset. The Decision Tree algorithm was able to efficiently derive 
the clarification models in terms of training time (time taken to build the models).

Nguyen et al. (2017) performed a crime analysis on a Portland Police Bureau (PPB) dataset 
obtained from two databases, the PPB (National Institute of Justice, 2017) and the American 
Factfinder website (American FactFinder, 2017). Several machine learning algorithms, i.e., SVM, 
Gradient Boosting Machines, Random Forest, and Neural Networks were used (Cortes & Vapnik, 
1995; Friedman, 1999; Kam Ho, 1995; Rosenblatt, 1957). The accuracy gained by the classification 
models from PPB data shows 57.3%, 72.2%, and 88%, respectively for SVM, Random Forest, and 
Gradient Boosting Machines. The second dataset recorded 79.39%, 65.79%, 61.67%, and 74.24% for 
SVM, Random Forest, Gradient Boosting Machines, and Neural Networks, respectively.

Shermila et al. (2018) performed research on San Francisco Homicide data (FBI Supplementary 
Homicide Report 1980-2014, 2014) using kNN Classifier, Multilinear Regression, and Neural 
Networks algorithms to predict the criminal’s age, gender, and relationship to the victim (Cover 
& Hart, 1967; Galton, 1989; Rosenblatt, 1957). The findings in terms of accuracy for Multilinear 
Regression showed 60% for ‘age’, kNN showed 85% for ‘gender’ and 48% for ‘relationship’ feature. 
The Neural Network algorithm outperformed the other classifiers deriving models with 96% and 97% 
for ‘gender’, and ‘relationship’, respectively. kNN was also employed by Bharati and Sarvanaguru 
(2018) to predict Chicago crime data along with other algorithms including Logistic Regression, 
Decision Tree, Random Forest, Support Vector Machines (SVM) and Bayesian Method (Galton, 
1989; Quinlan, 1993; Kam Ho, 1995; Cortes & Vapnik, 1995; Bayes, 1763). Data pre-processing, 
feature selection, and scaling were performed prior to data modelling. The classification accuracy 
rates produced by the models are 78.70%, 64.60%, 31.30%, and 78.60% for kNN, Naïve Bayes, SVM, 
and Decision Tree, respectively.

Saleh and Khan (2019) studied Chicago crime data for 2012–2017 using models and pre-
processing methods within the Python Library. The K-means clustering technique (Lloyd, 1957) 
was applied after selecting the attributes: Case ID, Type, Time, Location, Year, and Arrest. Findings 
revealed robberies were at their peak between 2016-2017 and most of the criminals were not arrested 
for their crimes.

Yuki et al. (2019) extended the work of Saleh and Khan (2019) and predicted the location and 
type of crime that is committeds at a certain time and the location on the same dataset using Decision 
Tree, Random Forest, Bagging, AdaBoost and Extra Tree (Quinlan, 1993; Kam Ho, 1995; Breiman, 
1994; Freund & Schapire, 2003). The investigation revealed the highest level of crime was in 2008. 
After experimenting with training data, the authors identified Bagging as the best model to predict 
Chicago’s crime with 99.92% accuracy.

Sharma et al., (2021) investigated a crime dataset related to Boston Police Department to determine 
locations in the city that are associated with high and low crime rates. The authors utilized few 
variables related to time and location to conduct a descriptive analysis, and then performed feature 
assessment using Principal Component Analysis with classification. The reported results show slight 
increase in the detection rate when PCA was utilized prior to classification.

This research is distinguishable as that the developed model examines the correlations between 
crime type, timeframes during the day (24 hours), and locations (beats, communities, districts). It uses 
this knowledge to build a timeframe for 2021 to be useful for the PD to distribute resources effectively.



International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

4

METHODOLOGY

Figure 1 consists of the primary phases of the developed model. Initially we obtained access and 
downloaded the Chicago crime dataset; data was then extracted to derive crime information for the 
last three years as the target training dataset for the analysis. Crime data from 2017-2019 in all districts 
has been considered in this research. Feature analysis and data statistic phases were conducted to 
better understand the features in the dataset, such as ‘Primary Type’, ‘Time’, ‘District’, ‘Community 
Area’ (CA), ‘Beat’ among others. This helped us to perform pre-processing including unwanted 
data removal (instances with multiple missing values totalling 9,247). The cleansed dataset was then 
utilized for descriptive analysis by including:

1. 	 Visualizations based on Primary Type
2. 	 Clustering based on Time

Figure 1. Proposed methodology
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3. 	 Outlier detection based on Location
4. 	 Time series for the next 3 years based on incidents in the last three years
5. 	 Combinations of A-C

We focused on influential features based on the feature selection (Section 4) and descriptive 
analyses conducted. To be exact, three features (Timeframe in 24 hours, per hour, and 3-hour intervals 
respectively, Crime Type, Location including district, CA, and beat) together with other features 
have been evaluated. The reason for selecting these features is to identify common crimes during 
any given timeframe, cluster these by ‘Primary Type’ and then based on information obtained, ‘hot’ 
geographical areas with certain crime types can be identified. Based on the results of these analyses, 
we will be able to identify serious crimes, particularly battery and assault, within a specific time of 
the day and locations. We can predict arrest status for these crime types by utilizing the influential 
features obtained.

Classification techniques including Naïve Bayes, Decision Trees, and rule induction (Duda & 
Hart, 1973; Quinlan, 1993; Cohen, 1995;), have been utilized to create crime prediction models to 
forecast arrest status in specific locations at certain times. This will be highly beneficial as allocation 
of resources can be optimized with respect to time, severity of the crime, and location.

Decision Tree algorithm (C4.5) employs divide and conquer strategy to learn classifiers in the format 
of trees. Each node in the tree represents an attribute and each branch represents an attribute value. 
The algorithm builds the tree using information-based metrics such as Shannon Entropy in which the 
attribute that has the largest information gain is always chosen. Once the tree is built, a path from the 
root to each leaf denotes a rule. On the other hand, rule induction approach creates a rule using separate 
and conquer approach. In doing so, an empty for a certain class label is formed, and the algorithm seeks 
for the attribute value in the training dataset that when appended into the rule increases the rule expected 
accuracy according to a mathematical metric. The algorithm keeps appending attributes values into 
the rule until the rule’s expected accuracy cannot enhanced any further. When this happens, the rule 
gets derived, and all data observations associated with it are discarded from the training dataset. The 
algorithm keeps creating rules until the dataset gets empty or no more rules can be discovered. Lastly, 
Naïve Bayes utilizes a Bayes Theorem to predict the class of the test data in an efficient manner. The 
reason for selecting these classification algorithms is their applicability in other application domains 
besides the different learning schemes they employ to derive classification models.

The dataset used in this research is derived from the Chicago Police Department’s CLEAR system 
(Citizen Law Enforcement Analysis and Reporting) (https://data.cityofchicago.org/public-safety/
crimes-2020/qzdf-xmn8). The dataset has the crime recorded in Chicago from 2001 to the present 
and includes more than 7,000,000 instances and 22 features (Table 1). We cleaned noise from the 
dataset, such as instances with missing values and features that add no value to the learning process. 
Since the amount of missing data, is less than 10% of the total data we decided to remove all instances 
with missing values to reduce data inconsistency. Furthermore, the ‘Date’ attribute of the dataset is a 
collection of both the date and time of the incident. Therefore, to carry out graphical statistics smoothly, 
we create new features by separating ‘Month’, ‘Day’, ‘Year’, and ‘Time’ from the ‘Date’ attribute. 
Thus, a set of four additional features has been added to the revised dataset. More importantly, we 
removed ‘Date’ and ‘Year’ features to avoid duplication and ‘ID’, ‘IUCR’, ‘Description’, ‘Location 
Description’, ‘Domestic’, ‘Ward’ and ‘Updated On’ as they are insignificant.

RESULTS AND ANALYSES

Descriptive Analysis
To gain a better understanding of how the crimes occurred in Chicago we utilized Tableau, a statistical 
and data visualization tool used for clustering, visualization, an correlation analysis. We investigate 

https://data.cityofchicago.org/public-safety/crimes-2020/qzdf-xmn8
https://data.cityofchicago.org/public-safety/crimes-2020/qzdf-xmn8
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the correlations between crime type, timeframes during the day (24 hours), and locations (beats, 
communities, districts), and then develop a descriptive model to provide Chicago PD with valuable 
insights into the highest crime type, highest crime prevailing time, hot districts, community areas 
(CAs), and beat per top crime types.

Figure 2 depicts crime frequency by type from 2017-2019 in Chicago. Theft-related crimes have 
the highest frequency at 189,161 incidents, followed by battery and criminal damage at 148,294 
and 83,241, respectively. The ‘Primary Type’ attribute in the input dataset originally consisted of 
32 possible values, out of which the top 16 crime types in terms of frequency have been plotted in 

Table 1. Dataset characteristics

Attribute Data 
Type Description

ID Numeric Unique identifier for the case.

Case Number Numeric Records Division Number.

Date Date and 
Time Date and time of the incident.

Block String Address at which the incident occurred.

IUCR Numeric The Illinois Uniform Crime Reporting code. This is directly linked to the Primary Type and 
Description.

Primary Type String The primary description of the IUCR code.

Description String The secondary description of the IUCR code, a subcategory of the primary description.

Location 
Description String Description of the location where the incident occurred.

Arrest Boolean Arrest was made or not.

Domestic Boolean Indicates whether the incident was domestic related as defined by the Illinois Domestic 
Violence Act.

Beat Numeric Indicates the beat where the incident occurred*.

District Numeric Police district where the incident occurred.

Ward Numeric The ward (City Council District) where the incident occurred.

Community 
Area (CA) Numeric Indicates the community area where the incident occurred.

FBI Code Numeric Crime classification as outlined in the FBI’s National Incident-Based Reporting System 
(NIBRS).

X Coordinate Numeric The ‘x’ coordinate of the location where the incident occurred in State Plane Illinois East 
NAD 1983 projection.

Y Coordinate Numeric The ‘y’ coordinate of the location where the incident occurred in State Plane Illinois East 
NAD 1983 projection.

Year Numeric Year the incident occurred.

Updated On Date and 
Time Last updated date and time.

Latitude Numeric The latitude of the location where the incident occurred.

Longitude Numeric The longitude of the location where the incident occurred.

Location Location The location where the incident occurred.

*A beat is the smallest police geographic area – each beat has a dedicated police-beat car. Three to five beats make up a police sector, and three sec-
tors make up a police district. The Chicago Police Department has 22 police districts.
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Figure 2; the remaining crimes (61,107 incidents) were integrated into one category called ‘Other’. 
We will narrow the scope to consider harmful crimes only; arrest prediction particularly battery and 
assault we will see later in this research.

Figure 3 demonstrates the trend in criminal incidents in Chicago on a given day (2-hour timeslot) 
over three consecutive years. The trend appears to follow the same pattern throughout the years in 
which the timeframe between 8-12 am is at its peak. This information is highly useful, and it pinpoints 
that despite the efforts made by the Chicago PD in terms of resource allocation, alarmingly, the crime 
frequency pattern with regards to timeframes per hour has not changed for three consecutive years. To 
further investigate the pattern seen in Figure 3, we investigate the sort of crime that has taken place 
on an hourly basis broken down by year. We discover that each year from 1.00 am until 3.00 am, and 
from 8.00 am until 10.00 am, the rates of incidents are similar. More importantly, the highest number 
of crimes were reported as occurring at 12:00 midday in any given month over the last three years. 
The lowest number of crimes is registered between 1 pm and 11 pm. It is also feasible to group the 
hours to distinguish which types of crimes are more prominent in peak hours. We have been able to 
recognise the trends and the level of crime over the corresponding three years.

According to descriptive analyses conducted, so far against the historical data considered, there 
is still a significant likelihood of the same trend for crimes occurring at 12:00 midday in the future, 
as depicted in Figure 4. This leads to studying crimes by specific location, such as district, CA, or 
beat, to find the ‘hot’ locations per crime type and time. By gaining insights on these three attributes, 
Chicago PD will be able to optimize the resources allocated, such as new stations, patrols, and 
community service among others, and more importantly, the type of resources needed per specific 
communities and when.

We isolate the top five crime types for 23 districts broken down by year. Theft incidents are the 
highest in districts #1, #6, and #18 having 7,014, 3,583, and 6,546 incidents, respectively between 
8.00 am and 12.00 midday in any given year. Battery is the highest crime type in district #8 with 3,927 

Figure 2. Total crimes against crime type 2017-2019
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incidents between 8.00 am and 12.00. These four districts reported 16,342 crimes for 2017, 16,744 
for 2018, and 16,396 for 2019. Districts #1 and #18 rank first and second in the past three years in 
terms of crime frequency with a high likelihood that it will be repeated in 2020. This information is 
useful for the Chicago PD as it can concentrate additional resources on these two districts. Apparently, 
those two districts fall under Area Central covering Central, the Loop, and the Near North Side of 
Chicago and standing out as outliers exceeding all other districts’ crime rates (Halat et al., 2015). The 
near North Side district has the highest number of skyscrapers, and the largest population with high 
per capita income. It is the oldest part of Chicago, and thus, it a potential spot for criminal activities. 

Figure 3. Crime type 2017-2019

Figure 4. Crime forecast 2020-2023
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Some famous locations, such as the Gold Coast, Navy Pier, and Magnificent Mile are in this area. 
The shortage of economic opportunities for youth in the central and Near North Side districts have 
contributed to a rise in crime (Vélez, & Richardson, 2012). Chicago has high youth unemployment 
levels, so it’s hard to make a living with limited opportunities. Hence, if the government is keen to 
provide viable opportunities for young citizens, the crime rate will be significantly reduced (Vélez, 
& Richardson, 2012).

District 31 stands out showcasing the least crime with just one per year indicating that it is 
safe. This district includes Norridge and Harwood Heights, which are surrounded by the city. The 
populations of these two villages were 8,612 and 14,572, respectively according to the 2010 census. 
Based on United States census data, Harwood Heights is an Illinois community comprising 32.5% 
Polish Americans. The estimated median household income of Harwood Heights in 2017 was $55,881 
whereas for other Illinois communities it was $62,992; this region is still expanding and developing 
(Charles, 2013) (Chalom et al., 2002).

We condensed the number of crimes to ascertain smaller communities that might be hotspots 
for crimes by splitting districts into CAs, i.e., 77 in Chicago. Figure 5 reflects the top five crimes in 
CAs by year. It is obvious that Central Side’s CAs with larger population groups, i.e., #8 and #32, 
have more crimes than all other CAs. Serious crimes, such as battery and assault are concentrated in 
the Auburn Gresham, Chatham, and Chicago Lawn communities, peaking between 8.00 am-12.00 
midday in any given year. Specifically, CAs #8 and #32 come under districts #18 and #1, respectively. 
Furthermore, Chatham and Auburn Gresham fall within district #6, while Chicago Lawn falls within 
district #8. The total number of incidents between 8.00 am and 12.00 pm involving battery and assault 
are [1051, 918], [1066, 944] and [1070, 1017], respectively for Auburn Gresham, Chatham, Chicago 
Lawn CAs between 2017 and 2019. These three areas are classified as dangerous neighbourhoods in 
Chicago. This pattern of crimes indicates an alarming situation for the PD requiring increased patrols 
in these specific CAs especially at peak times. Placing more police community support officers in 
these communities provides a reassuring presence and is a promising crime prevention strategy.

We further investigate smaller locations within CAs to find specific beats related to crime types 
and timeframes. The focus is on investigating the Chatham, Chicago Lawn, and Auburn Gresham 
CAs to identify more specific beats. Table 2 reflects the frequency of top crime types by beat between 
8.00 am and 12.00 pm and for three consecutive years (2017-2019) along with arrest rates. Battery-
related crimes have the highest frequency in beat #631 with 175, 163, and 167 incidents in 2017, 

Figure 5. Top crimes by location (CA) 2017-2019



International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

10

2018, and 2019, respectively; this is followed by beat #612 with 154, 127, and 172 incidents in 2017, 
2018, and 2019, respectively.

It’s obvious from Table 2 that there is a need to maximize police patrols in beats, such as #631, 
#632, and #612 where there is a huge gap between rate of crimes and rate of arrests. The average 
arrest rate from 8.00 am to 12.00 pm. for 2017-2019 is 16%. Therefore, instead of one patrol car 
assigned per beat, the Chicago PD could allocate more patrol cars between 8:00 am and 12.00 pm. 
Between 8.00 am and 12.00 pm beats, such as #631, #632, and #612 would also benefit from a greater 
police presence.

Predictive Analysis
We expanded the analysis to forecast the arrest status class using supervised machine learning 
algorithms for serious crimes including battery and assault. In particular, we employed three 
classification algorithms: probabilistic-Naïve Bayes, Rule Induction-Repeated Incremental Pruning 
to Produce Error Reduction (RIPPER), and Decision Tree- C4.5 (Duda & Hart, 1973; Cohen, 1995; 
Quinlan, 1993) on features identified using feature selection methods. We created a new feature 
‘timeframe’ which includes three possible values:

1. 	 Midnight to 6.00 am
2. 	 6.00 am to 12.00 pm
3. 	 12.00 pm to midnight

To select the relevant features, we used Leave One Out Cross Validation (LOOCV), Information 
Gain (IG), and Correlation Feature Set (CFS) methods (Brown, 2000; Quinlan, 1993; Hall, 1999) 
with Naïve Bayes as a base classifier. The results of the feature selection process are shown in Table 
3. Block and Beat features were common and often ranked high by the considered feature selection 
methods. Hence, we retained these two features in the final subset of features, however, we will use 
only one of them during the building of the classification models as they both represent location.

Supervised learning techniques have been applied against the subset of features retained, i.e., 
Beat/Block, Primary Type, Timeframe, Date, and Arrest Status - class label, and the results are shown 
in Table 4a. We consider just one feature to represent the locations, and run the algorithms against 
two subsets of features: one with location as Block and one with location as Beat. The supervised 
learning algorithms maintain acceptable classification models with slightly over 80% predictive 
accuracy except for the Naïve Bayes algorithm, which produced a model slightly less than 80% 
when Beat was replaced with Block. Overall, the classification accuracy of the models derived 
by the different machine learning algorithms were consistent and stable. However, we suspected 

Table 2. Top crime types by beat in peak hours

Year/ Beat

2017 2018 2019

Battery 175 154 94 163 127 111 167 172 92

Theft 87 99 144 98 121 152 74 91 113

Criminal Damage 76 70 69 53 64 45 84 66 63

Assault 59 81 52 59 74 53 80 59 59

Deceptive Practice 41 30 51 30 34 53 31 34 46

Total Crimes per 
beat 438 434 410 403 420 414 436 422 373
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that the reason behind similar classification accuracies derived by the algorithms is due to a data 
imbalance issue. Therefore, we further analysed the confusion matrix results and noticed that Naïve 
Bayes, RIPPER, and C4.5 have high misclassification rates for the true positive instances. In other 
words, all machine learning algorithms failed to classify incidents which had ‘Arrest Status = Yes’ 
due the original training dataset having over 80% incidents with ‘Arrest Status = No’. Therefore, 
the classification accuracies derived by the considered algorithms are misleading and sampling the 
data before the learning phase becomes essential. For example, the Naïve Bayes algorithm produced 
models that had no true positive rates, misclassifying 41,236 that were supposed to be ‘Arrest Status 
= Yes’ into ‘Arrest Status = No’, which is misleading. So, all results obtained have been ignored and 
we applied the Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002) before 
the training phase to balance the class in the dataset.

Table 4b depicts the performance of the machine learning algorithms for predictive Arrest 
class for battery and assault crimes after applying the SMOTE data sampling method (Chawla et al., 
2002). The results of the models derived by Naïve Bayes, RIPPER, and C4.5 were low, but the C4.5 

Table 3. Feature selection methods and ranking

LOOCV IG CFS

Block Block Block

Beat Beat Primary Type

Community Area Date Time Frame

District Community Area District

Primary Type District Date

Date Primary Type Beat

Time Frame Time Frame Community Area

Table 4a. Misleading model performance without balancing data

Features Used Classification Accuracy

Naïve Bayes
Block

Timeframe, Primary Type, Date
79.36%

Beat 80.22%

RIPPER
Block

Timeframe, Primary Type, Date
---

Beat 80.22%

C4.5
Block

Timeframe, Primary Type, Date
80.22%

Beat 80.22%

Table 4b. Model performance after using SMOTE with location beat

Accuracy Precision Recall F-measure

Naïve Bayes 59.78% 0.598 0.598 0.598

RIPPER 51.89% 0.526 0.519 0.494

C4.5 63.50% 0.635 0.635 0.635
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algorithm showed superiority, i.e., 63.50% predictive power. The classification models derived have 
low predictive accuracy, precision, recall, and harmonic mean rates. These results, if limited, show 
that predicting the arrest status for just two crime types using the Date, Timeframe, Primary Type, 
and Block/Beat subset of features is not highly influential, at least on the Chicago crime dataset. 
The results show that more features are needed to improve arrest status especially in high areas for 
crimes, such as battery and assault, for example in beats #612, #631, and #632. Beat #612 belongs 
to CA #71; beats #631 and #632 belong to CA #44; these three beats have 1,723, 1,812, and 1,308 
battery and assault incidents, respectively. More importantly, the question of when these beats have 
a low or high prediction of arrest status becomes crucial.

After delving into the statistics of the models derived by the best performing algorithm in terms 
of accuracy after data sampling, i.e., C4.5, we noticed that the number of incidents on beats #612, 
#631, and #632 without arrest were 1,327, 1,441 and 1,032, respectively. Therefore, we managed to 
output the classifier with predicted class for the test data, i.e., test data contains 100 instances (See 
Table 5). The results revealed that: (1) Beat #632 had the most misclassified instances; (2) Totals of 
87, 87, and 85, and 79, 74, and 83 instances on beats #612, #631, and #632 contributed to accuracy 
and resulted in no arrests, respectively. There should be an increase in resources, especially in beat 
#632, to improve the number of arrests and prevent serious crimes that may result in physical harm.

A possible reason for the low arrest rate is that limited resources are used to patrol those 
communities with high battery and incident crimes. Not having enough features to distinguish between 
cases of arrest and others without arrest in the dataset is another potential factor. More importantly, 
balancing the dataset using SMOTE data sampling has not had a significant impact on the performance 
of the machine learning algorithms.

CONCLUSION

Law enforcement continues to maintain records of criminal incidents that are examined using advanced 
intelligent techniques to understand causes and effects and then develop resource allocation and 
prevention strategies. This paper investigated crime analysis using a real dataset to understand why 
arrest status is low at specific times and in various communities in the city of Chicago for offenses, 
such as battery and assault. To achieve the aim, in-depth clustering and visualization against the 
last three years’ incidents (2017-2019) has been conducted to understand the correlations between 
timeframes, locations, and crime types. The knowledge learnt was then employed to produce a 
dataset with influential features that could be processed by machine learning techniques to produce 
classification models.

Findings based on feature selection pinpointed that features, such as Beat and Block are impactful. 
Moreover, 12:00 noon was identified as the hour when the most crimes were reported with 23,091, 
22,848, 22,443 for 2017, 2018, and 2019, respectively. In terms of specific locations with a high level 
of crime, districts #1 and #18, CAs #44, #66, and #71, and Beats #631, #632, and #612 were classified 
with the top five crime types of theft, battery, criminal damage, assault, and deceptive practice.

A time series analysis was also conducted to show the crime trend will reoccur in 2020–2022. More 
importantly, the predictive analysis using the machine learning algorithms, i.e., Naïve Bayes, RIPPER, 
and C4.5, produced models from the subset of features retained with around 80.22% classification 
accuracy for the arrest status. The performance of these models is biased toward the majority class 
in the dataset because of the data imbalance issue, so these models are dropped. We balanced the 
dataset using SMOTE with ten-fold cross validation to produce more realistic classification models. 
The results obtained after data sampling by the machine learning algorithms were surprisingly low 
with C4.5 being superior with classification accuracy of 63.5%.

There is a huge gap between the rate of crime and the arrest status resulting in imbalanced data. 
However, this research demonstrates a successful approach to building a machine learning model 
to forecast arrest status using a subset of the Chicago crime data related to battery and assault. This 
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research is beneficial for Chicago PD to re-examine and model a service-oriented system linked 
with effective crime prevention and management. The department needs to allocate resources more 
efficiently to increase the possibility of crime prevention and thus reduce crimes in specific timeframes 
in recognised beats, districts, and communities as indicated earlier.
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