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ABSTRACT

Group recommender systems (GRSs) in most e-commerce and tourism applications like Booking.
com, Traveloka.com, Amazon, etc. have risen in recent years. One of the most concerning problems 
in GRSs is to guarantee the fairness between users in a group called the consensus-driven group 
recommender system. This paper proposes a new flexible alternative that embeds a fuzzy measure to 
aggregation operators of consensus process to improve fairness of group recommendation and deals 
with group member interaction. Choquet integral is used to build a fuzzy measure based on group 
member interactions and to seek a better fairness recommendation. The empirical results on the 
benchmark datasets show the incremental advances of the proposal for dealing with group member 
interactions and the issue of fairness in consensus-driven GRS.
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1. INTRoDUCTIoN

Group recommender system (GRS) becomes a crucial tool to develop an information system supplying 
recommendation to joined activity of group (Dara et al., 2020). GRSs can be categorized into two 
common approaches in which the former creates a group profile by merging those of all members 
and uses it as a pseudo single user in the process of recommendation (Da’u & Salim, 2020). The later 
called consensus phase generates all group members’ preferences and aggregates them to select the 
suitable recommendation to group (Kuhlman & Rundensteiner, 2020; Banda et al., 2020).
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One of the most concerned problems in GRSs is to guarantee the fairness between users in a group 
so-called the consensus-driven group recommender system. This approach makes recommendation 
for the group based on individual interests using consensus mechanisms. It utilizes the information 
of individuals, and a set of preferred items recommended to a group based on individuals’ sets of 
preferred items. The fairness issue in GRSis a social concept and not easy to measure(Kaya, Bridge 
& Tintarev, 2020). Recently, several researchers have defined the fairness in GRS explicitly as the 
ratio of satisfied people to total group members (Felfernig et al., 2018), the equity of group members 
satisfactions (Xiao et al., 2017) or consider fairness of recommended item set as a package rather 
than a set of independent items (Serbos et al., 2017). Nevertheless, a challenge raised in finding good 
fair solution in consensus-driven GRS is that a member preference for an item is often influenced by 
members interaction and item relations (Wang et al., 2017). Therefore, it is difficult to estimate the 
imbalance between group members’ preferences when regarding members’ interactions.

When dealing fairness issue, the common GRSs do not deal with effect of interaction between 
group’s members. In this case, the user-item relevance do not change when group members change, 
thus the fairness of recommendation is simply calculated from individual preferences (Dara et al., 
2020). On the other hand, a number of studies presented solutions for estimating group preference 
regarding group member relationship from external information such as the user social network profile 
(Yin et al., 2020) or internal information from the group member distances (Castro et al., 2015). 
However, these studies did not stress on the fairness problem in GRSs as expected.

In order to cope the fairness issue, we are motivated by the aggregation operators in the 
consensus phase of GRS. That is to say, if a well-defined aggregation operator is formed, we can 
achieve the fairness between users in a group while still maintaining reasonable accuracy of prediction 
and recommendation. There are many aggregation operators presented in the literature to generate 
group preference such as the additive utilitarian strategy, average strategy, least misery strategy, 
approval voting strategy, fairness strategy, and so on (Cantador & Castells, 2012). Several strategies 
maximize the total group preference such as additive utilitarian strategy, average strategy and other 
strategies promote weaken member such as least misery strategy, Borda Count strategy, approval voting 
strategy, fairness strategy. However, these strategies do not solve fairness issue of group RS directly, 
even fairness strategy does not deal with the imbalance of satisfactions between group members.

In this paper, a new flexible framework is proposed to deal with both fairness issue and 
user interaction meanwhile maintain major objective of consensus-driven GRS that is finding high 
accumulative group members’ satisfaction. Instead of the traditional aggregation techniques, Choquet 
integral is use to generate group recommendation in the consensus phase (Huynh et al., 2020). The 
Choquet integral based aggregation extends weighted aggregation to give a balanced recommendation 
through capacity functions(Lust, 2015). The proposed consensus-driven GRS includes two phases: 
recommendation and consensus phase. In the recommendation phase, individuals’ preferences are 
recommended using the user-based collaborative filtering while the consensus phase calculates 
the group preference by Choquet integral-based aggregation. The contributions of this paper are 
several new approaches for generation of capacity function such as reducing the imbalance between 
members(a.k.a. pure fairness-aware capacity function) and considering more influence of user 
interactions to user satisfaction in community (a.k.a. adjusted-fairness capacity function). The system 
is evaluated on the MovieLens-1M dataset by different metrics such as mean absolute error (MAE), 
group preference metric, and fairness metrics.

The next sections will present the background and the proposed consensus-driven GRS based on 
Choquet integral. Sections4 and 5 show the experimental results and the conclusion with future works.
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2. PReLIMINARy

2.1 Consensus-Driven GRS
The consensus-driven GRS includes two phases: recommendation and consensus. In the 
recommendation phase, individuals’ preferences are created using traditional filtering techniques 
of recommender systems such as user-user collaborative filtering. The consensus phase generates 
recommendation to group by aggregating individuals interests (Castro et al., 2015).The consensus 
phase concept is depicted in Fig.1.

In the consensus phase, several aggregation approaches have been presented such as,
Additive utilitarian strategy (AUS):calculates group preference on an item by,

pref r
i
g

u i
u g

=
∈
∑ ,

 (1.1)

where r
u i,

is the rank that a user u of groupg gives for item i .
Multiplicative strategy (MS):instead of additive, this strategy calculates group preference on an 

item by multiply user preferences,

pref r
i
g

u i
u g

=
∈
∏ ,

 (1.2)

Least Misery Strategy (LMS): group preference is equal to user preference who gives lowest rank.

pref r
i
g

u g u i
= ( )

⊂
min

,
 (1.3)

Most Pleasure Strategy (MPS): group preference is equal to user preference who gives highest 
rank.

Figure 1. The consensus phase in GRS
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pref r
i
g

u g u i
= ( )

∈
max

,
 (1.4)

Approval Voting strategy (AVS): group preference is equal to number of users voted to one item.

pref v
i
g

u i
u g

=
∈
∑ ,

 (1.5)

where, v
u i,

is 1 if user u vote to item i and is 0 otherwise.
Copeland Rule strategy (CRS): inspired by Copeland index, group consensus phase selects items 

based on the time that an alternative beat or lose to other alternatives.

pref c
i
g

i j
j I

=
∈
∑ ,

 (1.6)

where c
i j,

is equal to 1 if item i beats item j . It means that the number of users rank i  higher 
than j is greater than the opposite. The value of c

i j,
is -1 if j beats i  and c

i j,
is 0 in other situations.

Borda Count strategy (BCS): replaces the rank that a user gives for an item set by new award 
using the Borda count. Group preference is calculated by additive strategy. The new award of each 
item is its position in user individual preference list, and this list is index from zero.

Fairness strategy (FS): This strategy selects a user in group one by one, and the selected user 
chooses the best item for him. This process repeats until the number of chosen items reaches the need.

Regarding the complexity of all strategies, calculating the preference a groupg for item i  using 
different aggregation operators is the same Ο g( ) . The complexity of consensus mechanisms is

Ο I g N. .( )  whereN is the number of top items need to recommend. Meanwhile, the Copeland 
Rule s and Borda Count need to compare between all items to calculate the preference of a groupg
for item i , so that the complexity is Ο g I.( ) . The consensus mechanisms’ complexity is 

Ο I g N
2
. .







 , respectively.

2.2 Fairness in Group Recommender Systems
In order to maximize the utility of recommender systems, in general, many researches tried to 
improve the fairness of recommendation. In the case that a single item is recommended to a group, 
the fairness of such recommendation would be specified by the number of members who satisfy 
with recommendation. The satisfaction is defined by member’s preference related to a threshold 
(Felfernig et al., 2018).

fairness g i
U r th

g

u g u i
( , )

,=
≥∈  (1.7)

This definition of fairness is the ratio of the satisfied members and the number of group member. 
It can be extended for a set of items by using an average operator over all items. A satisfied member 
is a user who rated an item at a rank equal or greater a threshold th .GRS has multi-stakeholders, 
and fairness element is a factor presents the imbalance of satisfactions of members as a recommendation 
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given to a group. When a set of items is recommended to a group of people, there are different points 
of view about fairness that is a measurement of the imbalance of users satisfy recommendation.

According to (Xiao et al., 2017), fairness presents the imbalance between satisfactions of all 
members of a group. Let S u I,( )  is a measure of satisfaction of user u  with a set ofrecommended 
items I . Then, the fairness of recommendation I  to a group of usersg  can be calculated by following 
alternatives.

Least misery:

fairness g I S u I u g
LM

, min , ,( ) = ( ) ∀ ∈( )  (1.8)

Variance:

fairness g I Var S u I u g
Var

, , ,( ) = − ( ) ∀ ∈{ }1  (1.9)

Jain’s Fairness:

fairness g I

S u I

g S u I
Jain

u g

u g

,

,

* ,
( ) =

( )










( )
⊂

⊂

∑

∑

2

2
 (1.10)

Min-Max ratio:

fairness g I
S u I u g

S u I u g
min max

( , )
min , ,

max , ,
− =

( ) ∀ ∈( )
( ) ∀ ∈( )

 (1.11)

The satisfaction of a user on a set of items is calculated by,

S u I
r

I

u i
i I,

,

( ) = ⊂
∑

 (1.12)

The authors also introduced and compared performance of some Greedy-based algorithms 
regarding the fairness of the GRS (Xiao et al., 2017).

Serbos et al. (2017) proposed two proportional fairness estimators. The first one uses the definition 
of m proportional−  of a package of items, which presents to any pakage that has at least m  items 
user u  like. Then, fairness is defined as follow.

fairness g I
U

gm propotional

I

− ( ) =,  (1.13)
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where U
I

 is the set of users having package I  is am proportional− .
The second approach uses the definition of m envy freeness− −  that shows the number of 

items favoured by a user u  that are among top preference of other members.

fairness g I
U

gm envy freeness

I

− − ( ) =,  (1.14)

where U
I

 is the set of users that have package I  is am envy freeness− − .

2.3 Choquet Integral and Fuzzy Measure

a. Capacity Function

In a multi-criteria decision-making problem, with œ criteria:
Definition 1: A capacity is a set of function µ : ,2 0 1Μ → 


 such that

µ µØ boundary condition

A B such that A B
( ) = ( ) =

∀ ⊂ ⊆

0 1, ( )

, ,

   

     

Μ

Μ ,, ( )   µ µA B monotonicity condition( ) ≤ ( )  (1.15)

Capacity presents the role of a subsetA of criteria set Μ .
Definition 2: A capacity is said additive if for each pair of subsets ‘ ’, ∈ , 

µ µ µA B A B∪( ) = ( )+ ( ) , other while, a capacity is a non-additive.

b. Choquet Integral

Definition 3: The Choquet integral of a vector r in the mth dimension with respect to a capacity
µ  is defined by:

CQ r r r
i ii

m

iµ µ( ) ( )= −( )↑
−
↑

=

↑∑ 11
ϒ  (1.16)

wherer r r
m

↑ ↑ ↑= { }1
,..., is a permutation of the elements ofr  with 0

0 1
= ≤ ≤ ≤↑ ↑ ↑r r r

m
... , and 

the setϒ Μ
i j i

j r r i i m↑ ↑ ↑ ↑ ↑= ∈ ≥{ } = +{ }, ,( ) ,...,1 for i m< andϒ
m+
↑ =

1
0 .

c. Choquet Optimal Set

Definition 4: Given a setΓ of alternatives, the Choquet optimal set, calledΓ
C

, is the set has 
all optimal alternatives, for each possible Choquet integral, that is
∀ ∈ ∃ ∈ ( ) ≥ ( ) ∀ ∈µ µ µϒ Γ Γ,   r CQ r CQ r ri

C
i j j , whereϒ is a set of all possible capacity 

defined over set of criteriaΜ .
Lust(2015)assessed the possibility of reaching a Choquet optimal alternative by Choquet integral 

using a capacity function generated randomly with a uniform law. This test was performed under the 
multi-criteria decision contexts, and the authors argued that random generation of fuzzy measure with 
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a uniform law works well when the number of criteria greater than 5. Even this test was only done 
with the number of criteria smaller than 10, it proved the potential power of Choquet integral-based 
aggregation over the weight sum aggregation.

d. Random Generation of Fuzzy Measure

Generating a non-additive capacity (or fuzzy measure) randomly is an interesting and useful 
researching area, and in this part, we are going to review the state of the arts in this area and its 
complexity to assess the application possibility of these methods in context of GRS. According to 
the definition of the capacity function, the number of coefficients must be estimated is 2 2

Μ −  with 
Μ criteria, and it cannot be done completely with large number of criteria because the complexity 

grows exponentially. However, in order to apply Choquet-integral, the problem of identifying a 
complete capacity function reduces to identifying all values of partial order set (poset in short)
��( , )≤  (Combarro et al., 2013).

One of the most computing expensive processes in an exact uniform random generator is 
generating all linear extensions from a poset. The best approach for this issue was introduced in 
(Lerche & Sørensen, 2003) with time complexity as O( log )n n5  where n  is the number of elements 
in a partial order set. Even these heuristic algorithms improve the speed of random generation of 
linear extensions, they cannot be applied in the multi-criteria decision with a large number of criteria 
(Lust, 2015).

3. THe PRoPoSeD CoNSeNSUS-DRIVeN GRS 
BASeD oN CHoQUeT INTeGRAL

In order to apply Choquet integral-based aggregation in GRS, it is required to compute the capacity 
function for each group of users. Therefore, it is impossible to generate capacity function randomly 
due to computing expensive. The feasible approach is proposing an algorithm that evaluate values of 
points in needed linear extensions directly, and it must be a computing efficient process. This section 
follows this approach and defines several capacity functions based on user interaction and fairness 
objective of a GRS.

3.1 Why Using Choquet Integral in Consensus-Driven GRS?
In formal approaches for consensus phase, additive utilitarian strategy seems to be a regular choice 
because it maximizes the total individual’s preferences. However, fairness has become more important 
than the additive preference. Applying Choquet integral can improve fairness issue while regarding 
the objective of additive preference. An encouraged example is present below.

Example 1: The tables below present the ranks of three items given by three users with different 
approaches for consensus phase.

Table 1. Simple additive utilitarian approach

Users\ Items I1 I2 I3

U1 10 4 3

U2 1 9 8

U3 10 5 2

Group’s preference 21 18 13

Group preference order: I1>I2>I3.
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This is also the same result for the average strategy approach.
Consensus with Choquet integral-based aggregation approach: Letµ  being the capacity 

function defined by:
µ µ µU U U

1 2 3
0 2{ }( ) = { }( ) = { }( ) = . ; µ µ µU U U U U U

1 2 2 3 1 3
0 4, , , .{ }( ) = { }( ) = { }( ) = ; and 

µ U U U
1 2 3

1, ,{ }( ) = .
The Choquet-based aggregation of item’s preference is set as follows:
pref U U U U U U

I
CQ

1
1 0 10 1 10 10

1 2 3 1 3 3
= −( ) { }( )+ −( ) { }( )+ −( ) { }(µ µ µ, , , )) = + =1 9 0 4 4 6* . .

pref U U U U U U
I
CQ

2
4 0 5 4 9 5 4

1 2 3 2 3 2
= −( ) { }( )+ −( ) { }( )+ −( ) { }( ) =µ µ µ, , , ++ + =1 0 4 4 0 2 5 2* . * . .

pref U U U U U U
I
CQ

3
2 0 3 2 8 3 2

1 2 3 1 2 2
= −( ) { }( )+ −( ) { }( )+ −( ) { }( ) =µ µ µ, , , ++ + =1 0 4 5 0 2 3 4* . * . .

It can be seen that the item I2 is the most balancing item. The above example motivates the use 
of Choquet-integral operation to expand the additive aggregation process of consensus phase to 
reach a more balancing alternative.

3.2 The Proposed Consensus-Driven GRS Method
The proposed consensus-driven GRS method includes two phases below:

- The recommendation phase: individuals’ preferences are recommended using the user-based 
collaborative filtering technique.

- The consensus phase: group preference is calculated through Choquet integral-based 
aggregation.

In the recommendation phase, User-based collaborative filtering is a useful technique to predict a 
user preference on an item that is not ranked. This technique includes two steps. The first step identifies 
a set of user’s neighbours share some characteristics with the target user. The distance between users 
is estimated by similarity metrics. Pearson similarity and Cosine similarity are two well-known 
measures. However, in this study we only investigate the performance of Cosine similarity below,

sim a b
r r

r r
in

a i b i
i I

a i
i I

b i
i I

cos

, ,

, ,

,( ) = ⊂

⊂ ⊂

∑

∑ ∑2 2
 (1.17)

where, I is set of items ranked by both users a b, .
The next step is generating the predicted user preference on an item with unknown rank.

Table 2. The order of items

Users\Items I1 I2 I3

U1 10 4 3

U2 1 9 8

U3 10 5 2

Group’s preference 4.6 5.2 3.2

Group preference order: I2>I1>I3
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r r sim a u r r
a j a u j u

u U
, ,

,= + ( ) −( )
⊂
∑α �

 (1.18)

where
�
U is a set of neighbours of user a .The coefficient α is an adjusted factor calculated by 

formula α =

∈
∑

1

sim a u
u U

( , )
.After all user preferences on items set are predicted, it is necessary to 

generate top-N items in recommendation.
In the consensus phase, the consensus-driven GRS generates group preference based on Choquet 

integral using formulae mentioned in Section 2.3. According to the Choquet-integral operation, 
defining a proper capacity function is crucial. According to the objective of this study, the capacity 
functions imply a fuzzy measure regarding to both additive total group users’ satisfactions and 
balance between group users. We will discuss this in Section 3.2.

3.3 The proposed Capacity Functions
In this section, several new approaches for generation of capacity function are introduced. The first 
approach called the pure fairness-aware capacity function focuses on reducing the imbalance between 
members. The second approach named as the adjusted-fairness capacity function considers more 
influence of user interactions to user satisfaction in community.

a. Pure Fairness-Aware Capacity Function

For a group of usersg , to select top-n items I by Choquet integral-based aggregate operation, 
it is necessary to define a fuzzy measure on set of g users. Remind that identification of all values 
belong to a fuzzy measure on set of g users is a NP-hard problem. However, in the consensus phase 
using Choquet integral, for each item it is required to define capacity values on a linear extension on 
the poset ofg . It means that we identify g values only.

Herein, the pure fairness- aware approach considers the activeness of a user and his known 
interest in an itemset to define a capacity function. This approach adores the work presented in (Huynh 
et al., 2020). Considered a group of users g as criteria for select an item. The capacity of one criterion 
is:

µ

ω

ω
ω

ω

( )
,

u

u

u
u

u

i

i

i
u g

i
u g

i

i

i=

( )
( ) ( ) <

( )







∈

∈∑ ∑if 

, otherwise

1





 (1.19)

whereω u
count r

Ii

u ji( ) =
≥( )

,
0

, j I∈ 

1, , and capacity of subset of criteriaA g⊂ is:

µ µ σA u A
i

u Ai

( ) = ( )+ ( )
∈
∑  (1.20)

Ifµ( )A > 1 it is set to 1.
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Property 1: In caseσ( )A = 0 , the capacity is an additive capacity and Choquet integral 
aggregation can be considered as the weighted sum aggregation.

Proof: Without loss of generality, assume that vector r ∈ m , r r r
u i u im

= …{ }
1, ,

, ,  where 

r r
u i u im1, ,
≤…≤ . Then, the Choquet integral of a vector r ∈ m  with respect to a capacity  µ  is 

calculated by the following formula:

pref r r u u u
i
CQ

i

m

u i u i i i mi i
= −( ) …{ }( )

= +∑ −1 11, ,
, , ,µ � � ,

In which r
u i0

0
,
= .Remind that the capacity function µ  is an additive capacity function, then, 

for each pair of subsets ‘ ’, ∈ U :
µ µ µA B A B∪( ) = ( )+ ( ) .
Therefore,

µ µ µ µu u u u u u u
i i m i i m

j i

m

j
, , , , ,� � � �+ +

=

…{ }( ) = { }( )+ …{ }( ) = { }( )∑1 1
.

Thus, we have:

pref r r u
i
CQ

i

m

u i u i
j i

m

ji i
= −( ) { }( )











=
=

∑ ∑−
�

1 1, ,
µ ,

pref r u
i
CQ

i

m

u i ii
= ( )

=
∑�

1
,
µ ,

where µ u
i( ) is the weight of each user in weight sum aggregation.In the pure fairness- aware 

approach,σ( )A ≠ 0 is defined as follow.

σ ωA u
i

u Ai

( ) = ′( )
∈
∑  (1.21)

where:

′ ( ) =
> − <

ω u
count r aveRate count r aveRate

Ii

u j u ji i
( ) ( )

, ,  (1.22)

The item set I contains all items rated by user u
i
. ′ ( )ω u

i
 presents a user interest in rated items.

b. Adjusted Fairness Capacity Function

In group activities, the interaction among group members indeed has strong impact on the 
satisfaction of members. With the same action, a person in a similar sub-group always has high 
satisfaction comparing with the case that he performs this action with another group of different 
favourites. Based on this fact, we propose an adjusted-fairness capacity function from the pure 
fairness-aware capacity function mentioned above. The newer approach adjusts capacity value of a 
group by the density of group.

′ ( ) = ( ) ( )σ σA
dens A

A
1

*  (1.23)
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The density of group measures the similarity between all members based on Mahalanobis 
distance of all users.

dens A Average dis u u A
i i( ) = ( ) ∀ ∈( ) ,  (1.24)

Mahalanobis distance of a userdis u
i

( ) is the distance from that user to the center of group. The 
adjust capacity function presented in the above formulas means that a closer user group has a higher 
capacity value.

c. Proposed Consensus Mechanism Based on The Choquet Integral

Utilizing the capacity functions defined above, the preference of a group g on an item i  in item 
set I is calculated by the Choquet integral-based operation.

pref g i r rCQ
n i n in

g

n
( , )

, ,
= −( ) ( )↑

−
↑

=

↑∑ 11
µ ϒ  (1.25)

wherer r r r
i i i m i
↑ ↑ ↑ ↑= { }1 2, , ,

, ,..., , m g=  is a permutation of the elements of vector present 

ratings of all user of groupg on item i , where 0
0 1

= ≤ ≤ ≤↑ ↑ ↑r r r
i i m i, , ,

... , and the set

ϒ
n u i n i

u g r r n n m↑ ↑ ↑ ↑ ↑= ∈ ≥{ } = +{ }, , ,...,
, ,

1 forn m< andϒ
m+
↑ =

1
0 .When the preferences of a 

group on all items of candidate set I are evaluated, the top-N recommendation for the group is 
generated trivially.

A brief version of Python-based pseudo-code for consensus algorithm is presented as above. This 
pseudo-code avoids some simple tasks of algorithm to make the main idea clearer.

d. Complexity Analysis

In the pseudocode above, the function get_permutation uses the selection sort algorithm to get 
the order of users based on user-item rating. This algorithm is simple and we do not describe in detail.

We can see that to calculate capacity values of a subset of userA , it requires to calculate ω u( )
and ′ ( )ω u , and a function that does this job has complexity as Ο A I.( ) . To calculate the preference 

a groupg gives for item i  by Choquet integral-based aggregation, we have to calculate m g=

capacity values. A function does this task has complexity as Ο g I g. .( )(remind that A g≤ ).

The consensus phase has complexityΟ ′





I g I N. . .

2
. Because g is often much smaller than

I , this approach is close to Copeland Rule strategy and Borda Count strategy, and it is feasible in 
real-world applications. However, for adjusted fairness capacity function, foreach subset of userA , 
it requires to calculatedens A( )by Mahalanobis, and this function has high computing complexity.
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4. eXPeRIMeNTS

4.1 environmental Data
The literature review shows that there is no data that has an available explicit information of group 
users’ activities. Therefore, in order to compare the proposed approach and the other strategies, the 
MovieLens-1Mdataset is used (Table 4).

Table 3. Consensus algorithm

Choquet integral-based aggregation consensus algorithm

Inputs: user group g , set of candidate items ′I , rating matrix R presents ratings of all users U on items I .

Outputs: top-N prefered items forg , N I≤ ′

1. number_user = g
    weight=[None]*number_user 
    weight_prime=[None]*number_user 
    for i in range (number_user): 
    get weight[i] by formula 1.19 
    get weight_prime[i] by formula 1.22 
                  # calculate the capacity value of a subset of a user permutation 
    def get_capacity(Permutation, Index):
    cap_value=0 
    for i in range (Index, len(Permutation)): 
    cap_value= cap_value+weigth[i] 
    if (len(Permutation)-Index>1): 
    for j in range (Index, len(Permutation)): 
    cap_value= cap_value+weigth_prime[j] 
    return cap_value 
    # calculate group’s preference on candidate items 

2. number_candidate= ′I
    group_preferences=[None]*number_candidate 
    for i in range (number_candidate): 

3. user_permutation = get_permutation(g I R
i

, ,′ )
    # calculate group’s preference on an item by Choquet integral 
    group_item_pre=0 
    previous_rate=0 
    for j in range(number_user): 
    user=user_permuation[j] 
    substraction = R[user,i] - previous_rate 
    group_item_pre += substraction*get_capacity(user_permutation,j) 
    previous_rate = R[user,i] 
    group_preferences[i]= group_item_pre 
    # return a recommendation 
    From vectorgroup_preferences return top-N best items.

Table 4. Dataset statistic information

Dataset Number of uses Number of items Number of ratings

MovieLens 1M 610 9742 100836
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The MovieLens-1M dataset is popularly used in researches about both recommender systems 
and group recommender systems. However, to use in GRS it requires a mechanism for generating 
groups of users.

Foreach user group g
i
 the random sampling technique is used to select g

i
 non-duplicated users 

from a dataset. In the testing process, the number of groups is fix, and the profiles of all groups are 
generated one time only for all experiment methods.

4.2 evaluation Metrics
Recall that many consensus strategies can be used to build a consensus-driven GRS, and each strategy 
might have specific concern. There are different metrics developed to evaluate these concerns. 
However, to compare the performance of strategies mentioned in the above section and our proposal 
approach, two types of metrics are used, that are error and fairness metrics. We also introduced a new 
adjust fairness metric to extract the efficient of models on a specific new point of view.

error Metric
Error metric is used to estimate error of group recommendations. This study use the mean absolute 
error (MAE)to calculate the error of a recommendation given to a group, and the average MAE of 
all group is the overall error of GRS model.

MAE g I
r r

I

g i g i
i I,

ˆ
, ,

( ) =
−

⊂
∑

 (1.26)

where I is a set of items recommended to groupg , and r
g i,

, ˆ
,
r
g i

are predicted group rating and 
real group rating, relatively. A group rating is calculated by average rating of all individuals in group.

r

r

gg i

u i
u g

,

,

= ⊂
∑

 (1.27)

Group Preference Metric
Recall that in this study an important objective of GRS is searching for a solution that supports both 
fairness element and high group preference. Therefore, group preference metric is used and calculated 
by the following formula.

group pref g I
r

I

g i
i I_ ,

,

( ) = ⊂
∑

 (1.28)

where r
r

gg i

u i
u g

,

,

= ∈
∑

presents the average of user’s preference on an item.

Fairness Metrics
To evaluate the fairness of a GRS model, we used two fairness metrics.
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- The first metric takes in to account the ratio of members who satisfy with the recommendation 
and group members. This metric can be calculated by formula (1.7). This measure can be extended 
to estimate the fairness of a recommendation of a set of items I  to a group by simple aggregation 
operation. The metric can vary from 0 to 1 and if the fairness value is equal to 1 it means that all 
users satisfy with recommendation.

- The second metric estimates the difference between group users’ satisfaction. This metric can 
be calculated by formula (1.9) with an assumption that a user’s rating presents a user’s satisfaction. 
The metric can vary in interval −∞( 

,1 and if the fairness value is equal to 1 it means that all users’ 
satisfactions are equal.

4.3 Result and Discussion
This section presents the experimental results of the proposed models of Choquet integral-based 
aggregation with two capacity functions mentioned in Section 3.3. The performance of two models 
is compared with six common strategies used in consensus phase of GRS. According to the approach 
described in Section 4.1, a set of group sizes is set as {3, 5, 10, 15,20}, and the number of group is 
30. They are used to generate the testing groups by random sampling. The results of all models on 
MovieLens 1M dataset are presented in the following tables and figures.

Table 5. Average MAE values of the model vs. the number of recommended items

Top-N AUS MS LMS MPS AVS CRS CIS_1 CIS_2

N=1 0.226 0.254 0.464 0.240 0.409 0.224 0.336 0.319

N=2 0.219 0.252 0.423 0.247 0.377 0.217 0.264 0.251

N=3 0.201 0.217 0.411 0.236 0.410 0.197 0.251 0.248

N=4 0.185 0.207 0.394 0.236 0.382 0.184 0.243 0.244

N=5 0.173 0.208 0.385 0.225 0.356 0.175 0.257 0.258

N=6 0.171 0.207 0.378 0.204 0.374 0.171 0.265 0.268

N=7 0.171 0.201 0.363 0.190 0.370 0.173 0.257 0.262

N=8 0.163 0.200 0.359 0.187 0.366 0.163 0.274 0.278

N=9 0.172 0.203 0.353 0.187 0.352 0.172 0.277 0.281

N=10 0.178 0.202 0.338 0.203 0.352 0.178 0.282 0.285

Table 6. Average MAE values of model vs. group size

Group size AUS MS LMS MPS AVS CRS CIS_1 CIS_2

3 0.095 0.081 0.092 0.071 0.080 0.095 0.182 0.182

5 0.173 0.197 0.386 0.242 0.380 0.171 0.220 0.220

10 0.197 0.222 0.424 0.272 0.421 0.197 0.259 0.259

15 0.224 0.249 0.469 0.255 0.490 0.224 0.290 0.300

20 0.240 0.327 0.564 0.238 0.503 0.240 0.402 0.385
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Error metric presents performance of user rating prediction algorithm in recommendation 
phase of GRS. As described in section 3.2, the accuracy of this phase depends mostly on user-based 
collaborative filtering algorithm. Strategies used in the consensus phase have little effect on this 
metric. Therefore, in this section, we do not compare the accuracy of different strategies. We validate 
the performance of all strategies by different group sizes and the number of items in recommendation 
of GRS.

Tables 2 and 3 show that for all strategies including the Choquet integral-based aggregation, the 
MAE values tend to decrease when the number of recommended items increases. This error increases 
monotonically with the size of group.

The first fairness metric presents the ratio of users satisfied with recommendation and group’s 
size. In this study, a user is considered as satisfied user if he rates an item equal or greater than 
a threshold, th = 3 5. . This threshold means that a satisfied user is a user who like recommended 
item. Table 4 shows that the approval voting strategy and least misery strategy are two best models 
regarding first type of fairness.

Recall that the main objective of GRS is to find the good solution regarding both increasing average 
group’s preference and reducing imbalance between group users. Herein, we investigate these two 
important elements in details. Table 6 shows the difference of models on average groups’ preference. 
It is trivial to get that AUS has the highest groups’ preference because it uses the maximize additive 
users’ preference. GRS with Copeland rule strategy has the same performance with AUS. The two 
proposal algorithms are close to the AUS, and they are better than other strategies.

Figures 2-4 show the performance of all models in three difference group sizes. It is clearly shown 
the convergence of groups’ preference of all models when the number of recommended items increases.

Variance fairness metric is used to present imbalance between group users’ ratings. Figures 5-7 
show the performance of all models in three difference group sizes.

It can be seen that the Least misery strategy (LMT) and Approval voting strategy (AVT) have 
highest fairness element. However, these strategies cause the lowest average groups’ preference. Most 
pleasure strategy(MPT) gives lowest fairness solution in all cases, and it has low average groups’ 
preference too. Additive utilitarian strategy (AUT) and Copeland rule strategy (CRT) give highest 
average group’s preference but they have low fairness. GRSs with two proposal Choquet integral-
based aggregation are not outperform other models in any of both sides: average group’s preference 

Table 7. Average ratio of users satisfied and group’s size groups’

Top-N AUS MS LMS MPS AVS CRS CIS_1 CIS_2

N=1 0.701 0.760 0.820 0.651 0.851 0.701 0.694 0.675

N=2 0.721 0.757 0.831 0.642 0.846 0.721 0.687 0.672

N=3 0.725 0.747 0.820 0.640 0.852 0.725 0.681 0.676

N=4 0.718 0.752 0.813 0.636 0.834 0.718 0.676 0.675

N=5 0.716 0.753 0.800 0.627 0.831 0.716 0.681 0.680

N=6 0.715 0.742 0.797 0.624 0.827 0.715 0.680 0.680

N=7 0.715 0.742 0.787 0.622 0.819 0.715 0.680 0.682

N=8 0.706 0.740 0.782 0.618 0.811 0.706 0.686 0.688

N=9 0.701 0.734 0.779 0.615 0.807 0.701 0.689 0.690

N=10 0.702 0.730 0.775 0.618 0.807 0.702 0.690 0.690
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and fairness element. Though, it is easy to see that these two proposal models are balance between 
both objectives. The GRS with Multiplicative strategy (MT) is competent but its performance reduces 
when number of recommended items or group size increases.

Table 8. Average groups’ rating vs number of recommended items

Top-N AUS MS LMS MPS AVS CRS CIS_1 CIS_2

N=1 4.717 4.694 4.373 4.384 4.412 4.717 4.556 4.560

N=2 4.689 4.670 4.350 4.404 4.383 4.689 4.536 4.537

N=3 4.669 4.658 4.339 4.387 4.357 4.669 4.514 4.516

N=4 4.652 4.645 4.337 4.396 4.350 4.652 4.503 4.505

N=5 4.637 4.628 4.331 4.397 4.349 4.637 4.481 4.483

N=6 4.625 4.615 4.327 4.401 4.342 4.625 4.465 4.467

N=7 4.614 4.605 4.313 4.402 4.341 4.614 4.451 4.453

N=8 4.600 4.594 4.301 4.398 4.339 4.600 4.442 4.444

N=9 4.586 4.578 4.292 4.390 4.335 4.586 4.433 4.433

N=10 4.572 4.564 4.279 4.378 4.331 4.572 4.420 4.420

Figure 2. Average groups’ rating with group size 3
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Figure 3. Average groups’ rating with group size 10

Figure 4. Average groups’ rating with group size 20
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Figure 5. Fairness of GRS with group size 3

Figure 6. Fairness of GRS with group size 10
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5. CoNCLUSIoN

Along with additive group users’ preference, fairness is an important perspective in joint activities 
and therefore it is an important criterion in group recommender systems. This paper investigated 
the fairness of consensus-driven GRSs with different strategies and proposed a new approach based 
on Choquet integral for consensus mechanism. New consensus mechanism extends the search space 
of weighted sum aggregation including additive utilitarian strategy operation to reach more balance 
recommendation theoretically. They also promote a mechanism to handle an important point in GRS 
that is effect of users’ interaction.

Besides, experiments were designed to investigate the performance of the new proposed 
approaches against the existing strategies of consensus mechanism. The selected dataset, MovieLens 
1M, does not contain explicit information of user groups therefore a random sampling method was 
used to generate simulated groups. Error metric, fairness metrics and group preference metric are 
used to investigate different sides of GRSs. Therein, content of fairness is variable due to application 
domains. Therefore, this study used two different existing fairness metrics but focuses solely on the 
variance fairness because it shows imbalance between group’s users.

The experimental results show the advantage of Choquet integral-based aggregate operation in 
consensus-driven group recommender system. While AUT and CRP seem to be extreme solutions 
for applications requiring optimum group’s preference, LMT and AVT are extreme solutions for 
circumstances that need optimum fairness element. In opposite, the proposed models balance both 
sides above. They generated high additive group users’ preference and good fairness recommendations. 
This advantage is significant when GRSs have to recommend a high number of items or services to 
large group of users.

Figure 7. Fairness of GRS with group size 20
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The future work will focus on improving computing time of GRS using adjust fairness capacity 
function and investigate more on effect of users’ interaction under this GRS context (Huynh& Phan 
et al., 2020).
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