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ABSTRACT

Chatbots represent a promising tool to automate the processing of requests in a business context. 
However, despite major progress in natural language processing technologies, constructing a dataset 
deemed relevant by business experts is a manual, iterative, and error-prone process. To assist these 
experts during modelling and labelling, the authors propose an active learning methodology coined 
interactive clustering. It relies on interactions between computer-guided segmentation of data in 
intents and response-driven human annotations imposing constraints on clusters to improve relevance. 
This article applies interactive clustering on a realistic dataset and measures the optimal settings 
required for relevant segmentation in a minimal number of annotations. The usability of the method is 
discussed in terms of computation time and the achieved compromise between business relevance and 
classification performance during training. In this context, interactive clustering appears as a suitable 
methodology combining human and computer initiatives to efficiently develop a useable chatbot.

KeyWoRDS
Active Learning, Annotation, Business Expert, Business Relevant Dataset, Constrained Clustering, Intent 
Modelling, Natural Language Processing

INTRoDUCTIoN

Conversational assistants, also called chatbots, offer a flexible medium of communication to access 
information using natural language. By providing an automated answer to common requests, they 
contribute to increased rapidity and availability of customer care services. They also guarantee a 
uniform and efficient treatment of simple requests. Therefore, the use of chatbot in industry has gained 
momentum over the last few years, for basic question answering, automation of customer requests or 
access to complex databases (Goasduff, 2019; Costello, 2019).

The growing importance of chatbots has been supported by a rapid development of Natural 
Language Processing algorithms over the last decade, enabling efficient classification of user requests 
(using Natural Language Classification) or retrieval of relevant information from sentences (using 
Named Entities Recognition). As the frameworks for classifying or extracting information grow 
stronger, the development of chatbots in industry has consensually focused on defining a dialog 
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behaviour with the use of symbolic reasoning, in which user requests will be treated according to the 
definition of all request categories (coined intents) and named entities (e.g. mails, numbers, products, 
etc…) (Hoyt et al., 2016; Bocklisch et al., 2017; Alexa Internet, 2018). For instance, the request “Can 
you play some jazz?” can be modelled with one intent (play music) and one named entity (jazz). In 
practice, the set of intents is finite and relates to a specific business area (travel booking, banking 
assistance, etc.). This approach allows fast technical implementation and a good level of control over 
responses, which could explain its popularity.

Intent detection is generally implemented using supervised classification techniques, where 
classes represent intents (Adamopoulou & Moussiades, 2020). A dialog management system (e.g. 
a decision tree) then exploits the intents and named entities extracted from user requests to define 
the behaviour of the chatbot. Thus, at every step during design, a dataset labelled with intents and 
named entities is required to generate and maintain the classification model forming the core of the 
chatbot. Updating and annotating a dataset is usually considered an iterative process involving steps 
described by the acronym MATTER (Model, Annotate, Train, Test, Evaluate, and Revise) (see Stubbs 
(2013)). Following this approach, phases of dataset design and annotation are most often the result 
of manual work, and this methodology has several limitations:

• Prior to starting annotation, a model grouping data in relevant intents has to be defined: when 
performed manually, this task relies exclusively on the knowledge of the types of requests detained 
by one or several business experts;

• Once the modelling of intents is achieved, the task of labelling data requires thorough 
understanding of this model to avoid errors: when the knowledge of the intents model is not 
well integrated by one of the annotators, or uniformly shared between them, there is a risk of 
introducing intra-individual or inter-individual inconsistencies in the dataset;

• During initialization or maintenance of the model, the scope of the chatbot may change: in 
this case, any change to the intents model implies an additional cost of relabelling the dataset 
accordingly.

The approach hitherto described is therefore time consuming, expensive, dependent of human 
judgment and has low robustness to changes.

To provide assistance during this annotation task, one possible solution is to introduce computer 
initiatives. This can be implemented using unsupervised classification (clustering) with automatic 
partitioning of data based on their intrinsic similarities. However, the similarities exploited by 
unsupervised text classification algorithms are usually either lexical or syntactical, and do not 
guarantee that the data belong to a similar business domain. Consequently, the produced results are 
often qualified as irrelevant by business experts.

To overcome this limitation and increase business relevance, there are promising approaches 
based on constrained clustering to influence data partitioning with human knowledge. As an example, 
(Lampert et al., 2019) propose a collaborative clustering approach integrating user constraints 
to improve performance of a topographical clustering task from satellite images. However, such 
constrained annotation methods are harder to apply to natural language: data cannot be observed all 
at once by the human when defining constraints, as can be done with an image.

In Schild et al. (2021a, 2021b), the authors proposed an active learning method adapted from 
images constrained clustering to assist questions annotation task. This approach, coined Interactive 
Clustering, is composed of several iterations involving data sampling heuristics to guide expert 
annotations and a constrained clustering algorithm to partition data with expert corrections. The 
study showed that adequate selection of implementation parameters could lead to a relevant iterative 
definition of intents on a small dataset. While the article defines a methodology that could be suited to 
define intents set iteratively, this conclusion has to be confirmed on a larger dataset containing more 



International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

3

data and classes. The usability of this method in a realistic setting was also not explored in this study, 
for instance in terms of time consumption or classification performance of the resulting intents model.

In this article, the authors propose an extension of the previous study to investigate the suitability 
of Interactive Clustering for the iterative design of conversational agents. Stemming from practical 
organization constraints encountered when developing chatbots in a business context (see Finlayson 
& Erjavec (2016)), the methodology is applied on a realistic French dataset representative of requests 
in the banking domain (including ground truth labels proposed by domain experts). In particular, 
the ability of the method to take advantage of both computer guidance and human expertise is tested 
by measuring how iterations of Interactive Clustering converge to the ground truth over time. The 
authors also propose to verify the usability of Interactive Clustering by analysing the influence of 
implementation parameters (i.e. algorithms chosen to implement the method) on its convergence 
and computation times, as well as on the ability to provide a segmentation of data enabling high 
classification performance, while maintaining business relevance.

BACKGRoUND

How to Design a Chatbot in Practice?
The design of a chatbot as a conversational tool to facilitate operations in a given business area 
relies on (1) the definition of a desired user experience; (2) the modelling of the business knowledge 
relative to this experience; and (3) the implementation of a technical platform supporting the dialogic 
experience. Constructing these solutions along these three constraints requires interactions between 
end users, business experts and data scientists. In practice, and from the authors’ experience, the 
design follows the steps below (see also Finlayson & Erjavec (2016) and Stubbs (2013)).

Step 1: Defining the business area.

A chatbot is more efficient on a narrow business scope, where the complexity of the modelling of 
relevant knowledge will be limited. This step involves business experts who can validate the relevance 
of information considered for the chatbot.

Step 2: Collecting a dataset of questions related to this area.

Questions can come from different sources: user surveys, experts’ insights, database extractions, 
or web scrapping. Data collection should include a filtering step to exclude out of scope data (e.g. 
questions not related to the specified area).

Step 3: Modelling the set of intents from the dataset.

Intents can be defined as the action or information expected by the user when formulating a 
request. Business experts define the set of intents according to the data collected and their domain 
knowledge. A chatbot dedicated to requests related to mortgage loans may for example include intents 
like “loan subscription”, “contract negotiation”, or “customer state consultation”.

Modelling intents can be complex, because of the elasticity of business knowledge: in most cases, 
experts will become aware of certain requests and incorporate them in the model only when presented 
with actual questions. The types and number of requests that need to be integrated therefore varies 
greatly as experts explore the dataset and interact with other experts. From the authors’ experience, 
depending on the level of detail desired during modelling, experts can define up to 100 intents from 
a 10.000 questions dataset.
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Step 4: Labelling the dataset.

Labelling the dataset is a necessary step towards training the intents model. During annotation, 
business experts must maintain in memory a representation of the entire set of intents. The complexity 
of the model, in addition to the task being time consuming and repetitive, makes annotation an error-
prone task, that can be subjective and introduce inconsistencies.

In practice, the annotation step questions the modelling of intents, and experts may decide to 
revise the set and the definition of intents (thus rolling back to step 3).

Step 5: Training and implementing the chatbot.

Once labelling is complete, a supervised classification model is trained and the dialog behaviour 
is defined from the intents (e.g. using a dialog decision tree). At this stage, training the model often 
yields poor performance due to the complexity of the intents model or inconsistencies in annotation.

In practice, this step also challenges the intents modelling, and the design process can roll back 
to steps 3 and 4 several times before it reaches acceptable performance.

Step 6: Perform continuous improvement and intents scope maintenance.

Once the chatbot is in production, performance is monitored to define areas of improvement 
(increase performance, reduce dialog ambiguities). In addition, experts have to follow the evolution 
of business area in order to handle new requests with intent creation or modification.

Computer-assisted modelling using Unsupervised Learning
To assist humans during annotation, one option is the introduction of machine initiatives. Using 
unsupervised classification, an algorithm clusters data according to their intrinsic similarities and 
can suggest efficient intents grouping. Several known algorithms and methods can be used:

• K-Means Clustering (MacQueen, 1967): A common clustering method that relies on minimizing 
intra-class inertia by assigning each data to the nearest cluster barycentre. This algorithm is one 
of the most commons because of its simplicity and computation speed.

• Hierarchical Clustering (Murtagh & Contreras, 2012): An iterative method of merging most 
similar data into clusters. Several types of similarity links can define the merging strategy. (Single 
link: merge the two clusters with the closest borders. Full link: merge the two clusters with the 
closest opposite borders. Medium link: merge the two clusters with the closest cluster centers. 
Ward link: merge the two clusters that will result in the most compact cluster.).

• Spectral Clustering (Ng et al., 2002): A method that relies on modelling the similarity matrix 
between data by its eigenvectors and grouping them with a K-Means type algorithm. This approach 
can handle clusters with complex shapes.

However, despite the guaranteed adequate performance during classification, suggestions of 
clustering algorithms can be unreliable. Known limitations include difficulty to handle noisy or high-
dimensional data, and their inability to exploit metrics suited to the problem they are dealing with. 
In addition, one of their major drawbacks lies in the lack of business relevance of the suggestions, 
because clustering algorithms cannot extract specific knowledge on the business area without human 
intervention (Xu & Tian, 2015). All of these problems are often important in natural language 
processing tasks, which reduces the usefulness of clustering methods in this field.

Constrained clustering is a semi-supervised variant of clustering methods. This alternative consists 
in influencing clustering by specifying a priori links between observations called “constraints”. Expert 
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annotations or heuristics can impose two types of constraints (Wagstaff & Cardie, 2000): “MUST-
LINK”, i.e. data are similar, and “CANNOT-LINK”, i.e. data are not similar. These constraints can 
efficiently influence clustering results, and experts can thus introduce nuances that the algorithm 
would not have detected on its own.

The previously cited examples of clustering all have a constrained equivalent:

• COP K-Means Clustering (Wagstaff et al., 2000): During assignment of data to the nearest 
cluster, constraints are checked to correct the assignment when needed. The implementation of 
this version is simple, but its execution can lead to unresolved contradictions (when all clusters 
have at least one conflict with the current data to affect). An adaptation is to create an additional 
cluster to collect the conflicting data.

• Constrained Hierarchical Clustering (Davidson & Ravi, 2005): The strategy is to merge 
the clusters with “MUST-LINK” constraints first and to prevent the merge if two clusters have 
a “CANNOT-LINK” constraint. To implement it, a simple way is to adapt the calculation of 
similarity score between the clusters.

• Constrained Spectral Clustering (Kamvar et al., 2003): To handle constraints, the value of the 
similarity matrix is forced to zero (respectively one) if the two observations are linked by a “MUST-
LINK” constraint (respectively “CANNOT-LINK”). The adaptation therefore requires little effort, 
but the addition of a constraint can lead in some cases to a radical change in algorithm results.

• Other examples are described in Lampert et al. (2018).

These algorithms require constraints annotation, a binary classification task that does not require 
abstract data modelling. During constraint annotation, the attention of the expert remains directed 
towards real-life examples taken from the categories rather than their abstract representations. For 
instance, in the project working on satellite images clustering presented by Lampert et al. (2019), the 
attention of the expert is dedicated to linking actual image zones together, rather than manipulating 
abstract representations of these topographical zones (forest, water, etc…). However, imposing 
adequate constraints is more complex in natural language processing, as observations must be 
handled individually (whereas images can be processed as a whole). As a result, the definition of 
adequate constraints requires rather an iterative process, and to define how individual data points 
will be presented to the user.

Computer-Assisted Modelling Using Active Learning
Active learning relies on coordinating human knowledge and machine capabilities. In this iterative 
process, the human adjusts the result proposed by the machine, and the machine then uses these 
corrections to improve its subsequent iterations (Settles, 2010). To optimize the relevance of the 
corrections made by humans, the active learning process typically uses an oracle responsible for the 
improvement strategy. It aims to achieve maximum efficiency during human-machine interactions.

The oracle can exploit different strategies to select relevant data, such as verifying the confidence 
level of the predictions, estimating error correction on results or maximizing exploration of the 
corpus (Settles, 2010). By following these strategies, the annotation is no longer limited to a manual 
or random process, but it uses improvement heuristics that require humans to introduce knowledge.

PRINCIPLeS oF INTeRACTIVe CLUSTeRING

Combining Human expertise and Computer Suggestions to Improve Clustering
The purpose of this article is to define and experiment an alternative to manual annotation of intents 
for text data. To that end, the authors propose to require from annotators only inputs that are relevant 
to their knowledge domain. In practice, this means that instead of having business experts define 
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upfront a complex data modelling that would require to anticipate technical constraints (such as the 
capacity to fit a model to their data), the proposed methodology focuses on their ability to discriminate 
requests based on the response expected from a business perspective.

In accordance with this principle, the authors propose a novel iterative active learning methodology 
coined “Interactive Clustering”, involving three sub-steps:

1. Constraints Sampling: A heuristic suggests pairs of questions that the expert has to discriminate. 
Heuristics can be based on different strategies, and the authors propose to consider the following:
a.  Random: A basic strategy that randomly selects pairs of questions;
b.  Random in Same Cluster: A strategy aimed at verifying the homogeneity of clusters by 

randomly selecting pairs of data from a same cluster;
c.  Closest Neighbors in Different Clusters: A strategy aimed at validating the position of the 

borders between clusters by selecting the closest data from two different clusters;
d.  Farthest Neighbors in Same Cluster: A strategy aimed at ensuring that a cluster does not 

absorb clusters at its borders by selecting the most distant pairs of data from the same cluster.
2. Constraints Annotation: The expert discriminates each pair of selected questions according to a 

business characteristic. For instance, the authors propose to discriminate couples of questions 
based on the response they would require. In this context, a “MUST LINK” constraint is placed 
each time the requests require identical actions (and “CANNOT LINK” otherwise). Constraints’ 
transitivity is used, i.e. the manager makes deductions on the annotated constraints. For example, 
if d

1
 and d

2
 have a “MUST-LINK” constraint, and d

2
 and d

3
 have a “CANNOT-LINK” constraint, 

then d
1

 and d
3
 will have a “CANNOT-LINK” constraint applied by transitivity.

3. Constrained Clustering: The computer uses all annotated constraints to improve iteratively the 
relevance of clustering results. Several constrained algorithms are proposed:
a.  COP K-Means clustering;
b.  Hierarchical clustering;
c.  SPEC Spectral clustering.

The process is initialized with an unconstrained clustering to provide a first (and likely little 
relevant) data partitioning. During each iteration of Interactive Clustering, the computer selects a 
pair of questions using a predetermined heuristic, the expert discriminates them by annotating binary 
constraints, and the clustering uses the constraints to perform a corrected data partitioning. Thus, the 
relevance of clustering results should increase over iterations.

Using this methodology, the annotator does not need to manage a dataset and requires little 
knowledge in data science: they simply have to express their knowledge of the relevant business 
domain. Furthermore, a preliminary definition of possible intents is no longer necessary to start 
annotating: the intent structure will be determined over iterations through clustering.

The authors propose a Python implementation (Van Rossum & Drake, 2009) of this methodology 
available in Schild (2021d). The library is composed of three modules, one per sub-step of the 
Interactive Clustering methodology.

How to Design a Chatbot using Interactive Clustering in Practice?
The steps below are adapted from the standard organization of the chatbot design process, to integrate 
Interactive Clustering.

Step 1: Define the specific business area.

See above, no changes.
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Step 2: Collect a dataset of questions related to this area.

See above, no changes.

Step 3: Perform iterative and interactive annotation with Interactive Clustering.

The annotator runs several iterations of constraints sampling (1), constraints annotation (2) and 
constrained clustering (3). Over iterations, the business relevance of the clustering should improve 
by incorporating more constraints from the expert. This task does not use any predefined intent 
modelling and uses binary constraints based on response similarity.

Step 4: Perform statistical and semantic validation.

This step focuses on validating the relevance of results obtained after a few iterations of Interactive 
Clustering.

The simplest check is a statistical validation of the data partitioning a k-fold cross validation 
checks the statistical consistency. Poor performance can be a sign that too many or inconsistent 
constraints have been placed on the data.

Then, another check is necessary to confirm the clusters business relevance: This analysis cannot 
be automated because it requires clusters inspection (lexical fields’ analysis, relevant patterns detection, 
semantic consistency analysis, etc.). If the analysis is not satisfying, there are probably not enough 
annotated constraints for the Interactive Clustering to converge.

Step 5: Train and implement the chatbot with the labelled dataset.

After annotating with Interactive Clustering, clusters are named according to the discovered 
intents, and a supervised classification model is trained with these intents. Using this model, the 
dialog behaviour of the chatbot can be defined. This task is made easier since this method tends to 
group together questions that yield similar responses.

Step 6: Perform continuous improvement and intents scope maintenance.

See above, no changes.

CoNVeRGeNCe AND IMPLeMeNTATIoN TeSTS

Hypotheses
This article aims to study the following two hypotheses:

Hypothesis One: An annotation methodology based on Interactive Clustering implementation can 
converge to a business relevant ground truth.

Hypothesis Two: The convergence speed of Interactive Clustering methodology depends on several 
implementation parameters. The authors specifically study the influence of data preprocessing, 
data vectorization, constraints sampling strategy, and constrained clustering algorithm.



International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

8

Methods
To test the article hypotheses, the authors propose an experiment of chatbot dataset annotation. This 
experiment consists in performing Interactive Clustering iterations in order to annotate an unlabelled 
dataset, starting from no known constraints and ending when all the possible constraints between 
questions are defined.

The human annotator is simulated by the algorithm, and annotations are made by comparing 
with ground truth labels: two questions are annotated with a “MUST-LINK” if they come from the 
same intent, and with a “CANNOT-LINK” constraint otherwise. With this automatic annotation, no 
conflict can occur.

In this article, the influence of the following parameters is studied:

i.  Four Levels of Data Preprocessing: (a) no preprocessing; (b) simple preprocessing (lowercasing, 
accent deletion, punctuation deletion, whitespace deletion); (c) lemmatized preprocessing (simple 
preprocessing and token lemmatization); and (d) filtered preprocessing (simple preprocessing 
and restriction to first-order token in the syntactic dependency tree).
 ◦ Implementation: use of spacy lemmatizer and dependency parser (Honnibal & Montani, 

2017).
ii.  Two Levels of Data Vectorization: (a) tfidf (vectors based on terms frequency) and (b) fr-core-

news-md model (pre-trained spacy language model).
 ◦ NB: A model of pre-trained vectors on a banking corpus can be used, but no French model 

is available for this experiment. Such a model could be considered in a later study.
 ◦ Implementation: use of Scikit-Learn TFIDF vectoriser (Pedregosa et al., 2011) and spaCy 

French language model (Honnibal & Montani, 2017).
iii.  Four Levels of Constraints Sampling: (a) sampling of random pairs; (b) sampling of random 

pairs from a same cluster; (c) sampling of closest pairs from different clusters; and (d) sampling 
of farthest pairs from a same cluster.
 ◦ NB: For this study, the annotation batch size is set to 50 pairs of questions.

iv.  Six Levels of Constrained Clustering: (a) COP K-Means clustering; (b-e) Hierarchical clustering 
(four similarity links: single, complete, average and ward); and (f) SPEC-Spectral clustering
 ◦ NB: For this study, it is assumed the number of clusters is known and set the ground truth 

intents number.

Altogether, there were 192 possible combinations of parameters. Each configuration was repeated 
5 times.

The relevance of data segmentation is measured using homogeneity, completeness, and v-measure, 
computed on the clustering results of each iteration. Measures are obtained through comparison with 
a ground truth, corresponding to annotations by business experts prior to the experiment (with no 
computer guidance). In this study, the following performance thresholds are considered:

• Complete Annotation: The number of iterations required to annotate all constraints. In this 
case, the annotator defines the link between every pair of questions in the dataset. The clustering 
therefore becomes a deterministic graph traversal problem.

• Sufficient Annotation: The number of iterations required to reach a v-measure of 100%, 
corresponding to complete agreement with the ground truth.

• Partial Annotation: The number of iterations required to reach a v-measure of 80%.

To analyse the convergence speed and the effect size of the implementation parameters on the 
number of annotations required, the authors perform repeated measures ANOVA in R (R Core Team, 
2017). Post-hoc comparisons are performed using Tukey HSD procedure.
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Finally, the optimal set of parameters according to statistical analysis is selected to train a 
candidate intents classifier. Intent classification is implemented from the vectors extracted during 
Interactive Clustering, using a 5-fold cross-validation and a SVM from the Scikit-Learn framework 
(Pedregosa et al., 2011).

The implementation of this experimental protocol is available in Schild (2021e, in press). 
Computations are parallelized on 24 CPU (Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz), one 
worker per CPU.

Dataset Description
The ground truth used for this experiment is available in Schild (2021c). It relies on a French dataset 
of 500 questions dealing with typical bankcard management requests. Prior to the experiment, the 
dataset was analysed and annotated manually by business experts. It was divided into 10 intents of 
50 questions each. Sample questions from each intent are shown in Table 1.

To comply with the previously defined instructions on constraints annotation, intents were created 
by grouping questions requiring similar responses. Thus, a pair of questions coming from the same 
intent can be annotated by a “MUST-LINK” constraint (similar responses according to an expert), or 
a “CANNOT-LINK” constraint otherwise.

Table 1. Extracts from the French dataset of usual bank card requests.

Intent Name Example Example translation

card lossor stolen   « Comment signaler une perte de 
carte de paiement ? »

“How to report a loss of payment 
card?”

cardswallowed « Comment récupérer une carte 
avalée ? » “How to retrieve a swallowed card?”

cardordering « Je souhaite changer de carte 
bancaire. » “I want to change my bank card.”

bankbalanceconsultation  « Où retrouver le solde de mon 
compte ? »

“Where can I find my account 
balance?”

card insuranceganrantee  « Que couvre ma carte bancaire en 
cas d’hospitalisation ? »

“What does my bank card cover in the 
event of hospitalization?”

cardunlocking « Ma carte a été suspendue suite à un 
mauvais code, puis-je la réactiver ? »

“My card has been suspended due to 
a wrong code, can I reactivate it?”

virtualcardmanagement  « Comment faire pour créer une carte 
de paiements virtuelle ? »

“How to create a virtual payment 
card?”

bankoverdraftmanagement  « Est-ce que j’ai un découvert 
autorisé ? » “Have I an authorized overdraft?”

paymentlimitsmanagement  « Le plafond de ma carte est trop bas, 
que faire ? »

“My card limit is too low, what should 
I do?”

contactlessmodemanagement  « Je veux désactiver le sans contact 
sur ma carte. »

“I want to deactivate contactless on 
my card.”
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experimental Results
All trials of the Interactive Clustering experiments converge towards ground truth:

• Initialization Step: With an unconstrained clustering, the average v-measure is 19 05. %  (
min max= = =03 42 47 75 13 38. %, . %, . %s ).

• Partial Annotation: To reach 80% of v-measure, experiments took on average 59 04.  iterations 
(min max= = =11 315 42 14, , .s ), being 2951 81.  annotations. The fastest experiment required 
550  annotations, including 269  “MUST-LINK” constraints.

• Sufficient Annotation: To reach 100% of v-measure, experiments took on average 76 29.  
iterations (min max= = =19 328 46 44, , .s ), being 3801 19.  annotations. The fastest 
experiment required 950  annotations, including 641  “MUST-LINK” constraints.

• Complete Annotation: To reach the annotation completeness, experiments took on average 
88 98.  iterations (min max= = =20 394 68 21, , .s ), being 4431 34.  annotations. The fastest 
experiment required 1000  annotations, including 668  “MUST-LINK” constraints. 

Table 2 describes the influences of parameters on the iterations number needed to reach 80% of 
agreement with the ground truth. Statistical analysis highlights the significant main effects on the 
partial annotation convergence of preprocessing parameter ( h2 30 992 10= − < −. , p value ), of 
vector iza t ion  parameter  ( h2 30 998 10= − < −. , p value ) ,  of  sampl ing  parameter  (
h2 30 999 10= − < −. , p value ), and of clustering parameter ( h2 30 999 10= − < −. , p value ). Post-
hoc analysis of these effects shows that the best average setting is made of simple preprocessing, 
TFIDF vectorization, sampling of closest pairs from different clusters, and average-link or single-link 
hierarchical constrained clustering. The average number of iterations needed for these settings is 13  
(s = 2 11. ), being 650 105�±( )  annotations.
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Table 3 describes the influences of parameters on the iterations number needed to reach 100% 
of agreement with the ground truth. Statistical analysis highlights the significant main effects on the 
sufficient annotation convergence of preprocessing parameter ( h2 30 987 10= − < −. , p value ), of 
vector iza t ion  parameter  ( h2 30 991 10= − < −. , p value ) ,  of  sampl ing  parameter  (
h2 30 998 10= − < −. , p value ), and of clustering parameter ( h2 30 997 10= − < −. , p value ). Post-

Table 2.ANOVA (with post-hoc) estimating the effect of implementation parameters on the number of iterations needed to reach 
80% of v-measure. Stars indicate significance levels (α=0.05).

Factor Description Descriptive Statistics Effect Size Statistics

Factor Levels Mean Rank SE · ² p- value

preprocessing

simple - prep 55 95. 1( )

0 33. 0 992.

7 72 13. e-

***( )
lemma - prep 57 25. 2( )

no- prep 57 59. 2( )

filter - prep 65 36. 4( )

vectorization

tfidf 55 00. 1( )
0 30. 0 998.

1 56 06. e-

***( )
fr-core-news-md 63 08. 2( )

sampling

closest-in-different 29 27. 1( )

0 33. 0 999.

< −2 16�e
***( )

random-in-same 44 93. 2( )

random 61 07. 3( )

farthest-in-same 101 88. 4( )

clustering

hierarchical-average 44 89. 1( )

0 32. 0 999.

< −2 16�e
***( )

hierarchical-single 45 27. 1( )

k means-cop- 46 55. 3( )

hierarchical-ward 65 79. 4( )

hierarchical-complete 66 90. 5( )

spectral-spec 84 83. 6( )



International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

12

hoc analysis of these effects shows that the best average setting is made of lemmatized preprocessing, 
TFDIF vectorization, sampling of closest pairs from different clusters, and K-Means constrained 
clustering. The average number of iterations needed for these settings is 34 6.  (s = 7 44. ), being 
1730 372�±( )  annotations.

Table 3.ANOVA (with post-hoc) estimating the effect of implementation parameters on the number of iterations needed to reach 
100% of v-measure. Stars indicate significance levels (α=0.05).

Factor Description Descriptive Statistics Effect Size Statistics

Factor Levels Mean Rank SE · ² p- value

preprocessing

lemma - prep 72 86. 1( )

0 32. 0 987.

1 17 13. e-

***( )
simple - prep 73 30. 2( )

no- prep 75 24. 2( )

filter - prep 83 77. 4( )

vectorization

tfidf 71 16. 1( )
0 36. 0 991.

9 30 07. e-

***( )
fr-core-news-md 81 43. 2( )

sampling

closest-in-different 50 29. 1( )

0 39. 0 998.

< −2 16�e
***( )

random-in-same 56 38. 2( )

random 71 95. 3( )

farthest-in-same 126 55. 4( )

clustering

k means-cop- 62 23. 1( )

0 42. 0 997.

< −2 16�e
***( )

hierarchical-average 65 13. 2( )

hierarchical-single 75 44. 3( )

hierarchical-ward 80 44. 4( )

hierarchical-complete 81 46. 4( )

spectral-spec 93 06. 6( )
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Table 4 [REMOVED REF FIELD]describes the influences of parameters on the iterations number 
needed to reach annotation completeness. Statistical analysis highlights the significant main effects 
on the complete annotation convergence of preprocessing parameter ( h2 30 909 10= − < −. , p value ), 
of vectorization  parameter ( h2 30 985 10= − < −. , p value ),  of sampling  parameter (
h2 30 997 10= − < −. , p value ), and of clustering parameter ( h2 30 999 10= − < −. , p value ). Post-
hoc analysis of these effects shows that the best average setting is made of lemmatized, TFIDF 
vectorization, sampling of random pairs from same clusters, and K-Means constrained clustering. 
The average number of iterations needed for these settings is 32 6.  (s = 1 14. ), being 1630 57�±( )  
annotations.

Table 4.ANOVA (with post-hoc) estimating the effect of implementation parameters on the number of iterations needed to reach 
annotation completeness. Stars indicate significance levels (α=0.05).

Factor Description Descriptive Statistics Effect Size Statistics

Factor Levels Mean Rank SE · ² p- value

preprocessing

lemma - prep 85 89. 1( )

0 42. 0 909.

1 10 08. e-

***( )
filter - prep 89 55. 2( )

simple - prep 89 64. 2( )

�no- prep 90 81. 4( )

vectorization

tfidf 85 50. 1( )
0 39. 0 985.

2 53 06. e-

***( )
fr-core-news-md 92 46. 2( )

sampling

random-in-same 57 23. 1( )

0 42. 0 997.

< −2 16�e
***( )

random 72 80. 2( )

closest-in-different 98 38. 3( )

farthest-in-same 127 50. 4( )

Table 4 continued on next page
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Figure 1. Average paths observed for optimal convergence of v-measure to a given objective (80%, 100%, or annotation 
completeness). Optimal parameters chosen for each objective correspond to highest-ranked ones in Tables 2, 3 and 4. The baseline 
corresponds to an average across all experiments, and error bars represent standard error of the mean.

Factor Description Descriptive Statistics Effect Size Statistics

clustering

k means-cop- 64 99. 1( )

0 39. 0 999.

< −2 16�e
***( )

hierarchical-average 78 54. 2( )

hierarchical-ward 81 31. 3( )

hierarchical-complete 82 49. 3( )

spectral-spec 93 78. 5( )

hierarchical-single 132 75. 6( )

Figure 1 illustrates a comparison of average v-measure evolution for average settings and for 
identified best settings to reach 80% of v-measure, 100% of v-measure and annotation completeness.

Figure 2 illustrates a comparison of average clustering computation time evolution for the six 
examined clustering algorithms. Its shows that:

• Hierarchical clustering algorithms has a decreasing computation time according to the number 
of added constraints;

• K-Means clustering has an irregular but increasing computation time representative of assignation 
conflicts cases.

Table 4 continued
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Figure 3 shows the results obtained from training a classifier on the dataset obtained using the 
optimal parameters set. Initial clustering of the dataset (with no input from the expert) yields a 
classification accuracy of 98%. This accuracy decreases as constraints are added by the expert (leading 
to higher business relevance of the segmentation). Analysis shows that a plateau of performance is 
achieved, with accuracy stabilizing around 94% starting from a v-measure of 0.75. Final accuracy 
obtained from the ground truth (v measure− = 1 ) is 94.2%.

Figure 2. Evolution of computation time needed for adjusting the model across iterations of Interactive Clustering, depending on 
clustering algorithm. The baseline corresponds to an average across all experiments, and error bars represent standard error 
of the mean.

Figure 3. Evolution of accuracy obtained during training of an intent classification model, depending on the v-measure achieved 
during Interactive Clustering, for the optimal parameters set (simple preprocessing, TFIDF vectors, sampling of data along cluster 
borders and hierarchical single-link clustering). The curve starts from iteration zero (clustering without constraints). Error bars 
represent standard error of the mean. The dashed line represents performance achieved from Ground Truth.
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Discussion
The aim of this article was to propose and experiment on a realistic dataset and methodology for the 
development of conversational agents in a business context. The method, adapted from Lampert et 
al. (2019) and coined Interactive Clustering, cycles through iterations composed of a constrained 
clustering phase (proposing a segmentation of unannotated requests samples), and a binary constraint 
annotation phase during which a business expert discriminates pairs of requests based on the expected 
response. Constraints take the form of “MUST-LINK” labels when the expected response is the same, 
and “CANNOT-LINK” otherwise.

Based on a realistic dataset of credit card-related questions, this article proposed to validate 
the capacity of the method to converge to a business-relevant segmentation of requests, and to test 
the influence of implementation parameters (preprocessing, vectorization, sampling heuristic, and 
clustering algorithm) on the convergence.

The results of the experiment confirm that regardless of the choice of implementation parameters, 
cycling through iterations of Interactive Clustering causes the data segmentation to converge to the 
human-made business-relevant segmentation used as a Ground Truth (see Figure 2). However, the 
shape and speed of convergence seems to depend on implementation parameters. A full dataset 
annotation is not possible because it requires too many constraints (4431 on average, 1630 at the 
optimum, see Table 4 for optimal settings). The authors therefore seek to perform a sufficient 
annotation (full subjective clustering correction) or a partial annotation (agreement between human 
annotation and clustering exploration).

As shown by the analysis of parameters proposed in Table 2 and Table 3, faster convergence can 
be obtained by using a simple (only character normalization) or lemmatized preprocessing, TFIDF 
vectors, and by annotating in priority pairs of data points selected at the border between clusters. 
These results are in agreement with optimal implementation parameters obtained on a smaller dataset 
in Schild (2021a, 2021b). COP K-Means and hierarchical clustering (single or average links) are the 
most adapted algorithms for faster convergence. However, even if COP K-Means faces some unstable 
iterations due to cluster assignation conflicts (cf. computation time variations), it is faster at first 
iterations, and is therefore more suited for quick integration of new constraints. On the other hand, 
hierarchical clustering algorithms are slower at first iterations, but have a decreasing computation 
time over iterations (see Figure 2).

As the methodology is based on mixed initiative from the human (to impose constraints) and the 
computer (to propose data segmentation), Interactive Clustering proposes an optimal compromise 
between business relevance of the segmentation and performance obtained during intent classification. 
In particular, analyses described in Figure 3 show that the algorithm starts from very high classification 
performance (but no business relevance) and progressively integrates user constraints to reach an 
adequate compromise with business relevance starting from 13 iterations (80% of v-measure).

These results suggest that Interactive Clustering can be an alternative to direct annotation 
during chatbot design. This method does not require prior modelling of intents by business experts 
(a task often complex and error-prone) and proposes to annotate based on the expected response to a 
request instead of requiring the business experts to memorize and share the same understanding of a 
complex pre-defined intent type system. In particular, the focus on response (rather than the content 
of the request) during annotation is in line with the objectives of chatbot development and allows to 
distribute annotation tasks that correspond to the expertise of business users.

On this experiment on a realistic dataset of 500 questions, optimal segmentation with 80% of 
v-measure was reached after about 650 binary annotations, which is greater than the size of the dataset. 
However, the user experience associated with these annotations differs from direct annotation: while 
direct annotations require to place an abstract label chosen among a large set, Interactive Clustering 
constraints require simple discrimination between two sentences. By replacing complex categorization 
between multiple categories with discrimination between two cases, this approach therefore reduces 
the burden placed on the annotator’s working memory. Consequently, the task requires less mental 
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resources (Norman, 2013) and would facilitate the annotation process, in particular when the dataset 
and intent set are complex. The method would then seem particularly adapted as use cases grow 
complex, leading to greater difficulties to determine the intents set upfront.

Perspectives
While the Interactive Clustering method seems successful at providing a fluid user experience 
during initial definition of a chatbot on this use case, the authors have left for future investigation the 
study of the influence of potential annotation conflicts on convergence (for instance if conflicting 
constraints are defined). The provision of a cluster analysis tool could also be considered to help the 
task of labelling clusters.

To go further, although the authors recommend the use of optimal parameters described in 
Table 2 and Table 3, the exploration of other implementation parameters could potentially improve 
the convergence speed and shape. Their influence could also differ when applied to languages other 
than French.

Finally, several hypotheses concerning the annotator experience while performing interactive 
clustering still need to be verified in order to confirm the benefits of the proposed method. More 
particularly, future work can focus on estimating the time and mental load required to get a business 
relevant dataset using the proposed methodology. This inquiry would enable completion of the list 
of advantages, limits and scope of application of Interactive Clustering in a real-world setting.

CoNCLUSIoN

This study was conducted in a context of growing automation in the treatment of customer requests, 
and the increasing efforts to develop conversational agents in a business operations context. It 
proposes a novel methodology of Interactive Clustering to support the efficient development of such 
conversational agents:

• It exploits computer suggestions from a constrained clustering algorithm to make simpler user 
experience during annotation by focusing on placing constraints the dataset rather than modelling 
the intents set upfront;

• It avoids error-prone situations occurring when the intents model is complex, by providing an 
evolving representation of intents: at each step of the process, a segmentation of the dataset is 
automatically kept up to date according to the constraints imposed by the expert, without requiring 
re-annotating the dataset;

• The experiment described in this article shows that the methodology can be tuned by choosing the 
optimal algorithms for text preprocessing, vectorization, clustering, and selection of constraints. 
The Interactive Clustering process then achieves a compromise between business relevance of 
the intents model and high potential for computer-based classification.
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