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ABSTRACT

In this paper, a single machine scheduling problem with an overtime constraint is studied. The 
objective is to minimise the total penalty cost defined as the sum of tardy, early, and overtime costs. 
Three novel hybrid algorithms that hybridise a new heuristic with genetic algorithm, tabu search, and 
simulated annealing, referred to as GAH, TSH, and SAH, are proposed to solve the problem. In each 
iteration of the proposed hybrid algorithms, a given metaheuristic is used to determine a sequence 
of jobs, whereas a new heuristic is used to minimise the total penalty cost of the sequence using a 
backward-forward scheduling technique and a penalty cost trade-off process. Exhaustive experiments 
are conducted to evaluate the effectiveness of the proposed hybrid algorithms. For medium-scale 
and large-scale problems, TSH with its best common parameter setting referred to as TSH2 clearly 
outperforms the exact algorithm, whereas both algorithms can obtain the optimal solution for small-
scale problems. In addition, the computational time of TSH2 is in an acceptable range for the planner.

Keywords
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1. INTRODUCTION

In the scheduling context, tardiness is one of the most important penalty time components to be 
minimised because it always generates a very high penalty cost and also reduces the reputation of the 
firms. Other penalty time components, for instance, earliness and overtime, are practically assigned 
to jobs to reduce tardiness. However, they should be carefully assigned since they also generate early 
(holding) cost and overtime cost. Therefore, it is a challenging problem for planners and researchers 
to simultaneously minimise either penalty time components or penalty cost components. This paper 
addresses the problem by proposing three novel hybrid algorithms that hybridise a new heuristic with 
three metaheuristics to minimise the total penalty (TP) cost, which is defined as the sum of tardy, 
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early, and overtime costs. These penalty costs are selected based on the following reasons. First, they 
are the practical penalty costs that always occur in many industries. Second, using them for making 
a decision is easier than using their penalty times. Third, simultaneously minimising them is rarely 
found in the literature.

Three metaheuristics used in this paper are: genetic algorithm (GA), tabu search (TS), and 
simulated annealing (SA). Based on a set of experiments conducted beforehand, solving large-scale 
problems using their conventional algorithms requires a very long computational time to obtain steady 
stage solutions. This is because there are many alternatives to assigning the amount of penalty cost 
components to the jobs resulting in repeated searches for a given sequence. In addition, it is exceedingly 
complex to encode a solution to simultaneously represent the sequence of jobs and the amount of 
penalty cost components assigned to the jobs (Li et al., 2021; Yoda et al., 2014; Zobolas et al., 2008).

To reduce the computational time as well as increase the search ability of the metaheuristics, 
three novel hybrid algorithms are proposed. Their concept is to hybridise a new heuristic with the 
three metaheuristics (referred to as GAH, TSH, and SAH). In each iteration of the proposed hybrid 
algorithms, a given metaheuristic is used to determine a sequence of jobs, whereas a new heuristic 
is used to minimise the TP cost of the sequence. By the proposed hybrid algorithms, only one 
solution for a given sequence of jobs is obtained. It can remedy the repeated searches and reduce the 
computational time. Furthermore, encoding the solution for the problem is much easier since only 
the sequence of jobs needs to be encoded.

The effectiveness of the proposed hybrid algorithms is evaluated using a single machine production 
shop. Although it is the simplest shop floor, it is proved to be an NP-hard problem when tardiness 
and overtime are minimised simultaneously (Jaramillo & Erkoc, 2017; Yang et al., 2004).

This paper makes contribution to scheduling theory and the related industries. For the first contribution, 
three novel hybrid algorithms capable of minimising the TP cost that is a practical objective and rarely 
found in the literature, are proposed. For the second contribution, the proposed hybrid algorithms are 
developed as a software package so that the planner can use it in real practice. It can be downloaded along 
with explicit instructions by following the link provided in the conclusion section of this paper.

This paper is organised into eight sections as follows: 1) introduction, 2) literature review, 3) 
overtime policies, 4) problem formulation, 5) details of the proposed heuristic and hybrid algorithms, 
6) details of case studies and experiments, 7) results and discussion, and finally 8) conclusion and 
recommendations for further study.

2. LITERATURE REVIEW

Although, the one-stage or single machine (SM) problem is the simplest combinatorial scheduling 
problem, it is generally categorised as NP-hard when dealing with large-scale sophisticated problems 
(Du & Leung, 1990; Jaramillo & Erkoc, 2017; Vakhania, 2018; Yang et al., 2004; Zhu & You, 2017). 
The objectives always studied in the literature are: tardiness, earliness, lateness, overtime, setup time, 
flow time, makespan, and their variants. In terms of time, each of them is commonly referred to as 
“penalty time.” And, in terms of cost, it is referred to as “penalty cost.”

For large-scale problems, many researchers have attempted to minimise these objectives, either 
individually or simultaneously through two main solution approaches: heuristics and metaheuristics. 
Exact algorithms such as integer programming, mixed integer programming, branch-and-bound, and 
so forth, are rarely selected as the main solution approach since they can obtain an optimal solution 
within a short or practical computational time only for small-scale problems. In fact, in most of the 
scheduling studies of large-scale problems, exact algorithms are used as a benchmark to evaluate 
the efficiency of their proposed algorithms. When the proposed algorithm obtains a solution that 
is near-to or similar to the optimal solution for small-scale problems, it is regarded as an excellent 
algorithm for solving medium-scale and large-scale problems as well (Cheng et al., 2005; Ding et 
al., 2016; Ferrolho & Crisóstomo, 2007; Geiger, 2010).



International Journal of Knowledge and Systems Science
Volume 13 • Issue 1

3

A literature survey related to the SM scheduling problems that minimised either the penalty 
times or penalty costs over the past three decades, is summarised in Table 1. It is divided into two 
main categories: SM with non-overtime (SMNO) and SM with overtime (SMO). Both categories 
are reviewed in terms of three focused aspects: objectives, solution approaches, and problem 
characteristics, because they are later used to specify the scope of this paper.

Table 1. The literature survey on the SM problems with minimising either penalty times or costs

Authors (Year) SM type Objectives Solution approaches Problem characteristics

Melouk et al. (2004) SMNO Makespan SA Non-identical batch

Nesello et al. (2018) SMNO Makespan Iterative exact algorithm Periodic maintenance with 
SDST

Perez-Gonzalez & Framinan 
(2018) SMNO Makespan Constructive heuristics Periodic machine availability

Nazif & Lee (2010) SMNO Maximum lateness GA Job family SDST

Györgyi & Kis (2018) SMNO Maximum lateness Branch-and-cut Raw material constraints

Sioud et al. (2012) SMNO Total tardiness GA with hybrid crossover SDST

Süer et al. (2012) SMNO Total tardiness GA Non-zero ready times and 
non-pre-emptive

Herr & Goel (2016) SMNO Total tardiness Heuristic Job family SDST with 
resource constraints

Molaee et al. (2011) SMNO Maximum earliness, and number 
of tardy jobs Heuristic Availability constraints

Rabadi et al. (2002) SMNO Total tardiness and earliness SA SDST

Li et al. (2015) SMNO Total tardiness and earliness Heuristic, hybrid GA Common due dates and non-
identical batch sizes

Low et al. (2016) SMNO Total tardiness and earliness Dynamic programming Common due dates and 
unavailability periods

Yazdani et al. (2017) SMNO Total tardiness and earliness EVNS Different due dates and 
unavailability periods

González & Vela (2015) SMNO Total weighted tardiness Memetic algorithm SDST

Kirlik & Oguz (2012) SMNO Total weighted tardiness VNS SDST

Suppiah & Omar (2014) SMNO Total weighted tardiness Hybrid TS Incompatible families and 
SDST

Khorshidian et al. (2011) SMNO Total weighted tardiness and 
earliness GA Pre-emptive JIT

M’Hallah & Alhajraf (2016) SMNO Total weighted tardiness and 
earliness Hybrid ACO and VNS JIT

Arroyo et al. (2011) SMNO Total weighted tardiness and 
earliness, and flow time Multi-objective VNS SDST

Keshavarz et al. (2015) SMNO Total weighted tardiness and 
earliness costs

Branch-and-bound, 
Lagrangian relaxation SDST

Valente & Gonçalves (2009) SMNO Linear earliness and quadratic 
tardiness costs GA No machine idle time

Vilà & Pereira (2013) SMNO Total weighted quadratic 
tardiness and earliness costs Insertion heuristics No machine idle time

Yang et al. (2004) SMO Total weighted tardiness and 
overtime costs

Pseudo-polynomial time, 
Local search algorithm Non-pre-emptive

Jaramillo & Erkoc (2017) SMO Total weighted tardiness and 
overtime costs Three-stage heuristic Pre-emptive with the common 

processing time

Jaramillo & Erkoc (2018) SMO Total weighted tardiness and 
overtime costs

Aggregate pre-emptive 
scheduling

Pre-emptive with the common 
processing time
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In the SMNO category, many research works were conducted to minimise either a penalty time 
or a penalty cost. They can be summarised as follows. Makespan was minimised in three problem 
and solution approach pairs: the non-identical batch processing problem that was solved using SA 
(Melouk et al., 2004), the problem with periodic maintenance and sequence-dependent setup time 
(SDST) using an iterative exact algorithm (Nesello et al., 2018), and the periodic machine availability 
problem using a set of constructive heuristics (Perez-Gonzalez & Framinan, 2018). Maximum lateness 
was minimised by GA for a job family SDST problem (Nazif & Lee, 2010), and by a branch-and-cut 
algorithm for a raw material constraint problem (Györgyi & Kis, 2018). Total tardiness was minimised 
in the following problem and solution approach pairs: the SDST problem that was solved using GA 
with hybrid crossover operators (Sioud et al., 2012), the problem with non-zero ready times and non-
pre-emptive allowance using GA (Süer et al., 2012), and the job family SDST problem with resource 
constraints using a heuristic (Herr & Goel, 2016).

Besides the single objective studies, some combinations of either penalty times or penalty 
costs were also considered. Maximum earliness and the number of tardy jobs were simultaneously 
minimised by a heuristic for a problem with availability constraints (Molaee et al., 2011). Total 
tardiness and earliness were minimised in the following studies: the SDST problem that was solved 
using SA (Rabadi et al., 2002), the problem with common due dates and non-identical batch sizes using 
heuristics and a hybrid GA (Li et al., 2015), the problem with common due dates and unavailability 
periods using dynamic programming (Low et al., 2016), and the problem with different due dates 
and multiple unavailability periods using an enhanced variable neighbourhood search referred to as 
EVNS (Yazdani et al., 2017).

Cases with the variants of penalty times and costs, such as weighted and quadratic terms, were 
also studied. Total weighted tardiness was minimised in the following problem and solution approach 
pairs: the SDST problem that was solved using a memetic algorithm (González & Vela, 2015), the 
SDST problem using VNS (Kirlik & Oguz, 2012), and the problem with incompatible families and 
SDST using a hybrid TS (Suppiah & Omar, 2014). Total weighted tardiness and earliness were 
minimised by GA for a pre-emptive just-in-time (JIT) problem (Khorshidian et al., 2011), and by a 
hybrid between ant colony optimisation (ACO) and VNS for a JIT problem (M’Hallah & Alhajraf, 
2016). A multi-objective VNS was proposed to minimise total weighted tardiness and earliness as a 
first priority, and minimise total flow time as a second priority, for an SDST problem (Arroyo et al., 
2011). Total weighted tardy and early costs were minimised by Lagrangian relaxation and a branch-
and-bound algorithm for an SDST problem (Keshavarz et al., 2015). Linear early and the quadratic 
tardy costs were minimised by GA for a non-machine idle time problem (Valente & Gonçalves, 2009). 
Weighted quadratic tardy and early costs were minimised by insertion heuristics for a non-machine 
idle time problem (Vilà & Pereira, 2013).

Unlike the SMNO category, only a few works related to the SMO problem are found in the 
literature. The objectives of the SMO problem were frequently studied in a combination of tardy cost 
and overtime cost. This is because overtime is normally required when tardiness arises. They can be 
summarised as follows. Total weighted tardy and overtime costs were minimised in a non-pre-emptive 
problem and solved by a pseudo-polynomial time and a local search algorithm (Yang et al., 2004). 
The same objective was minimised in a pre-emptive with the common processing time problem and 
it was solved by two heuristics: a three-stage heuristic (Jaramillo & Erkoc, 2017) and an aggregate 
pre-emptive scheduling heuristic (Jaramillo & Erkoc, 2018).

Based on the review, some conclusions can be drawn. First, the SMNO and SMO problems 
are still of great interest to the scheduling community. It clearly shows that there are a very limited 
number of works that contribute to the SMO problem. Second, penalty times and costs are still an 
interesting matter at present. From a practical management point of view, however, penalty costs can 
be simply translated rather than penalty times. In addition, dealing with penalty costs can avoid the 
hard work of determining the optimal weights for penalty time components. Third, simultaneously 
minimising overtime and other penalty costs (especially tardy cost) renders the problem NP-hard 
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thus making it difficult to determine the optimal solution within a practical computational time by 
the exact algorithm. This is because many binary and integer variables (particularly overtime) are 
required to satisfy the constraints. Fourth, minimising the sum of tardy, early, and overtime costs, 
as performed in this paper, is rarely found in the literature. Fifth, the solution approaches that are 
frequently used for large-scale problems, are the heuristic and metaheuristic algorithms with their 
modifications or hybrids. These approaches are applied to other sophisticated combinatorial problems 
as well (Al-Moadhen et al., 2016; Chiadamrong & Tangchaisuk, 2021; Hewahi, 2015; Rerkjirattikal & 
Olapiriyakul, 2019; Rerkjirattikal et al., 2020a; Rerkjirattikal et al., 2020b; Srizongkhram et al., 2020; 
Zhang & Guo, 2011). Finally, for large-scale problems, the effectiveness of the proposed algorithms 
is evaluated by comparing their solutions with the existing algorithms or the known bounds from the 
exact algorithm. On the other hand, for small-scale problems, it is evaluated in comparison with the 
optimal solution from the exact algorithm.

3. OVERTIME POLICIES

In this paper, an overtime decision is made based on three practical overtime policies observed from 
the selected factories. The unit of all time parameter measures (processing time, due time, regular 
time, and overtime) is in hours. Each day consists of eight hours of a regular period and four hours 
of an overtime period.

For the first policy, the required overtime period of a given job must start from the earliest 
available overtime hour on a given day. Figure 1 illustrates two and three hours of two overtime 
periods required for jobs J1 on day 1 and J2 on day 2. Based on this policy, two hours of the overtime 
period for J1 are allowed, whereas three hours of the overtime period for J2 are not allowed. For 
the second policy, the required overtime period must be occupied by consecutive overtime hours. 
In Figure 1, there are three hours of the overtime period required for job J3 on day 3. Based on the 
second policy, it does not allow three hours for J3 since they are not occupied by consecutive hours. 
For the last overtime policy, the required overtime period must be an integer starting from one hour 
to four hours. Fractional numbers are not allowed since they are hard to handle in terms of time and 
cost management. For instance, J4 is not allowed to occupy 1.33 hours of the overtime period on day 
4 as shown in Figure 1. These overtime policies are implemented in many factories and the selected 
factories in this paper.

Note that if the unit of the time parameter measures is changed to different units, such as minute, 
half-hour, day, and so forth, all time parameters must be converted to integer of the new unit. For 
example, six hours of processing time must be converted to 360 minutes when the unit of interest 
is in minutes.

4. PROBLEM FORMULATION

This section presents the formulation of the SMO problem in this study by using the mathematical 
model. The indices, parameters, variables, objective, and constraints are defined as follows.

Figure 1. The illustration of the practical overtime policies
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4.1 Indices
j 	 = Index of job from 1 to JOB	
q 	 = Index of position from 1 to POS	
d 	 = Index of day from 1 to D	
ot	 = Index of overtime hour from 1 to OT	
qꞌ 	 = Member of position q	
dꞌ 	 = Member of day d	
otꞌ	 = Member of overtime ot	

4.2 Parameters
JOB 	 = Number of jobs	
POS 	 = Number of positions	
D 	 = Number of days (in days)	
OT 	 = Maximum overtime hours per day (in hours)	
R 	 = Maximum regular hours per day (in hours)	
M 	 = Large positive number	
Pj 	 = Processing time of job j (in hours)	
Duej 	 = Due time of job j (in hours)	
tj
cost 	 = Tardy cost per hour of job j (in dollars)	

ej
cost 	 = Early cost per hour of job j (in dollars)	

otj
cost 	 = Overtime cost per hour of job j (in dollars)	

4.3 Variables
Cmax 	 = Maximum completion time (in hours)	
Tq 	 = Tardiness of a job at position q (in hours)	
Tj,q 	 = Tardiness of job j at position q (in hours)	
Eq 	 = Earliness of a job at position q (in hours)	
Ej,q 	 = Earliness of job j at position q (in hours)	
OTq 	 = Overtime of a job at position q (in hours)	
OTj,q 	 = Overtime of job j at position q (in hours)	
n 	 = Integer number	

4.4 Decision Variables

Sq 	 = Start time of a job at position q in a regular period (in hours)	

Sq
' 	 = Start time of a job at position q in an overtime period (in hours)	

Cq 	 = Completion time of a job at position q in a regular period (in hours)	

Cq
' 	 = Completion time of a job at position q in an overtime period (in hours)	

x
j

j q

q
,
=


1

0

      

  

if job is processed at position

otherwise






	



International Journal of Knowledge and Systems Science
Volume 13 • Issue 1

7

gd ot
d ot

, =
1
0
    
  

if the job is processed on day  at hour 

othherwise








	

yq d ot
q d

, , =
1    if the job at position is processed on day  aat hour 

otherwise  
ot

0








	

aq d ot, , =
1   if overtime is allowed for the job at positionqq d ot  
  

after day at hour 

otherwise

 

0








	

bq d ot, , =
1   if overtime is allowed for the job at position  day at hour 

otherwise

   
  

beforeq d ot

0








	

fq d ot, , =
1    if overtime is allowed for unscheduled jobs beffore position  on  day at hour 

  otherwise

q d ot

0








	

4.5 Objective Function
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4.6 Constraints
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T C Due x qq q j j q
j

JOB

≥ − ∀
=
∑ , ,

1

	 (28)

T T M x j qj q q j q, ,( ),≥ − − ∀ ∀1  , 	 (29)

E Due x C qq j j q
j

JOB

q≥ − ∀
=
∑ , ,

1

	 (30)

E E M x j qj q q j q, ,( ), ,≥ − − ∀ ∀1 	 (31)

S S C C T E OT qq q q q q q q, , , , , , ,' ' ≥ ∀0 	 (32)

T E OT j qj q j q j q, , ,, , , ,≥ ∀ ∀0 	 (33)

The objective function is to minimise Z, which is the TP cost defined as the sum of tardy, early, and 
overtime costs as shown in equation (1). Constraints (2) and (3) ensure that a job can be scheduled at 
only one position and the position can process only one job at a time. Note that a position may have 
more than one hour depending on the processing time of the job at this position. Constraints (4) and 
(5) ensure that all jobs are processed in a non-pre-emptive non-overlapping manner. Constraints (6)–
(10) determine which job should be processed in the overtime period of a selected day. Constraints 
(11)–(21) ensure when a job requires both regular and overtime periods, these periods comply with the 
condition that they are consecutive. Constraints (22) and (23) determine the required overtime hours 
of the jobs. Constraints (24) and (25) determine the completion time of the jobs and the maximum 
completion time, respectively. Constraints (26) and (27) determine the start time of the jobs in both 
regular and overtime periods. Constraints (28) and (29) calculate the tardiness of the jobs, whereas 
constraints (30) and (31) calculate the earliness of the jobs. Finally, constraints (32) and (33) are the 
non-negativity constraints of the variables.

Since the time parameters in this formulation (processing time, due time, regular time, and 
overtime) are integers, the time variables (start time, completion time, and others) must be integers 
as well. This causes the model to require many integer and binary variables, rendering the model 
NP-hard. As a result, it takes a very long computational time to obtain the optimal solution.

Note that the unit of time parameter measures in this formulation is in integer hours. In case the 
planner is interested in other units, all time parameter data mentioned above must be converted to 
integers of the desired units before determining the solution. For instance, if the planner requires a 
half-hour precision, 10 hours of processing time must be converted to 20-time slots, eight hours of 
regular time to 16-time slots, four hours of overtime to eight-time slots, a due time at hour 36 to at 
hour 72, and so on.
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5. DETAILS OF THE PROPOSED HEURISTIC AND HYBRID ALGORITHMS

This section explains the details the proposed heuristic and hybrid algorithms. The proposed 
heuristic minimises the TP cost using a backward-forward scheduling technique with a penalty 
cost trade-off process. An explicit numerical example using the information shown in Table 2, 
illustrates how the proposed heuristic works. The unit of measure of all time parameters and 
variables shown in Table 2 (Pj, Duej, Cj, Tj, OTj, Ej) is in integer hours, whereas the unit of measure 
of all cost parameters is in dollars.

The proposed heuristic has two main steps. The first step is to determine a penalty cost relation 
by using the average of each penalty cost component (APC). It is calculated from tardy, early, and 
overtime costs of all jobs. This penalty cost relation is then used in the trade-off process in a way 
that the highest penalty cost is traded with the lowest penalty cost.

Through the APC values shown in Table 2, the penalty cost relation in a descending order of tardy 
cost (39.25) → overtime cost (15.75) → early cost (11.25) is obtained. The trade-off process trades 
tardiness for earliness first. When earliness is not available, overtime is used instead. If a tiebreak of 
the APC values occurs, for example, when the APC values of overtime and early costs are the same, a 
desired penalty cost relation must be specified. However, most of the factories, as well as the selected 
factories in this study, normally have a penalty cost relation similar to the relation in this example.

The benefit of using the penalty cost relation obtained by the APC values is to avoid the 
complication of the penalty cost trade-off process. This complication occurs when using many penalty 
cost relations obtained from all jobs. In Table 2, two possible conflicts of the penalty cost components: 
within the job and between the jobs, can be observed. For instance, the overtime costs of jobs J1, 
J2, and J4 are higher than the early costs for both within the jobs and between the jobs, whereas the 
conflict relation occurs within J3 and between J2 and J3. When the cost relations are conflicting, the 
penalty cost trade-off process becomes complicated, which results in a longer computational time.

The second step is to apply the backward-forward scheduling technique with the penalty cost 
trade-off process to the jobs in a given sequence (one job at a time). The primary complexity of this 
step is the situation when a job is being scheduled, the other scheduled jobs are allowed to shift either 

Table 2. Data of the numerical example and results after applying the proposed heuristic

Information of jobs Scheduling results

Penalty costs
Job (j) Pj Duej

tj
cost otj

cost ej
cost Cj Tj OTj Ej

1 6 29 33 18 8 29 0 0 0 0

2 7 8 44 19 16 7 0 0 1 16

3 8 10 43 9 13 11 1 4 0 79

4 4 24 37 17 8 23 0 0 1 8

Average penalty cost (APC) 39.25 15.75 11.25 Total penalty (TP) cost 103

Figure 2. Backward scheduling of J2 from its due time
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backward or forward to minimise the total penalty cost (the sequence of jobs must be maintained). 
In Table 2, suppose the sequence of the jobs is J2→J3→J4→J1 and the descending APC relation is 
tardiness → overtime → earliness. The first job in the sequence, J2, is selected and scheduled backward 
from its due time (hour 8), as shown in Figure 2. Because no penalty costs occur, the trade-off process 
is not required.

The next job in the sequence is J3. Suppose it is scheduled backward from its due time (hour 10); 
then it overlaps with J2 by six hours (the processing time of J3 is eight hours). Because the overlap 
of the jobs is not allowed, J3 is instead scheduled forward to the right side beyond its due time for 
six hours, as shown in Figure 3. This results in six hours of tardiness since the completion time of J3 
(hour 16) is higher than its due time (hour 10).

Since the tardy cost of J3 occurs, the trade-off process allows the earliness for J2 to reduce the 
tardiness of J3. Because only one hour is available for J2 to be completed early, J2 and J3 are shifted back 
to the left side by an hour, as shown in Figure 4. This results in the one hour increase of the earliness 
of J2 and the one hour reduction of the tardiness of J3. The remaining tardiness of J3 is now five hours.

Because there is no more regular time for allowing earliness, overtime is used for the trade-off 
process. Four overtime hours on day 1 are used for J3 to reduce the tardiness This results in essentially 
one hour of tardiness of J3 as shown in Figure 5. The next job in the sequence is J4. Because it can be 
scheduled backward from its due time (hour 24) without overlapping with other scheduled jobs, the 
trade-off process is not required. The final results of scheduling jobs J3 and J4 are shown in this figure.

Figure 3. Forward scheduling of J3 beyond its due time

Figure 4. Backward scheduling of J2 and J3

Figure 5. Backward scheduling of J3 and J4

Figure 6. Forward scheduling of J1 beyond its due time
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The last job in the sequence is J1. Suppose it is scheduled backward from its due time (hour 
29); then it overlaps with J4 by one hour (the processing time of J1 is six hours). Due to the overlap 
constraint, J1 is scheduled forward to the right side beyond its due time by an hour. This results in 
one hour of tardiness since the completion time of J1 (hour 30) is higher than its due time (hour 29) 
as shown in Figure 6.

Since the tardy cost of J1 occurs, then the trade-off process allows the earliness of J4 to reduce 
the tardiness of J1, as shown in Figure 7. This results in increasing the one hour increase of earliness 
and one hour reduction of tardiness.

Figure 7. Backward scheduling of J4 and J1

Figure 8. The pseudo-code for the proposed heuristic
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Since all jobs in the sequence are completely scheduled, the proposed heuristic is then stopped. It 
can be observed in Figure 7 that only the essential tardiness, earliness, and overtime, are required. This 
results in the minimum TP cost, which is the main benefit of the proposed heuristic. The minimum 
TP cost for the sequence J2→J3→J4→J1 is $103, as shown in the last column of Table 2. The overall 
mechanism of the proposed heuristic is summarised in pseudo-code as shown in Figure 8.

The details of this example are also used as input parameters for the proposed mathematical 
model. The results show that the solution obtained from the proposed heuristic is similar to the optimal 
solution determined by the exact algorithm in CPLEX. This suggests that the proposed heuristic is 
highly efficient. However, without modifications, it cannot be applied to solve the problem in this 
study since it works well only when the sequence of jobs is known. Accordingly, the proposed hybrid 
algorithms hybridise the proposed heuristic with the selected metaheuristics in their fitness evaluation 
steps. In each iteration of the proposed hybrid algorithms (GAH, TSH, and SAH), a given metaheuristic 
is used to determine a sequence of jobs, whereas the proposed heuristic is used to minimise the TP 
cost of the sequence. By the concept of the proposed hybrid algorithms, the search ability and the 
computational time of the metaheuristics can be improved.

6. DETAILS OF CASE STUDIES AND EXPERIMENTS

This section provides the details of case studies and experiments. There are eight selected factories that 
produce different automotive parts. Their production characteristics can be summarised as follows:

•	 The shop floor type is SMO with non-pre-emptive and non-overlapping of jobs.
•	 The job size varies in the range of 5–200 jobs.
•	 Each day has eight hours of a regular period and four hours of an overtime period.
•	 The processing time of jobs is in integer hours and it is in the range of 2–10 hours 

(uniform distribution).
•	 The due time of the jobs is in integer hours and it is in the range of 5–10 times of the processing time.

Since real data from the factory is confidential, a set of hypothetical data generated based on the 
mentioned characteristics is used to evaluate the effectiveness of the proposed heuristic and hybrid 
algorithms. These data are generated by a new instance generator called i-IGSP that is developed by 
King Mongkut’s University of Technology North Bangkok (KMUTNB) and Rajamangala University 
of Technology Phra Nakhon (RMUTP). It is the instance generator capable of generating hypothetical 
data for various production shop characteristics (Latthawanichphan et al., 2019; Songserm et al., 2021). 
Note that all the time parameters are uniformly distributed similar to other researches in the literature 
(Chang et al., 2009; Pan et al., 2017; Vallada & Ruiz, 2009). However, the normal distribution is 
also available in i-IGSP. The practical overtime policies explained earlier are implemented, and the 
APC relation of the observed factories in a descending order is tardiness → overtime → earliness.

Based on possible job sizes observed from the factories, six problem sizes (5-job, 10-job, 20-job, 
50-job, 100-job, and 200-job) are selected. Note that the 5-job and 10-job problems are considered 
as small-scale problems, the 20-job and 50-job problems as medium-scale problems, and the 100-job 
and 200-job problems as large-scale problems. In addition, to represent different characteristics of a 
given job size in terms of processing time and due time data, a set of five instances for each job size 
problem is further generated by different seed numbers (Latthawanichphan et al., 2019; Songserm 
et al., 2021) resulting in 30 different problem instances. These instances are used to prove that the 
proposed hybrid algorithms work well for various problem characteristics.

Three experiments are conducted for different purposes. The first experiment is conducted to 
evaluate the effectiveness of the proposed heuristic by using 120 sequences of jobs that are randomly 
selected from all problem sizes. The second experiment is conducted to determine the best common 
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parameter (BCP) setting for each hybrid algorithm (GAH, TSH, and SAH). The BCP setting is very 
practical for the planner since it is applicable to all problem characteristics. It is better than using 
the best parameter setting that may have to change depending on the characteristics. Finally, the last 
experiment is conducted to evaluate the effectiveness of the proposed hybrid algorithms that are 
set by their BCP settings. Note that all instance are used for the last two experiments. The available 
parameter settings of the proposed hybrid algorithms for the last two experiments are shown in Table 
3. They are obtained from a set of experiments that are conducted beforehand. The first and second 
experiments are evaluated through the relative percentage deviation (RPD) and its average (ARPD) 
indices, whereas the last experiment is evaluated through the relative percentage improvement (RPI) 
and its average (ARPI) indices.

In terms of the experimental runs required for all the experiments, 240 runs are required for 
the first experiment (120 runs for the proposed heuristic and 120 runs for the mathematical model), 
whereas 2,190 runs based on the factorial experiments of the details shown in Table 3, are required 
for the last two experiments. The details of these 2,190 runs are: 960 runs for GAH (32 settings of 30 
instances), 240 runs for TSH (8 settings of 30 instances), 960 runs for SAH (32 settings of 30 instances) 
and 30 runs for the mathematical model.

The computational time of the hybrid algorithms is set to six hours, which is the maximum 
allowance from the planner, whereas it is allowed to be significantly longer for the exact algorithm 
(24 hours) because it is challenging to determine the optimal solution or the best bound for a 
comparison purpose.

The performance indices of each experiment are denoted and calculated by the following 
equations. The first experiment requires two indices: RPDSeq,Js and ARPDJs as shown in equations 
(34) and (35). The RPDSeq,Js index is the relative percentage deviation of the solution obtained 
from the proposed heuristic over the optimal solution or the bound obtained from the exact 
algorithm. It is used to evaluate the effectiveness for a given sequence and job size. The ARPDJs 
index is the average of RPDSeq,Js. It is used to evaluate the effectiveness for all the sequences 
of a given job size.

For the second experiment, the RPDIns,Js, ARPDJs, and ARPDO indices as shown in equations 
(36), (37), and (38), are required. The RPDIns,Js index, the relative percentage deviation of the 
solution obtained from each setting over the best solution across all settings, is first calculated 
for each instance and job size. The average of RPDIns,Js referred to as ARPDJs, is then calculated 
from all the instances of a given job size. Finally, the average of ARPDJs referred to as ARPDO, 
is calculated from all the instances and job sizes. The parameter setting of a given hybrid 
algorithm that obtains the minimum ARPDO, is the BCP setting, which is applicable to all the 
instances and jobs sizes.

For the last experiment, the relative percentage improvement (RPIIns,Js) and its average (ARPIJs) 
indices as shown in equations (39) and (40), are required. To determine these indices, the worst 
solution is chosen from the solutions that are obtained by the proposed hybrid algorithms with their 

Table 3. Parameters for GAH, TSH, and SAH

Alg ps Crossover pc Mutation pm NBS NBO ITemp NIT α TL

GAH 5, 20 PMX, PBX 0.6, 0.9 SWAP, INSERT 0.4, 
0.6 - - - - - -

TSH - - - - - 5, 30 SWAP, INSERT - - - 10, 50

SAH - - - - - 5, 30 SWAP, INSERT 100, 300 5, 10 0.8, 0.9 -

Alg: Algorithm, ps: Population size, pc: Crossover probability, pm: Mutation probability, NBS: Neighbourhood sequences, NBO: Neighbourhood operators, 
ITemp: Initial temperature, NIT: Number of iterations, α: Reduce temperature, TL: Tabu list size.
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BCP settings and the exact algorithm. The RPIIns,Js index is the relative percentage improvement 
over the worst solution. It is used to evaluate the effectiveness for a given instance and job size. The 
average of RPIIns,Js referred to as ARPIJs, it is used to evaluate the effectiveness for all instances of a 
given job size. The proposed hybrid algorithm that obtains the maximum ARPIJs is the recommended 
algorithm, which is applicable to all the instances of a given job size:
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The notations in equations (34)–(40) are as follows: TPC = total penalty cost, Seq = the sequence 
index (1 to 20), H = the proposed heuristic, HB = GAH, TSH, and SAH, Ex = the exact algorithm, 
Best = the best solution, Worst = the worst solution, Ins = the instance index (1 to 5), Js = the job 
size index (1 to 6).

7. RESULTS AND DISCUSSION

The proposed hybrid algorithms are coded and solved by MATLAB and the mathematical model is 
solved by the exact algorithm in CPLEX. A desktop computer with the Core i7 Processor 7th generation 
and 8 GB of RAM is used to run the programs. The Analysis of Variance (ANOVA) method and 
Tukey’s multiple comparison test are used to analyse significant differences in the results.
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7.1 Effectiveness of the Proposed Heuristic
In this section, the solutions of 120 random sequences are determined by the proposed heuristic and 
the exact algorithm; they are used to calculate the deviation indices: RPDSeq,Js and ARPDJs in Table 
4. The Ctime in Table 4 means the computational time (in minutes) required by the exact algorithm. 
When the exact algorithm fails to obtain the optimal solution within 1,440 minutes (denoted by *), 
the bound at this stage is used to calculate the indices instead. The negative values of RPDSeq,Js and 
ARPDJs indicate that the proposed heuristic obtains better solutions than the exact algorithm.

For a given sequence and job size evaluated by RPDSeq,Js, the results show that the proposed 
heuristic obtains optimal solutions or near-to optimal solutions for the 5-job, 10-job, 20-job, and 50-job 
problems (RPDSeq,Js in the range of -1.41% to 2.75%). The proposed heuristic obtains better solutions 
than the bounds for the 100-job and 200-job problems (negative RPDSeq,Js). For all sequences of a 
given job size evaluated by ARPDJs, the same result direction as explained by RPDSeq,Js is obtained. In 
terms of computational time perspective, the proposed heuristic can obtain solutions within a second, 
whereas the exact algorithm requires a significantly longer computational time when dealing with 
larger job sizes (up to 1,440 minutes). It can be concluded that the proposed heuristic is very efficient 
to minimise the TP cost for a known sequence of jobs. When the metaheuristics are hybridised with 
the proposed heuristic, their search ability is improved.

Table 4. RPDSeq,Js and ARPDJs indices to evaluate the effectiveness of the proposed heuristic

Sequences
5-job 10-job 20-job 50-job 100-job 200-job

RPDSeq,Js Ctime RPDSeq,Js Ctime RPDSeq,Js Ctime RPDSeq,Js Ctime RPDSeq,Js Ctime RPDSeq,Js Ctime

1 0

<
 1

 m
in

ut
e

0.33

<
 1

 m
in

ut
e

0

<
 1

 m
in

ut
e

-1.41* 1,440 -4.60*

1,
44

0 
m

in
ut

es

-12.76*

1,
44

0 
m

in
ut

es

2 0 0 0 0 392 -7.27* -16.50*

3 0 0 0 0 149 -11.30* -1.17*

4 0 0 0 0 222 -7.86* -17.81*

5 0 0 0 0 82 -7.80* -6.59*

6 0 0 0 0 48 -12.00* -8.48*

7 0 0 0 0 538 -11.51* -20.73*

8 0 1.36 0 -0.21* 1,440 -10.25* -0.30*

9 0 0 0 -0.50* 1,440 -8.15* -13.43*

10 0 0 0 0 61 -22.51* -21.09*

11 0 0 0 0 216 -0.27* -21.06*

12 0 0 0 0 455 -0.27* -19.64*

13 0 1.49 0 0 78 -10.19* -19.42*

14 0 0 0 0 89 -7.69* -12.72*

15 0 2.75 0 0 300 -19.10* -11.96*

16 0 0 0 0 77 -14.24* -17.17*

17 0 0 0 0 787 -9.71* -16.98*

18 0 0 0 -0.14* 1,440 -8.35* -15.10*

19 0 0 0 0 974 -15.58* -20.62*

20 0 0 0 0 292 -8.53* -20.04*

ARPDJs 0 0.30 0 -0.11 -9.86 -14.68
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7.2 Determine the BCP Settings of GAH, TSH, and SAH

Tables 5, 6, and 7 show RPDIns,Js, ARPDJs, and ARPDO indices for each setting of GAH (GAH1- GAH32), 
TSH (TSH1- TSH8), and SAH (SAH1- SAH32). The numbers in the parentheses indicate the ranks obtained 

Table 5. RPDIns,Js, ARPDJs, and ARPDO indices of GAH

Settings
RPDIns,Js ARPDJs ARPDOMin-Max Std 5-job 10-job 20-job 50-job 100-job 200-job

GAH1 0-2.07 0.49 0.00 0.00 0.21 0.89 0.04 0.01 0.19 (2)

GAH2 0-1.77 0.39 0.00 0.00 0.21 0.50 0.37 0.02 0.18 (2)

GAH3 0-0.57 0.16 0.00 0.00 0.10 0.29 0.03 0.03 0.07 (1)

GAH4 0-0.48 0.12 0.00 0.00 0.12 0.21 0.05 0.03 0.07 (1)

GAH5 0-0.49 0.12 0.00 0.00 0.00 0.24 0.09 0.16 0.08 (1)

GAH6 0-1.02 0.26 0.00 0.00 0.19 0.31 0.14 0.28 0.15 (2)

GAH7 0-1.60 0.34 0.00 0.00 0.19 0.56 0.08 0.18 0.17 (2)

GAH8 0-1.39 0.33 0.00 0.00 0.19 0.61 0.21 0.23 0.21 (2)

GAH9 0-0.51 0.14 0.00 0.00 0.12 0.24 0.03 0.04 0.07 (1)

GAH10 0-1.06 0.25 0.00 0.00 0.19 0.29 0.03 0.05 0.09 (1)

GAH11 0-1.22 0.23 0.00 0.00 0.24 0.11 0.03 0.05 0.07 (1)

GAH12 0-0.48 0.12 0.00 0.00 0.19 0.08 0.02 0.05 0.06 (1)

GAH13 0-1.09 0.28 0.00 0.00 0.10 0.64 0.21 0.11 0.18 (2)

GAH14 0-1.86 0.41 0.00 0.00 0.24 0.61 0.22 0.12 0.20 (2)

GAH15 0-2.02 0.40 0.00 0.00 0.10 0.58 0.29 0.08 0.18 (2)

GAH16 0-1.22 0.23 0.00 0.00 0.24 0.15 0.18 0.09 0.11 (2)

GAH17 0-1.14 0.36 0.00 0.00 0.19 0.68 0.17 0.63 0.28 (3)

GAH18 0-1.25 0.36 0.00 0.00 0.21 0.70 0.15 0.69 0.29 (3)

GAH19 0-1.14 0.38 0.00 0.00 0.21 0.54 0.17 0.83 0.29 (3)

GAH20 0-1.53 0.51 0.00 0.00 0.37 0.70 0.53 1.30 0.49 (3)

GAH21 0-4.07 0.87 0.00 0.00 0.81 0.94 0.58 0.94 0.55 (3)

GAH22 0-2.80 0.67 0.00 0.00 0.23 1.01 0.58 1.34 0.53 (3)

GAH23 0-3.63 1.14 0.00 0.00 0.19 1.06 0.64 3.09 0.83 (4)

GAH24 0-3.54 1.10 0.00 0.00 0.14 1.14 0.73 2.86 0.81 (4)

GAH25 0-1.22 0.25 0.00 0.00 0.24 0.11 0.07 0.35 0.13 (2)

GAH26 0-0.99 0.29 0.00 0.00 0.19 0.40 0.06 0.37 0.17 (2)

GAH27 0-0.93 0.22 0.00 0.00 0.19 0.12 0.04 0.40 0.12 (2)

GAH28 0-1.06 0.28 0.00 0.00 0.02 0.50 0.05 0.39 0.16 (2)

GAH29 0-1.07 0.27 0.00 0.00 0.00 0.52 0.34 0.25 0.18 (2)

GAH30 0-0.93 0.26 0.00 0.00 0.19 0.51 0.24 0.30 0.21 (2)

GAH31 0-1.22 0.27 0.00 0.00 0.24 0.32 0.24 0.22 0.17 (2)

GAH32 0-0.49 0.17 0.00 0.00 0.10 0.39 0.24 0.23 0.16 (2)



International Journal of Knowledge and Systems Science
Volume 13 • Issue 1

19

by Tukey’s multiple comparison test. A lower rank indicates a better parameter setting.

From Table 5, GAH12 is the BCP setting of GAH because it obtained the minimum ARPDO (in 
bold numbers). For a given instance and job size, GAH12 obtains the solution deviated from its best 
solution with the RPDIns,Js values in the range of 0–0.48% and the standard deviation (Std) of 0.12%. 
For all instances of a given job size, in the 50-job problem, for example, GAH12 obtains the solutions 
deviated from their best solutions with the ARPDJs value of 0.08%. For all instances and job sizes, 
GAH12 obtained the solutions deviated from their best solutions with the ARPDO value of 0.06% 
(ARPDO). This clearly shows that the use of the BCP setting for GAH is very efficient since it can 
provide the solution with a very small deviation from its best solution. By the BCP setting, only one 
parameter setting of a given hybrid algorithm can be applied to all tested problem characteristics. It is 
a more practical solution for the planner rather than the best setting for a given instance and job size.

The same explanation extends to TSH and SAH by using their RPDIns,Js, ARPDJs, and ARPDO 
values shown in Tables 6 and 7. The results show that TSH2 and SAH24 are the BCP settings for TSH 
and SAH, and the same result direction as GAH12 is also obtained. The details of the BCP setting for 
GAH12, TSH2, and SAH24, along with their ARPDO and standard deviation values, are shown in Table 
8. Note that it is not possible to directly compare the RPDIns,Js, ARPDJs, and ARPDO indices of these 
algorithms since their best solutions are different.

7.3 Effectiveness of the Proposed Hybrid Algorithms With Their BCP Settings
In this section, the solutions of all tested instances and job sizes are determined by the exact algorithm 
and the proposed hybrid algorithms set by their BCP settings (GAH12, TSH2, and SAH24). The worst 
solution is chosen among them and used to calculate the improvement indices: RPIIns,Js and ARPIJs. 
The results are shown in Table 9. The ranks obtained by Tukey’s multiple comparison test are shown 
in parentheses. A lower rank indicates a better improvement level. The same ranking numbers are 
considered as insignificant improvement levels. Note that when the exact algorithm cannot obtain 
the optimal solution within 1,440 minutes (denoted by *), the bound at this stage is used to calculate 
the improvement indices instead.

In terms of the solution quality of a given instance and job size evaluated by RPIIns,Js, the results 
are as follows. For the 5-job problem, no significant differences are observed in the solutions between 
the proposed hybrid algorithms and the exact algorithm (RPIIns,Js = 0). For the 10-job problem, 
the exact algorithm obtains slightly better solutions than the proposed hybrid algorithms with the 
RPIIns,Js values of 2.67% and 2.74% for the instance numbers 1 and 4; no significant differences are 

Table 6. RPDIns,Js, ARPDJs, and ARPDO indices of TSH

Settings
RPDIns,Js ARPDJs ARPDOMin-Max Std 5-job 10-job 20-job 50-job 100-job 200-job

TSH1 0-15.00 3.60 0.00 0.00 7.05 0.77 0.02 0.01 1.31 (3)

TSH2 0-1.94 0.40 0.00 0.00 0.59 0.19 0.05 0.01 0.14 (1)

TSH3 0-14.34 2.69 0.00 0.00 3.02 0.28 0.25 0.09 0.61 (2)

TSH4 0-13.46 2.89 0.00 0.00 4.49 0.38 0.19 0.09 0.86 (2)

TSH5 0-9.91 1.90 0.00 0.00 2.82 0.80 0.06 0.01 0.62 (2)

TSH6 0-9.91 1.84 0.00 0.00 2.82 0.28 0.04 0.01 0.52 (2)

TSH7 0-8.25 1.95 0.00 0.00 2.90 0.70 0.17 0.10 0.64 (2)

TSH8 0-1.40 0.86 0.00 0.00 0.45 0.41 0.16 0.11 0.19 (1)
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Table 7. RPDIns,Js, ARPDJs, and ARPDO indices of SAH

Settings
RPDIns,Js ARPDJs

ARPDO
Min-Max Std 5-job 10-job 20-job 50-job 100-job 200-job

SAH1 0-7.14 2.21 0.00 0.00 2.17 5.61 3.67 3.59 2.51 (3)

SAH2 0-7.67 2.33 0.00 0.00 2.39 5.95 3.61 3.52 2.58 (3)

SAH3 0-7.39 2.29 0.00 0.00 2.05 5.91 3.43 3.51 2.48 (3)

SAH4 0-8.53 2.52 0.00 0.00 0.96 6.34 3.75 3.63 2.45 (3)

SAH5 0-7.54 2.23 0.00 0.00 1.50 5.81 3.48 3.52 2.38 (2)

SAH6 0-7.71 2.29 0.00 0.00 2.27 5.90 3.45 3.68 2.55 (3)

SAH7 0-7.24 2.27 0.00 0.00 1.11 5.92 3.29 3.48 2.30 (2)

SAH8 0-7.23 2.10 0.00 0.00 2.03 5.51 3.56 3.56 2.44 (3)

SAH9 0-13.90 4.27 0.00 0.00 4.50 10.57 6.60 7.08 4.79 (4)

SAH10 0-11.81 4.19 0.00 0.00 5.77 10.10 6.62 7.58 5.01 (5)

SAH11 0-13.42 4.27 0.00 0.00 5.43 10.16 6.90 7.28 4.96 (5)

SAH12 0-13.77 4.21 0.00 0.00 5.20 10.58 6.63 7.14 4.92 (5)

SAH13 0-14.30 4.09 0.00 0.00 4.85 10.12 6.67 7.32 4.83 (4)

SAH14 0-14.05 4.41 0.00 0.00 4.50 10.76 6.87 7.59 4.95 (5)

SAH15 0-15.36 4.63 0.00 0.00 5.00 10.80 6.50 7.48 4.96 (5)

SAH16 0-13.79 4.19 0.00 0.00 3.99 10.77 6.87 7.27 4.82 (4)

SAH17 0-0.12 0.04 0.00 0.00 0.00 0.05 0.08 0.03 0.03 (1)

SAH18 0-0.15 0.04 0.00 0.00 0.00 0.06 0.07 0.02 0.02 (1)

SAH19 0-0.73 0.14 0.00 0.00 0.00 0.24 0.07 0.03 0.06 (1)

SAH20 0-0.73 0.13 0.00 0.00 0.00 0.19 0.06 0.02 0.05 (1)

SAH21 0-0.74 0.14 0.00 0.00 0.00 0.19 0.06 0.02 0.04 (1)

SAH22 0-0.13 0.04 0.00 0.00 0.00 0.05 0.06 0.04 0.02 (1)

SAH23 0-0.11 0.03 0.00 0.00 0.00 0.06 0.03 0.02 0.02 (1)

SAH24 0-0.10 0.03 0.00 0.00 0.00 0.06 0.03 0.01 0.02 (1)

SAH25 0-0.19 0.07 0.00 0.00 0.00 0.12 0.11 0.15 0.06 (1)

SAH26 0-0.20 0.07 0.00 0.00 0.00 0.11 0.11 0.15 0.06 (1)

SAH27 0-0.22 0.07 0.00 0.00 0.00 0.09 0.09 0.15 0.06 (1)

SAH28 0-0.18 0.07 0.00 0.00 0.00 0.13 0.10 0.14 0.06 (1)

SAH29 0-0.19 0.07 0.00 0.00 0.00 0.13 0.11 0.15 0.06 (1)

SAH30 0-0.22 0.07 0.00 0.00 0.00 0.13 0.09 0.14 0.06 (1)

SAH31 0-0.19 0.07 0.00 0.00 0.00 0.10 0.12 0.15 0.06 (1)

SAH32 0-0.21 0.07 0.00 0.00 0.00 0.14 0.10 0.14 0.06 (1)

Table 8. Details of GAH12, TSH2, and SAH24

Alg ps Crossover pc Mutation pm NBS NBO Temp NIT α TL ARPDO Std

GAH12 5 PBX 0.9 SWAP 0.6 - - - - - - 0.06 0.12

TSH2 - - - - - 5 SWAP - - - 50 0.14 0.4

SAH24 - - - - - 30 INSERT 300 10 0.9 - 0.02 0.03
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observed in the solutions for the instance numbers 2, 3, and 5. The proposed hybrid algorithms obtain 
significantly better solutions than bounds from the exact algorithm with the RPIIns,Js values in the 
range of 6.29–59.78% for the 20-job problem, 21.46–94.92% for the 50-job problem, 93.41–98.45% 
for the 100-job problem, and 95.82–96.64% for the 200-job problem.

Table 9. RPIIns,Js and ARPIJs indices of GAH12, TSH2, SAH24, and the exact algorithm

Algorithms RPIIns,Js

GAH12 5-job 10-job 20-job 50-job 100-job 200-job

Instance 1 0.00 (1) 0.00 (2) 17.87 (1) 70.32 (1) 98.11 (1) 95.70 (1)

Instance 2 0.00 (1) 0.00 (1) 36.76 (1) 38.36 (1) 98.40 (1) 95.87 (1)

Instance 3 0.00 (1) 0.00 (1) 7.16 (1) 21.46 (1) 98.45 (1) 96.06 (1)

Instance 4 0.00 (1) 0.00 (2) 58.36 (1) 55.03 (1) 93.43 (1) 96.63 (1)

Instance 5 0.00 (1) 0.00 (1) 59.78 (1) 94.92 (1) 96.08 (1) 95.83 (1)

ARPIJs 0.00 (1) 0.00 (2) 35.99 (1) 56.02 (1) 96.89 (1) 96.02 (1)

TSH2 5-job 10-job 20-job 50-job 100-job 200-job

Instance 1 0.00 (1) 0.00 (2) 17.87 (1) 70.24 (1) 98.11 (1) 95.71 (1)

Instance 2 0.00 (1) 0.00 (1) 36.58 (1) 38.32 (1) 98.39 (1) 95.88 (1)

Instance 3 0.00 (1) 0.00 (1) 6.29 (1) 21.60 (1) 98.45 (1) 96.06 (1)

Instance 4 0.00 (1) 0.00 (2) 57.56 (1) 54.85 (1) 93.42 (1) 96.64 (1)

Instance 5 0.00 (1) 0.00 (1) 59.70 (1) 94.88 (1) 96.08 (1) 95.83 (1)

ARPIJs 0.00 (1) 0.00 (2) 35.60 (1) 55.98 (1) 96.89 (1) 96.02 (1)

SAH24 5-job 10-job 20-job 50-job 100-job 200-job

Instance 1 0.00 (1) 0.00 (2) 17.87 (1) 70.28 (1) 98.11 (1) 95.70 (1)

Instance 2 0.00 (1) 0.00 (1) 37.03 (1) 38.33 (1) 98.39 (1) 95.87 (1)

Instance 3 0.00 (1) 0.00 (1) 7.16 (1) 21.55 (1) 98.44 (1) 96.05 (1)

Instance 4 0.00 (1) 0.00 (2) 58.56 (1) 55.00 (1) 93.41 (1) 96.63 (1)

Instance 5 0.00 (1) 0.00 (1) 59.78 (1) 94.92 (1) 96.07 (1) 95.82 (1)

ARPIJs 0.00 (1) 0.00 (2) 36.08 (1) 56.01 (1) 96.89 (1) 96.01 (1)

Exact algorithm 5-job 10-job 20-job 50-job 100-job 200-job

Instance 1 0.00 (1) 2.67 (1) 0.00* (2) 0.00* (2) 0.00* (2) 0.00* (2)

Instance 2 0.00 (1) 0.00* (1) 0.00* (2) 0.00* (2) 0.00* (2) 0.00* (2)

Instance 3 0.00 (1) 0.00 (1) 0.00* (2) 0.00* (2) 0.00* (2) 0.00* (2)

Instance 4 0.00 (1) 2.74 (1) 0.00* (2) 0.00* (2) 0.00* (2) 0.00* (2)

Instance 5 0.00 (1) 0.00 (1) 0.00* (2) 0.00* (2) 0.00* (2) 0.00* (2)

ARPIJs 0.00 (1) 1.08 (1) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2)
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Based on the RPIIns,Js index, it is observed that GAH12, TSH2, and SAH24 obtain insignificant 
improvement levels among themselves for all tested instances and job sizes (same ranking numbers). It 
is concluded that the solutions obtained from GAH12, TSH2, and SAH24 are almost the same. In addition, 
the instance number 3 of the 20-job and 50-job problems could be considered as hard instances since 
the exact algorithm could not determine any optimal solutions within 1,440 minutes; GAH12, TSH2, 
and SAH24 can improve the bounds from the exact algorithm in the range of 6.29–21.60%.

Regarding all instances of a given job size evaluated by ARPIJs, no improvement levels are 
observed for the 5-job problem (ARPIJs = 0). The exact algorithm improves the solutions obtained 
from the hybrid algorithms by 1.08% for the 10-job problem. On the other hand, the hybrid algorithms 
improve the bounds from the exact algorithm with the truncated ARPIJs values of 35% for the 20-job 
problem, 55% for the 50-job problem, and 96% for both 100-job and 200-job problems, respectively. 
It is concluded that the hybrid algorithms clearly outperform the exact algorithm when applied to 
medium-scale and large-scale problems (20-job, 50-job, 100-job, and 200-job problems), whereas 
both of them work well for small-scale problems (5-job and 10-job problems).

The hybrid algorithms are also very efficient in terms of the computational time as shown in 
Table 10. They converge to stable solutions within the range of 1–120 minutes for all instances and job 
sizes. It is very fast when compared regardless of the allowable computational time from the planner 
(360 minutes) or the computational time for the exact algorithm (1,440 minutes). The exact algorithm 
obtains optimal solutions very fast only for all instances of the 5-job problem, but it cannot determine 
the optimal solutions within 1,440 minutes for larger job sizes. Comparing the computational times 
among GAH12, TSH2, and SAH24, it is obvious that TSH2 requires the shortest computational time across 
the entire tested problem characteristics (rank 1).

The most appropriate hybrid algorithm for minimising the TP cost of the SMO problem 
characteristics in this study should be considered from three perspectives: the solution quality, 
the computational time, and the complexity of the proposed metaheuristics. Based on the three 
perspectives, TSH2 is recommended since it obtains rank 1 for the first two aspects, and it is the 
simplest algorithm compared to GAH12 and SAH24.

8. CONCLUSION

In this study, three novel hybrid algorithms are developed for solving a single machine scheduling 
problem with an overtime constraint. The objective is to minimise the total penalty (TP) cost defined 
as the sum of tardy, early, and overtime costs. The concept of the proposed hybrid algorithms is to 
hybridise a new heuristic that is capable of minimising the TP cost for a known sequence, with genetic 
algorithm, tabu search, and simulated annealing, referred to as GAH, TSH, and SAH, to increase their 
search ability.

Table 10. Computational time of GAH12, TSH2, SAH24, and the exact algorithm

Algorithms
Computational time to a stable solution (minutes)

5-job 10-job 20-job 50-job 100-job 200-job

GAH12 < 1 (1) < 1 (1) < 1 (1) 3 (1) 22 (2) 120 (2)

TSH2 < 1 (1) < 1 (1) < 1 (1) < 1 (1) 6 (1) 97 (1)

SAH24 < 1 (1) < 1 (1) < 1 (1) 25 (2) 59 (3) 93 (1)

Exact algorithm < 1 (1) 320 (2) 1,440 (2) 1,440 (3) 1,440 (4) 1,440 (3)



International Journal of Knowledge and Systems Science
Volume 13 • Issue 1

23

The mechanism of the proposed heuristic to minimise the TP cost is a backward-forward 
scheduling technique with a penalty cost trade-off process. The effectiveness of the proposed heuristic 
is evaluated by using a set of 120 sequences (randomly selected with various job sizes). The results 
show that the proposed heuristic is very efficient since it obtains the solutions that have very small 
deviations from the optimal solutions for small-scale problems, and it obtains significantly better 
solutions than the bounds from the exact algorithm for medium-scale and large-scale problems. 
In addition, the computational time of the proposed heuristic is less than a second while the exact 
algorithm requires a significantly longer.

Since there are many parameters in GAH, TSH, and SAH, the best common parameter (BCP) 
setting of each hybrid algorithm applicable to all instances and job sizes are preferred rather than the 
best setting for an individual instance and job size. The results show that GAH12, TSH2, and SAH24, are 
the BCP setting of GAH, TSH, and SAH. They provide very excellent solutions that slightly deviate 
from their best solutions.

The effectiveness of GAH12, TSH2, and SAH24, is evaluated by using the SMO problem characteristics 
possibly found in the selected factories. The evaluation is performed based on the average relative 
percentage improvement over the worst solution. The results show that GAH12, TSH2, and SAH24 
significantly improve the worst solution for medium-scale and large-scale problems while they all 
obtain the optimal solutions for small-scale problems. It is also observed that GAH12, TSH2, and SAH24 
obtain insignificant improvement levels.

The computational times of GAH12, TSH2, and SAH24, are in the range of 1-120 minutes, which 
is significantly shorter than the practical limit specified by the planner (360 minutes) and the 
computational time required by the exact algorithm (1,440 minutes). It is observed that TSH2 requires 
the shortest computational time compared to GAH12 and SAH24.

From the solution quality, computational time, and complexity of the algorithm perspectives, TSH2 
is the most recommended for the SMO problem in this study since it is the best in all perspectives. 
The proposed hybrid algorithm is developed as a software package freely downloadable from https://
sites.google.com/view/scheduling/smo.

There are some suggestions for further study. The proposed heuristic should be further developed 
and applied to other production shops (such as flow shop, job shop, and their variants) and other 
production characteristics (SDST, pre-emptive, no-wait scheduling, and so on). Furthermore, it 
is suggested to hybrid with other metaheuristics such as iterated local search (ILS), ant colony 
optimisation (ACO), particle swarm optimisation (PSO), and so on, to investigate their search ability. 
Therefore, further research is expected to be conducted in order to address these suggestions.
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