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ABSTRACT

Traffic analysis is widely considered an attack posing a threat to anonymity of the communication 
and may reveal the real identity of the users. In this paper, a novel anonymous circuit reconstruction 
attack method that correlates the circuit traffic is proposed. This method then reconstructs a complete 
communication tunnel using the location of middle nodes found between the hidden and client 
services. The attack process includes independent determination of the location of the malicious 
nodes. A traffic correlation framework of AutoEncoder + CNN + BiLSTM is established, based on 
the generative adversarial networks (GAN) model. BiLSTM applies the packet size and packet interval 
features of bidirectional traffic and combines the reconstruction loss function with the discrimination 
loss function to achieve correlated traffic evaluation. After balancing the reconstruction loss and 
discrimination loss scores, the simulation results confirm that the identification performance of the 
proposed system is higher than the advanced models.
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1. INTRODUCTION

By increasing the amount of information available on the Internet, the technology for censoring 
network information is also improving. Currently, anonymous network communication protocols 
have been developed to meet the needs for privacy data protection. An example is the onion router 
(Tor)(Dingledine et al., 2004) which is one of the most popular anonymity networks. Tor embeds data 
in multiple layers of onion encryption effectively preventing attackers from accessing the identity 
of the communication terminals and the data. This has attracted many attackers and researchers to 
propose diversified target attacking approaches centering on the traffic analysis (Biryukov et al., 
2013; Galteland & Gjøsteen, 2018; Jansen et al., 2018; Kwon et al., 2015). The core objective is 
to achieve de-anonymization attacks on the communication users by observing the pattern of the 
encrypted traffic around the onion nodes. Nevertheless, for each attack method, there are several 
traffic countermeasures such as traffic obfuscation and node protection (Imani et al., 2018; Johnson 
et al., 2017) which challenge traditional attack methods. In addition to the communication terminals, 

https://orcid.org/0000-0003-2736-232X


International Journal of Digital Crime and Forensics
Volume 13 • Issue 6

2

anonymous transmission circuits are also an important part of the communication process. Hence the 
analysis of transmission circuits creates serious threats compared to attacking the communication 
terminals. Galteland & Gjøsteen (2018) shows that by analyzing and constructing the transmission 
circuit any accessing behavior at the communication terminal becomes transparent hence facilitates 
de-anonymization attacks.

Conventional onion circuits are designed with a cooperative transmission mode among three 
nodes, where the anonymization effect only involves the communication sender. Subsequently, the 
proposed hidden service onion circuit can anonymize both the sender and receiver by splicing two sets 
of regular circuits. In this paper, a novel attack technique of middle node traffic analysis is proposed 
based on the idea of reconstructing the hidden service communication circuits by controlling the circuit 
nodes. In this technique, The primary goal is to find the location of the middle node found between 
the hidden service and the client service. The internal traffic on both sides is then correlated and 
analyzed and used to accurately reconstruct the complete communication circuits within the network. 
The initial location determination of the middle node is critical. This is because the middle node 
makes the circuits transparent, and further evades the existing protection for the critical nodes. Hence 
knowing the middle node enables attackers to track the entry nodes at both ends of the communication 
and possess attacking capability using minimal attack resources.

In this paper, referring to the basic conditions derived from the node location determination 
results, the traffic correlation target is divided into client area traffic and hidden service area traffic. 
The advantage of this approach is that the transmission features of the unidirectional data within a 
circuit are independent of and interrelated with each other. In addition, it is shown in the previous 
works (Guan et al., 2020) that traffic correlation attacks can be performed in a large traffic environment 
under continuous observation. However, they still have deficiencies such as poor noise immunity, long 
observation time of the traffic, and high demand for positive and negative sample datasets. Moreover, 
it is necessary to capture large traffic label data in advance and for over a long time and also use 
pre-processing models to eliminate the interference of noise in the identification of unsmooth data.

The Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) network can meet the 
needs of reconstructing positive and negative sample data sets. Its internal network of the is a typical 
unsupervised model that uses synthetic data generated after repeated game learning to improve the 
model’s judgment on synthetic and real data. The GAN is applied to intrusion detection and image 
recognition (Akcay et al., 2019; de Araujo-Filho et al., 2020) and provides high robustness and 
transferability. In particular, the proposed methodology where the packet size and packet interval 
within the traffic are chosen as the feature values. Convolutional neural network (CNN) models can 
use convolutional layers to quickly extract features, so the packet size feature vector can be extracted. 
The Bi-directional Long Short-Term Memory (BiLSTM) uses the chain memory structure to have 
the ability to learn the characteristic distribution of the time correlation of data packets. Both CNN 
and BiLSTM train a suitable comparative model of the target loss function. To measure the practical 
benefits of evaluating the traffic correlation, reconstruction losses are added to compensate for the 
comparison results of the synthetic traffic with the evaluated traffic.

In summary, the following contributions are made in this paper.

•	 A novel hidden service circuit reconstruction attack is proposed based on middle node traffic 
to obtain the key node location identification and correlation evaluation of traffic on both sides. 
The proposed attack successfully addresses the difficult issue of circuit reconstruction.

•	 The middle node locations are then trained and classified by using a node-level attack without the 
influence of the padding mechanism. A combined GAN model of AutoEncoder+CNN+BiLSTM 
is then constructed to compare the loss values of feature vectors between the reconstructed samples 
and the real samples. This model further distinguishes the correlated and non-correlated traffic 
according to the loss values.
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•	 An effective correlation evaluation algorithm is proposed which combines the node location 
probability with the scores of reconstruction and discrimination losses within the correlated 
traffic to achieve a comprehensive judgment.

•	 The systematic experimental evaluation of the attack model indicates that the F1 score of the 
node location identification is close to 1 point, while the correlation precision and recall of 900 
packets are 0.896 and 0.947, respectively, which overperform the advanced correlation models.

2 BACKGROUND

2.1 Hidden Services
The hidden service protocol (Biryukov et al., 2013) was originally designed to protect the real identity 
of the server and to make the Tor client and server anonymous to each other. The hidden service 
communication architecture is a multifunctional combination of circuits derived from telescopic 
circuits. The rendezvous node function circuit is responsible for the secure transmission of the 
encrypted DATA between the client and the server. This is performed through multiple communication 
streams attached to the circuit and a fixed 512-byte cell for all load packets in each stream. The 
rendezvous function circuit is the focus of this paper and the basic composition and mechanism 
details are shown in Figure 1.

Figure 1. (a) shows the circuit transmission steps from the client proxy to the rendezvous node 
operated by Alice. Figure 1. (b) also illustrates the circuit transmission steps from the server proxy 
to the rendezvous node operated by Bob. It is seen that the encapsulation form of the Cell determines 
the communication location of each relay node in the circuit. A brief analysis of the creation steps 
(steps 1 to 3) is conducted, where the rendezvous circuit creation is different from the normal circuit 
creation. However, Tor recognizes the load features exposed by the circuit creation. Starting from Tor-
0.4.1.5, attempts have been made to pad the hidden server and client circuits by adding circuit-level 
padding units at the start of its rendezvous node circuits (step 5). Excluding the server-side padding 
at this stage is to reduce the circuit overhead. Due to the addition of the padding mechanism, many 
traditional traffic analysis methods are no longer applicable to the latest version of Tor. Therefore, 
the related features of circuit structural sequence are avoided, and instead, the node-level features are 
used to accurately determine the location of a node in a circuit.

2.2 Middle Nodes
The telescopic circuit in Tor only has the neighboring relay nodes that are mutually aware of the 
forwarding target of the data. Therefore, three nodes are tacitly set as a reasonable observation 
window. In this paper, a complete reconstruction of the hidden service communication circuit (6 relay 
nodes) requires a maximum of 3 nodes (including an entry node) and a minimum of 2 middle nodes. 
For empirical reasons, the two middle nodes are chosen which consume fewer resources. Figure 2 
illustrates a reconstruction attack scenario for a complete communication circuit using middle node 
locations and passive observation of the traffic patterns. The attackers control the middle nodes Client 
(C-Middle) and Hidden Service (HS-Middle) which are close to the client, Alice, and server, Bob, 
respectively. The attackers then record and analyze the features of the circuit flow inside the nodes. 
Note that the node-level attack at that time is passive, thus the original traffic transmission is not 
disrupted or modified. In cases where several rendezvous circuits are successfully correlated by an 
attacker-controlled middle node, the previous-hop node can be labeled as a potential entry node for 
anonymous users and hidden services.

Recently researchers recognized the guarded entry node as a critical location in the circuit and 
developed several well-established defense schemes (Hayes & Danezis, 2015; Imani et al., 2018) to 
reduce the possibility of compromising the entry node. The rendezvous circuit has no real exit node 
and contains multiple internal middle nodes. This effectively removes the limitation of the selection 
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of guarded entry nodes. The attackers need to expend considerable resources to control the internal 
middle nodes to perform a node-level attack. Therefore, the bandwidth consumption required should 
be further explored first. Using the consensus weight of the nodes C w( )  and the published bandwidth 
b  provided by the consensus document as the base data, analysis shows a linear correlation. As shown 
in Equation (1), the consensus weight is calculated by multiplying the published bandwidth by the 
ratio of the actual measured average traffic R  to the overall network average traffic Z . It is seen 
that the weight value fluctuated with the state of the website and that the probability H

Ĝ
 of controlling 

the selection of guarded entry node is much higher than that of the middle node, H
M̂

 [Equation (2)].

C w b
R

Z
( ) = 	 (1)

Figure 1a. The basic communication architecture of the hidden service rendezvous circuit (arrows indicate the load commands): 
Circuit construction from the client to rendezvous node
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To fit the attack scenario, Equation (3) manifests that the attackers continuously correlate the 
forwarding traffic of the two middle nodes, M̂

1
 and M̂

2
. The attackers also record the number of 

rendezvous communication circuits found in the internal circuit c  after r  attack attempts. For 
example, the attackers control the middle nodes with the top 1% weight values. Amongst the current 
10,000 rendezvous circuits, the number of circuits observed in 10 attack attempts is nearly 200. This 

Figure 1b. The basic communication architecture of the hidden service rendezvous circuit (arrows indicate the load commands): 
Circuit construction from the server to rendezvous node

Figure 2. The middle node circuit reconstruction attack scenario
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is much larger than the 73 observed for the guarded entry node under the same conditions. The above 
results suggest that controlling the middle nodes is beneficial to the circuit reconstruction attacks.

P r c H H
M M

r

( ) = ⋅ −








−( )ˆ ˆ

1 2
1 1 	 (3)

3 RELATED WORK

The summary of the related works is presented in Table 1.

3.1 Circuit Traffic Analysis
The transmission state is blurred using the hierarchical interaction of data. To guarantee the low 
delay of data interaction, only a fixed cell size is selected in Tor to resist partial traffic analysis. 
Therefore, some exposed features can still be easily used by the attackers for reliable passive traffic 
analysis attacks.

Kwon et al. (2015) propose a method to reveal the communication state of the telescopic circuits 
and devise circuit-level fingerprint attacks for hidden services. In their method, the attackers need to 
extract circuit-level features to meet the attack conditions. To distinguish multi-type communication 
circuits in the hidden services, the attackers determine four circuit states based on the circuit purposes 
and special nodes. These circuits are separately identified by the decision tree algorithm with an 
accuracy higher than 98%.

With the objective of circuit reconstruction, Galteland and Gjøsteen (2018) suggested a method 
to segment the circuits as per the AS domain and Internet Exchange Point (IXP). In their study, 
attackers first observe the boundary traffic of each domain and analyze the time difference between 
the incoming and outgoing traffic in a single domain. Attackers then conduct a random combination 
of the packets in multiple domains according to the circuit location and reconstruct multiple sets of 
adjacent telescopic communication circuits. This reveals the anonymous connection between two 
communication parties. However, the problem that this brings is that it relies heavily on the stability 

Table 1. The advanced circuit traffic analysis attack methods

Author Year Base model Attack method Observation 
location Accuracy

Kwon et al. 2015 Decisional Tree Hidden service circuit 
fingerprint Entry 98%

Galteland & 
Gjøsteen 2018 Log-normal distribution Circuit fingerprint, 

traffic correlation
Entry, middle, 
exit 65%

Platzer et al. 2020 Linear correlation Circuit fingerprint Introduction 96.45%

Biryukov et al. 2013 Linear correlation Traffic correlation Rendezvous, 
middle 100%

Jansen et al. 2018 Random forests Circuit fingerprint Middle 92%

Nasr et al. 2018 CNN Traffic correlation Entry, exit 96%

Guan et al. 2020 Autoencoder Traffic correlation Entry, exit 97%

The paper method 2021 SVM+GAN
Hidden service circuit 
fingerprint, traffic 
correlation

Middle 94.43%
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of the observation time, and the distribution of multiple jurisdictions is also not suitable for realistic 
circuit reconstruction attack scenarios. This article only needs traffic analysis of two nodes to achieve 
the basic goal.

Recently, Platzer et al. (2020) proposed a kind of introduction circuit attack based on statistical 
analysis which mainly uses the introduction circuits by controlling multiple key nodes and threatens 
the real location of the hidden services. The authors take the upcircuit & downcircuit loads during the 
creation and transmission of the introduction circuit as the basic features to judge the specific circuit 
location of the hidden services at the malicious nodes. They then allow the malicious client to send 
the loads with a fixed time pattern along the circuit to track and identify the special traffic from the 
malicious entry node to determine the real location of the hidden services. However, it is worth noting 
that neither Platzer nor Kwon’s attack modes can adapt to the new version detection of the loading-
padding cell mechanism, so this article needs to re-evaluate the effective data load characteristics.

This paper focuses on traffic attacks based on the middle nodes, and the primary objective 
of relevant studies is to determine whether the traffic acquisition location is the ideal location of 
communication circuits (Tor internal transmission location). Biryukov et al. (2013) examined the 
attack capability of the middle nodes by studying the defects of the hidden service protocols. They 
then proposed an effective attack method, where the attacker controls two non-exit nodes. During such 
attacks, a transmission tunnel is forcedly established between the hidden service and the rendezvous 
node controlled by the attacker. Passing the transmission traffic through the malicious middle nodes 
enables the malicious node to identify the special signature generated by the rendezvous node. If 
the detection conditions are met, the attacker immediately knows that the malicious middle node 
is in the target circuit. Therefore, the previous-hop node is marked as a potential guard node of the 
hidden service.

Jansen et al. (2018) also show that the attackers can monitor a wide range of targets such as 
circuit purpose, location, and website fingerprinting identification based on the middle node traffic 
instead of the network edge traffic. The authors then design the Onionpop classification channel which 
obtains the purpose and location of the current circuit of nodes and further detects the popularity of 
the hidden services. In this paper, the determination of the circuit location of middle nodes is also 
partially based on the Onionpop identification features, but Onionpop is still tested on the old version 
of Tor. Therefore there is a certain identification gap and necessity for further investigations.

3.2 Deep Learning Analysis
In recent years, deep learning has been widely used in website fingerprinting adversary, protocol 
traffic classification, traffic correlation analysis, and other mainstream targets in various research 
fields of Tor. Using deep learning significantly important results were also achieved both theoretically 
and practically. Compared with the traditional machine learning algorithms, the neural network is 
more advantageous due to its capability of automatic learning of the correlative features of data 
vectors by analyzing the potential correlation between input and output. Nevertheless, to obtain high 
identification accuracy, large amounts of labeled data are required for training and verification of the 
model. Since the neural network model has the most advanced feature set and complex classifier, the 
latest deep learning model is selected for comparison with the attack model proposed in this article.

Using the features of the accumulated data packets in large traffic samples, the specific locations 
of the incoming and outgoing ends in the same path can be inferred during traffic correlation attacks. 
Zhu et al. (2010) verified that the efficiency of correlation attacks largely relies on the number of 
observed traffic packets. Nasr et al. (2018) proposed the DeepCorr deep learning model and showed 
through experiments that the correlation accuracy of 96% can be maintained for a long time only when 
900 packets are observed. This is superior to that of the traditional machine learning attack model 
under the same conditions. In DeepCorr, the deep learning algorithm is used to break through the 
barriers of identifying the traffic correlation targets. The model learns the function modes of upcircuit 
& downcircuit traffic. In addition, the packet size and interval are combined into a two-dimensional 
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matrix for multi-layer convolution and then the correlation probability of a group of node traffic is 
provided as the output. Nonetheless, the true positive rate drops from 90% to 50% if the DeepCorr 
encounters traffic obfuscation noise.

To address the obfuscation noise issue mentioned above, Guan et al. (2020) designed the 
ResTor traffic pre-processing model and conducted noise reduction before recording the upcircuit 
& downcircuit features of the correlated traffic. This reduces the possibility of packet misplacement 
and circuit change deviation caused by noise. In ResTor, a stacked autocoder is used to smooth out 
the cumulative byte sequences and optimize the output vector to make it as close as possible to the 
input vector. The experiments show that compared with DeepCorr, ResTor configured with the cosine 
distance algorithm has lower computational complexity and higher identification accuracy. However, 
ResTor still needs sufficient label data to achieve the target fitting effect.

This article will remove the traditional supervised learning model and use unsupervised 
learning to overcome the inconvenience of obtaining data notes. The model separately judges the 
characteristics of data packet size and packet interval time, and better mining hidden features from 
a practical perspective. Experimental results proves that the dual recognition network architecture is 
significantly better than DeepCorr’s judgment accuracy.

4. LOCATION CORRELATION ATTACK MODEL OF MIDDLE NODES

In this section, a circuit reconstruction scenario is proposed based on the traffic of middle nodes. This 
scenario consists of the node location attack model and the correlated traffic attack model. Besides, 
the evaluation method of the circuit correlation is defined to make the attacks applicable to the traffic 
analysis of the middle nodes.

4.1 Phase I: Node Location Attack
The data forwarding location indicated by the control node in the circuit is analyzed. It is seen that the 
forwarding load features are weakened due to the protection of the padding mechanism of the hidden 
circuits. The padding mechanism scans the load marks of the circuit creation and data forwarding 
phases. Nevertheless, the statistical features such as the load sequence, quantity, and duration verified 
by Kwon (2015) are not significant enough to serve as the classification indicators. The padding does 
not disturb nodes to forward the target, load command, and other node-level information. Therefore, 
it is reasonable to consider node-level information as the classification indicator for determining the 
node location and improving the reliability of the attack results.

Jansen (2018) recommended the use of circuit purpose classifier and circuit location classifier 
Onionpop to determine the node location. However, Jansen does not consider the impact of the complex 
communication environment (circuit padding and data padding) on the two classifiers. Therefore, the 
node location of each circuit type in this paper is separately labeled, and the feature indicators such as 
the front & rear hop node types, load commands, and load forwarding amount are continuously used. 
Furthermore, add the total data transmission time and packet burst frequency, and the classification 
algorithm is also employed to determine the location information of the nodes.

Table 2 shows the node location division corresponding to each circuit type. A total of k=21 
types of node locations are involved. For example, R-HS-M indicates the middle node on the hidden 
service side of the rendezvous circuit. Bridge nodes are also considered. In cases where a specific 
node attribute information cannot be determined it is either a network terminal or an undocumented 
plug-in node of obfs4 or meek bridge. Therefore, the load transmission features of the bridge nodes 
are described.
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4.2 Model Structure
The overall structure of the node location classification model is shown in Fig. 3, where the input 
training sample is denoted by p  and the test sample is indicated by p* . The basic classifier is 
determined as the Support Vector Machine (SVM) model (Chang & Lin, 2011). The feature changes 
are then mapped to a high-dimensional space through the Radial Basis Function (RBF). Subject to 
the True confidence probability ρ , the sample is determined as positive, otherwise, it is determined 
as negative. The specific objective function is shown in Equation (5), where m indicates the number 
of samples input into space, y i� �  denotes a nonlinear function, w  is the hyperplane vertical factor, 

and C ii

m
�

�� 1
 is the constraint slack variable.
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Complete input samples covering the node-level information (circuit information and load 
information) are derived from the monitoring node according to the control protocol. For the circuit 
information, the corresponding states of each circuit are recorded including the unique circuit identity 
(ID), the traffic ID, the front & rear hop node marks, and the total traffic transmission time. For the 
load information, it also record the load quantity and load command sent and received in a particular 
direction. The packet burst frequency is the number of times when the statistical load interval is 
longer than 50 ms. Testing shows that the features might become too generalized by the granularity 
of fine intervals.

4.3 Node Location Training And Testing
Considering that the attackers possess the favorable prerequisites for all node locations, a total of k 
classifiers are trained to improve the discrimination strength of the model. The one-versus-all (OVA) 
dichotomy algorithm is then applied for the classifiers, where the target type of each classifier is 
marked as positive and the rest k-1 types are marked as negative. To balance the positive and negative 
data within the dataset all the data are also diluted at 1:1 for training. The training performance of 

Table 2. Circuit classification and node locations

      Purpose 
Position General Intro_Client Intro_HS Rend_Client Rend_HS

Exit G-E N/A N/A N/A N/A

Guard G-G I-C-G I-HS-G R-C-G R-HS-G

Bridge G-B I-C-B I-HS-B R-C-B R-HS-B

Middle G-M I-C-M I-HS-M R-C-M R-HS-M

Middle2 N/A I-C-M2 I-HS-M2* N/A R-HS-M2

Introduction N/A N/A I-HS-I N/A N/A

Rendezvous N/A N/A N/A R-C-R N/A

* For hidden services, besides the introduction nodes created for the first time, a second middle node is added.
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10-fold cross-validation classifiers is applied during the training, and the optimal result ρsvmi
max  is 

recorded.
The specific steps of the model identifying the malicious node locations in each traffic are 

presented in Algorithm 1. The first three steps describe the process in which the test data p∗  is first 
input into the middle node classifier SVM i

i
={ }1 2, , and it is then sent to the rest of the classifiers 

when it is not the target location according to the judgment. In addition, if the probability after the 
experimental evaluation is higher than 90% of the maximum training probability of the classifiers, 
this type would be determined as the node location; otherwise, the node would be temporarily 
determined as the middle location. The accurate judgment of the identification of the node locations 
provides the basic conditions for subsequent traffic evaluation (see, Section 4.7).

4.4 Phase Ii: Middle Node Traffic Correlation
Attackers carry out passive traffic observation at the determined middle node. Nevertheless, in the 
case of complex encrypted traffic patterns, the attackers are unable to mark all possible correlated 
and non-correlated traffic data in a real environment. This results in challenges to the learning ability 
of the model. The GAN (Goodfellow et al., 2014) supports a typical unsupervised learning mode, 
which generates synthetic traffic using random noise, learns the differences in potential feature 
vectors between the synthetic traffic and real traffic. The GAN finally possesses the ability to generate 
data close to real correlated traffic. Accordingly, the model can determine the traffic away from the 
correlated features as the non-correlated traffic.

A previous study (Nasr et al., 2018) shows that the original features displayed by the 
communication traffic of hidden services are divided into three categories including packet 
transmission direction, content size (Size), and packet interval [inter-packet delay (IPD)]. Consequently, 

Figure 3. The overall structure of the node location classification model
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based on the original traffic features, the prior features of the circuit traffic mentioned in Section 4.1 
are included in this paper. For example, the response traffic for hidden services is higher than the 
request traffic on the client-side. As shown in Figure 4, the traffic is tentatively divided into 
bidirectional combined communication traffic. Different from the previous single-ended traffic, the 
bidirectional traffic is also divided into the client area traffic C  and hidden service area traffic HS  
according to the transmission target, and the combined traffic Α x( )  is formed. Such traffic pattern 
depiction strengthened the correlations among the transmission load features within the same 
communication tunnel.

Α x
S x S x

IPD x IPD x
C n HS n

C n HS n

( ) = ( ) ( )
( ) ( )
















	

4.5 Model Structure
The overall structure of the traffic correlation model of the middle nodes is shown in Figure 5. 
According to the statistical observation of the traffic sequence, it is seen that the packet interval in 
the sequence is distributed more randomly than that of the packet size. This results in large fluctuations 
in the subsequent feature generation and evaluation results. Therefore, a dual-channel feature input 
structure is proposed to input the packet interval and packet size features into the GAN model in 
parallel. This is to form the independent target loss value L . The GAN designed for the packet 
interval is equipped with the BiLSTM model (Ian Goodfellow and Yoshua Bengio and Aaron Courville, 

Algorithm 1. Algorithm of Model Evaluation

Input: Classifier SVM i k
i
={ }1 2, , ,� , Test data p∗ , Maximum probability of classification ρ

svmi

max

Output: Location classification probability ρ
Steps:

1) Input  to classifier p SVM i
i

∗ ={ }1 2,
2) if then Classifictaion results  True
3)  return ρ ρ←

svmi

4) else
5)  for do Input  to classifier p SVM i k

i
∗ ={ }3, ,�

6)  if then  ρ ρ
svm svmi i
≥ ⋅0 9. max

7)  return ρ ρ←
svmi

8)  break
9)  else
10)  return  ρ ρ← ={ }svmi

i 1 2,
11)  end if
12)  end for
13) end if
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2016) as the backbone network. The BiLSTM is superior in the continuous memory of multivariate 
time series, especially in the extraction of the dependency of bidirectional traffic. Furthermore, the 
hidden states of the forward and backward transmission at the same location show different results, 
therefore the BiLSTM is well suited for packet interval sequence evaluation. The other end is a branch 
to process the packet size for which the CNN model (Ian Goodfellow and Yoshua Bengio and Aaron 
Courville, 2016) is applied as the backbone network. The traditional CNN is superior in the modeling 
of the sequence length with good performance in the efficiency of extracting hidden features due to 
the acceleration feature mapping of the multi-layer convolution. In summary, the advantages of dual 
channels are as the following: the sensitivity of feature changes of the independent learning does not 
have a mutual influence; the simulated traffic features generated directly have a high level of accuracy 
and robustness.

Figure 4. Bidirectional combined communication traffic

Figure 5. The overall structure of the traffic correlation model
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The main structure of the GAN model is comprised of the following three backbone networks:

(1) Synthetic traffic generators G
IPD

 and G
S

The generators obtain the initial vectors from the random noise z  and generate an approximation 
of the G z

n( )  vector for the features of the real traffic using the BiLSTM and CNN networks. The 
gradient loss function is:

L z
N

D G z
G n

n

N

IPD S,
log( ) = − ( )( )( )

=
∑1

1
1

	 (6)

(2) 	 Correlated traffic discriminators D
IPD

 and DS

The discriminators are used to determine whether the IPD and Size in the generated correlated 
traffic G z( )  are consistent with the real correlated traffic x . Large input vectors can easily cause 
gradient expansion of the discriminator parameters and make the results unstable. This issue is 

addressed by adding the L2 regularized gradient descent penalty factor λ ∇ ( )∑ x n
n

N

n
D x

2

2

 to calculate 

the penalty value for each discriminator component, where λ  indicates the regularized weight decay 
coefficient.

The combined gradient loss function of the discriminators is

L x z
N

D x D G z D x
D n n x nIPD S n,

, log log( ) = ( )+ − ( )( )( ) ∇ ( )








1

1
2

2

+λ
=

∑
n

N

1

	 (7)

(3) Autocoders E
IPD

 and E
S

During the pre-processing of the test samples, x ∗  is subjected to backpropagation through G . 
This is to obtain the noise vector z : x G x z∗ ∗⇒ ( ) ⇒ . However, the G  contains multiple layers of 
nonlinear transformation neurons which results in a complex solution (Creswell & Bharath, 2019). 
To simplify the propagation mode of the noise vector z , the autocoder E  is added in front of the 
generator to replace the propagation function G . The autocoders E

IPD
 and E

S
 at each branch are 

used to convert the evaluation traffic x ∗  into a low-dimensional feature vector. The forward propagation 
route is as follows: x E x G E x∗ ∗ ∗⇒ ( ) ⇒ ( )( ) . The L2 regularized Mean Square Error (MSE) 
algorithm shown in Equation (8) is also applied to calculate the loss function of the input and output 
gaps. In addition, the generator here serves as the decoder of the hidden vector space and E

IPD
 E
S

 
only indicates the coding process of the input data to avoid confusion with the aforementioned 
generator G .
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L z G E z
N

z G E z
E n n

n

N

IPD S,
, ( )( )( ) = − ( )( )



=

∑1 2

1

	 (8)

4.6 Correlated Traffic Training And Testing
The alternating iterative method is applied to train the network model on the grounds of the initial 
idea of GAN. First, select N  real training samples x n N

n
,1≤ ≤{ }  as the correlated samples 

p x
data ( ) . Use the normal distribution method for random sampling of the traffic noise vectors p z

z ( )
z n N
n
∼  0 1 1, ,( ) ≤ ≤{ }  to form high-dimensional feature vectors. Secondly, p x

data ( )  is input 
to the discriminator D , and the Stochastic Gradient Descent (SGD) method is applied to train the 
corresponding loss objective function. During the iterative training, the parameters are updated as 
per the minimized binary cross-entropy. The loss weight is also transferred backward to the generator. 
Thirdly, the feedback of the generator parameters is received to train the generator G , and the random 
traffic noise p z

z ( )  is sampled. The SGD method is then adopted for weight training of the maximized 
binary cross-entropy. Finally, the optimal generator parameters are used to train the autocoder E . 
This ensures consistency between the input data and code data.

After training the model, the discriminator D  is devised with the optimal weight parameters 
which is capable of distinguishing the tested traffic x ∗  and the generated traffic G z( ) . The 
discriminator however lacks the evaluation benefit of G  on the tested traffic x ∗ . The reconstruction 
of the loss function can make up for the evaluation benefit and the gap between the reconstruction 
effect G z( )  and the evaluation traffic x ∗  is described by the objective function after passing through 

the generator. Note that the noise vector z  is output as E x ∗( )  by the autocoder E , and the 
reconstructed loss function is

L x G E x
N

x G E x
R n

n

N
∗ ∗ ∗ ∗

=
( )( )( ) = − ( )( )



∑,

1 2

1

	 (9)

4.7 Circuit Correlation Evaluation
The correlation of the two phases is evaluated and define a correlation score evaluation mode. Equation 
(10) shows that the score of Phase I is the product of the node probabilities ρ M( ) , and the score of 
Phase II is calculated based on the equilibrium value between the reconstructed loss objective function 
and the discriminator loss function. The parameter ζ  in Equation (11) is the variable adjustment 
hyper-parameter. The final correlation score is calculated according to Equation (12). The scores of 
the two phases based on natural logarithms highlight the significance of the traffic correlation with 
the same node location probability. For example, the target in this paper is a group of observation 
nodes M

i
 and M

j
, as well as two types of feature vectors I IPD Size= { }, . If the observed traffic 

x ∗  is input to the correlation model, it is subject to feature mapping through E
IPD

 and E
S

. The 
mapping results are then inputted into the generators G

IPD
 and G

S
 for the reconstruction of the 

synthetic traffic. The reconstructed loss value of the synthetic traffic and the observed traffic is 
calculated, and then the discriminators D

IPD
 and D

S
 are used to discriminate and calculate the loss 

of the reconstructed traffic and observed traffic.
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According to the regulations on the model, the lower the loss, the higher the traffic similarity. 
The structure of the correlation model and the evaluation process is shown in Algorithm 2, and the 
final result is denoted by Result[ ]node

i
j .

S node M M
i
j

i j( ) = ( ) ⋅ ( )ρ ρ 	 (10)

S x L x G E x L x G E x
i D i R

i

I
∗ ∗ ∗ ∗ ∗( ) = ( )( )( )+ −( ) ( )( )( )( )∑ ζ ζ, ,1 	 (11)

S node x
S node

S x
S node

i
j i

j

S x i
j,

ln

ln
log∗

∗ ( )( ) = ( )
( )

= ( )∗ 	 (12)

5. DATASETS

In this section, describes the data collection and processing in different phases of the model, and 
the internal node location, and real correlated traffic datasets. These provide a basis for the model 
training and performance evaluation.

5.1 Internal Node Location Datasets
In Phase I, the malicious nodes are used to perform statistical analysis on the appearance of the 
forwarding traffic. The internal processing operations of the nodes are then collected. To solve the 
complex filtration of traffic, logs, and other data, the data collection is implemented on the Shadow 
environmental simulation platform (Jansen & Hopper, 2012). This platform enables the mass 
customization of the node data. A complete private Tor network framework is built on Shadow that 
performs and processes the Tor protocol.

The initial goal is to identify the specific location of nodes in the communication circuit (R-C-M 
or R-HS-M). Therefore, to perform efficient data collection the code of the control end of the Tor 
protocol (Tor-0.4.2.1) is modified, and the communication traffic is imported into the selected nodes 
through the control items in Table 3. Real consensus documents are used on Shadow to generate 
component information. The hidden services are embedded into the Alexa hypercircuit page (Zhuo 
et al., 2018). By starting the data collection, the clients access the website domain of the hidden 
services in bulk and request the conventional servers to download the files. After collection, the 
communication traffic of each circuit type is tracked and recorded according to the stdout output 
logs in the monitoring nodes. To balance the number of locations of each node and to ensure more 
than 100,000 instances for each type of circuit, each node location has more than 20,000 instances. 
The internal dataset also has a total of 360,000 instances.

5.2 Real Correlated Traffic Datasets
The communication states of traffic acquired from the above internal environment are relatively 
stable. Although the access process of the client-side is randomized, the results of traffic difference 
judged by the cosine similarity show that there is a small basic deviation degree of traffic in each 
circuit of the same type. It is believed that the communication traffic should be mixed with noise, 
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which is conducive to improving the learning ability of the GAN. Therefore, the correlated traffic is 
collected in the real node transmission sites.

Figure 6 illustrates the deployment environment for the collection of real middle node data. 
OnionShare (OnionShare v2.2.1, n.d.), a website file sharing and hosting tool, is configured for the 
servers of hidden services. Shared files of 5-500 MB are randomly placed in the tool, and the services 
are set to be stopped immediately after the request to display different circuit states between the requests. 

Algorithm 2. Algorithm of Model Construction and Evaluation

Input: Node location probability ρ M( ) , Number of iterations k , Batch samples N , Test data x ∗ , Real samples 

x n N
n
,1≤ ≤{ } , Random noise z n N

n
∼  0 1 1, ,( ) ≤ ≤{ }

Output: Evaluation results Result[ ]node
i
j

Steps:
1) for donumber of training iterations 
2) for do  steps k
3) Sampling from real samples p x x n N

data n( ) ⇐ ≤ ≤{ },1

4) Generate Discriminator data  D x( )
5) Sampling from random noise p z z n N

z n( ) ⇐ ( ) ≤ ≤{ }∼  0 1 1, ,

6) Generate Discriminator data  G z( )
7) Compute   minimize loss function  and updatL x z

DIPD S,
,( ) ( )7 ee parameters

8) Compute   maximize loss function  and update L z
GIPD S,
( ) ( )6 pparameters

9) Compute   minimize loss function  andL z G E z
EIPD S,

, ( ( ))( ) ( )8   update parameters

10) end for
11) end for
12) for doMatching Nodes  i j,

13) Mapping of test data x G E x∗ ∗⇒ ( )( )
14)  Compute    loss function  L x G E x

R
∗ ∗( )( )( ) ( ), 9

15)  Generate Discriminator data  D x ∗( )
16) Compute    loss function  L x G E x

D
∗ ∗( )( )( ) ( ), 7

17) Calculate equations , , and  in order10 11 12( ) ( ) ( )
18) Re [ ] ,sultnode S node x

i
j

i
j← ( )∗

19) return sultRe [ ]node
i
j

20) end for
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Here there is an opportunity to collect the long traffic. The two middle nodes in Tor are private control 
nodes that are also published in the common consensus document.

5.3 Data Extraction And Processing
The log information and load data are collected. The features of node locations are extracted according 
to the description in Section 4.1, where each feature is composed of the correlated information of 
a group of node ID and circuit ID. The character string is turned to digital features through hot 
coding. Each type is classified as a libsvm file to provide specific target datasets for the multiple 
node location targets mentioned above. The target and non-target labels are also added to the dataset 
before model training, and the 1:1 dichotomy mode is applied to incorporate the imbalance between 
samples. For example, for training the R-C-M location, the positive sample is labeled as 1, and the 
negative sample is 0.

The initial sampling is carried out on the correlated traffic features as described in Section 4.4. 
The statistics of the feature value of each correlated load are carried out and the load-interval and 
size are subject to normalization within the range of (0,1]. This is to form a standardized data format 
that is directly inputted to the GAN. Given the consistency of data input dimensions, the first 300 
to 900 data are set as the input cutoff used for the packet interval and packet size. The data is also 

Table 3. Control items of the monitoring nodes

Control item Description

*HSMiddle1Nodes The first middle node on the fixed hidden service side

*HSMiddle2Nodes The second middle node on the fixed hidden service side

*RendezvousNodes Fixed rendezvous nodes

*IntroductionNodes Fixed introduction nodes

MiddleNodes Middle nodes on the fixed client-side

EntryNodes The setting of guarded entry nodes

ExitNodes The setting of exit nodes

Bridge The setting of bridge entry

*Newly added control items of the Tor protocol code.

Figure 6. Data collection scenario of real middle node data
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divided into the training, validation, and testing datasets according to the 7:1:2 ratio. The extraction 
of the datasets is shown in Table 4.

6. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation results of the proposed model.

6.1 Evaluation Indicators
Here the identification performance of the SVM and GAN models for node locations and correlated 
traffic are evaluated. The performance measures are the standard evaluation indicators of the deep 
learning models (Creswell & Bharath, 2019) including precision, recall, and F1 score.

Precision =
+
TP

TP FP
	 (13)

Recall =
+
TP

TP FN
	 (14)

F
Precision Recall

Precision Recall1
2= ×

×
+

	 (15)

Furthermore, the maximum mean difference (MMD) (Li et al., 2015) is used to evaluate the 
attack model’s mastery degree of the distribution of training data features. The kernel trick is used 
to map the sample vectors of the random noise G z( )  and the test sample x *  to a multi-dimensional 
feature space. The similarity of distribution between the two parameters is then compared. According 
to Equation (16), if MMD approaches 0, the features became more similar. The kernel function k  
enables accelerated calculation using the Gaussian kernel function.

Table 4. Dataset extraction

Label Node location Correlated traffic Non-correlated traffic

Feature variables 21 4 4

Traffic length N\A 300-900 300-900

Training size 247463 5000×0000 N\A

Testing size 111685 1000×1000 1000×1000
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6.2 Parameter Adjustment
The GAN hyper-parameters are presented in Table 5. To maximize the feedback efficiency on the 
premise of not reducing the identification accuracy, the number of hidden neurons is set to 100. The 
penalty coefficient is also maintained at 2 on account of the serial feedback features of the LSTM 
network. The debugging feedback efficiency of the CNN is much higher than that of the LSTM. 
Therefore, the debugging goal is to maximize the identification accuracy of the packet size, with 2 
convolutional layers and the sliding window of 30 as the optimal settings. There are 2 fully connected 
layers in the Encoder network which input the feature mapping into generators after reducing the 
dimension to 30. For iterative training of the GAN model, E  and G  are respectively trained once 
after training D  for four times according to the setting. The dropout of each network is also set to 
0.1 to prevent over-fitting of the data during the process. For evaluation score feedback, the parameters 
ζ IPD  and ζ S  are debugged to obtain the optimal proportion of the loss function values.

Table 5. Hyperparameter adjustment in the GAN model

Network Details of hyper-
parameters

Details of generator hyper-
parameters

Details of discriminator 
hyper-parameters

LSTM

num_epochs:100 
batch_size:32 
weight:0.5 
Activation:softsign

hidden_​​units: 100 
λ :2
Learnin_rate:0.0005 
Layers:1

hidden_units: 100 
λ :2
Learnin_rate:0.0001 
Layers:1

CNN

num_epochs:100 
batch_size:128 
kernel:800 
Learnin_rate:0.0005 
Activation:tanh

Window1:(1,30) 
Window2:(1,30) 
Stride1: (2,1) 
Stride2: (2,1) 
λ :0.8

Window1:(1,30) 
Window2:(1,30) 
Stride1: (2,1) 
Stride2: (4,1) 
λ :0.8

Encoder
num_epochs:300 
batch_size:128 
Learnin_rate:0.0005

Dimension:30 ---

GAN

dropout:0.1 

ζ IPD :0.01-1

ζ S :0.01-1

G_rounds: 1, 
E_rounds: 1, D_rounds: 4,
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6.3 Node Location Evaluation
In this section, the identification performance of the node location based on the SVM is evaluated. 
To meet the circuit correlation target, the evaluation results show the judgment of Rendezvous_Client 
and Rendezvous_HS in the rendezvous circuit as in Table 2, and the node labels included {Guard, 
Bridge, Middle, Middle2, Rendezvous}. The testing set of each type of node location contains 2,000 
groups of feature vectors. Figure 7 demonstrates the comparison of performance between SVM 
and Onionpop models. It is seen that for the first 4 types of node labels, the F1 score of the SVM is 
above 0.9 points and higher than that of Onionpop. The F1 score of Onionpop (0.041 points) is also 
higher than that of SVM at the Rendezvous point. Note that the identification results of the Middle 
tag node indicate the effective judgment of the circuit correlation. In addition, due to the asymmetry 
of the communication load in the transmission channel, the identification result of the middle circuit 
on the Client-side is superior to that on the HS side. Therefore, simulating the burst features of the 
load is required to disclose more effective information on the Client side.

In addition, Algorithm 1 can integrate the traditional single classifier. Therefore to investigate 
whether other classifiers(k=21) are capable of improving the recall and precision where there is some 
FP in SVM ii �� �1 2, . As it is seen in the last column of Table 6, the precision of a single middle 
node is increased to 0.989 by other classifiers. The recall and F1 scores also reach 0.994 and 0.991 
points, respectively. The results close to 1 suggest that the identification performance of multi-
classifiers is superior to that of a single classifier.

Figure 7. The node location judgments
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6.4 Traffic Correlation Evaluation
To verify whether the GAN model applies to the correlated traffic identification scenarios, investigate 

the loss values L zGIPD S, � �  L x zDIPD S,
,� �  and L z G E zEIPD S,

, � �� �� �  generated during model 
training. A total of 2,000 pairs of correlated traffic with a traffic length of 300 are considered as the 
training set. Figure 8 shows the visualized loss curves of the packet size (a) and packet interval (b) 
generated after 100 times of iterative training. In this plot, the shadows and solid lines indicate the 
extreme value and mean value of multiple training, respectively. As it is seen in Fig. 8, the initial loss 
value of the autocoder is larger than that of the discriminator and generator. This is because 80-90 
times of iterations are required for stable convergence as the decoding vector G E z� �� �  is generated 
through the generator and the loss value increased with the changes in feature vectors. Figure 8(a) 
also presents the changes in the loss value of the packet size. The loss values of the generator and 
discriminator are mutually entangled and resisted but converged to the optimal value after 40-50 
iterations. The advantages of the loss judgment function with added penalty factors are also seen, 
where the convergence effect of the loss value is improved in the case of the frequent adversary. The 
loss value of the packet interval is slowly converged and requires 55-65 times of iterations [Figure 
8(b)]. The convergence of the generator is slower than that of the discriminator because the training 
process determines the preferential convergence of the discriminator, whereas the generator only 
converges after obtaining the parameter feedback.

Investigate the GAN to understand the learning process of the IPD and Size features and use the 
MMD to evaluate whether the GAN model can learn the basic distribution of the training data features 
during the adversary. The evaluation results of the first 50 iterations are shown in Figure 9. As it is 
seen GAN quickly learns the hidden feature vectors of the Size, which is similar to the convergence 
process of the loss value. The MMD is also decreased to 0.012 after 40 iterations. In terms of the 
IPD feature learning by the GAN, the MMD is decreased from 0.767 to 0.096 after 30 iterations 
but remained at 0.092-0.124 in the following 40 iterations. This verifies the initial judgment. The 
correlation of the IPD also shows a more complex behavior comparing with that of the Size, but the 
value disturbance caused by the complexity of the backbone model can not be excluded. However, 
for the current benefit evaluation, Size is more efficient in assisting the GAN model in training and 
judgment, and the IPD learning ability of the model will be enhanced subsequently.

To evaluate the interaction between the backbone networks of the model, the performance of the 
autocoder E , generator G , and discriminator D  at the training phase is also evaluated. Consider 
traffic with a length of 300 in a training set and examine the prediction state of the backbone network 
on the input data. Figure 10(a) shows the process that the true value y_true and the predicted value 
y_pred of D(x) and D(G(E(x))) are calculated in the discriminator D  through the sigmod function. 
It is seen that the true value is distributed very close to 1, while the predicted value synthesized by 
the encoder and generator is synchronized with the true value. The synthetic data is also considered 
to be close to the true value by the discriminator.

The box plots in Figure 10(b) display the scores of the autocoder and generator. Note that only 
the probability of the fully connected layers is output from the encoder. The logits value of identifying 
the data vectors is not normalized in x , E x( ) and G E x( )( )  is used as the judgment basis of the 

Table 6: Identification performance of multi-classifiers

Indicator R-C-M R-HS-M Other Classifiers

Precision 0.974 0.968 0.989

Recall 0.986 0.981 0.994

F1 0.980 0.974 0.991
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Figure 8a. Iteration loss values of the training loss: Iteration curve of the packet size training loss

Figure 8b. Iteration loss values of the training loss: Iteration curve of the packet interval training loss
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predicted value. The corresponding input data is retained, of which y_encode indicates the coded 
value of the intermediate process. The results show that the predicted value G E x( )( )  is highly 
correlated with the true value x , with a small difference between the mean and the median. In 
addition, the range of the encoded E x( )  value is narrowed because of the dimension reduction of 
feature vectors by the encoder. The G x( )  shown on the right side of the figure indicates the testing 
results after removing the Encode. The range of the predicted value of the generator is expanded and 
becomes higher than the mean and median of x . The comparisons above suggest that the data transfer 
effect between the autocoder and the generator is highly efficient and the added encoder is beneficial 
to the prediction of the input data features by the GAN.

Only use the correlated traffic in the training phase of the GAN. This is because the primary 
objective of this paper is to effectively distinguish the correlated traffic and non-correlated traffic 
without prior knowledge of the non-correlated traffic. The evaluation score (Score) described in 
Equation (11) intuitively interprets the distinction of the model between the two types of targets. In 
other words, 2,000 pairs of correlated and non-correlated traffic are used for evaluation, with a packet 
length of 300. Figure 11 is an independently plotted relative frequency distribution diagram of the 
scores. The training set (green) and testing set (red) of the correlated traffic and the testing set of the 
non-correlated traffic (blue) are served as the evaluation targets, and the interval frequency is calculated 
by the mean difference between S x� �  and S x�� � . The results confirm that for the correlated 
traffic, the testing scores are close to the training scores, and they are even highly coincident at 0-0.04. 
For the non-correlated traffic, however, the testing score S x�� �  is distributed sparsely with the 
high-frequency score area of 0.10-0.15. These results suggest that there are significant differences 

Figure 9. Iterative changes of the MMD in IPD and size
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Figure 10a. Score distribution of the true, coded, and predicted values: Scores of the discriminator

Figure 10b. Score distribution of the true, coded, and predicted values: Scores of the encoder and generator
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between the correlated and non-correlated traffic. Therefore, in the model based on the distribution, 
the testing traffic with a score higher than 0.04-0.05 is intuitively identified as non-correlated traffic.

Note that only 8% of the non-correlated traffic have scores within the normal range of 0.05. 
However, the evaluation score is better suited for the classification of correlated and non-correlated 
traffic by balancing the proportions of the reconstruction and the discrimination loss values. Figure 
12 illustrates the Precision-Recall curve which indicates the balance between the reconstruction and 
the discrimination loss values. The area under the curve (AUC) reflects the identification ability of 
the model and ζ  denotes the balance parameter. For ζ =0 13. , the AUC is 0.536 and the optimal 
parameter is obtained for ζ =0.37. The maximum AUC is also 0.912. If ζ  increases to 0.84, the 
AUC is reduced to 0.712. These suggest that GAN achieves higher classification performance on the 
targets due to the good performance of the reconstruction loss value.

6.5 Model Comparison
In this section, the identification performance of the (SVM+GAN) models is compared with the 
(Onionpop+DeepCorr) and (Onionpop+RAPTOR) combined models. For a fair comparison, the TPR 
and FPR combined indicator is the product of the identification results of the two models. All the 
testing data are obtained from the traffic sequences of 300 packets, including 2,000 pairs of correlated 
and non-correlated traffic. The ROC curves of the model at different thresholds are shown in Figure 
13. As it is seen the GAN overperforms the other two advanced combined models. The AUC values 
also show great differences among different models and are equal to 0.958, 0.794, and 0.599 for the 
GAN, (Onionpop+DeepCorr) and (RAPTOR), respectively.

Figure 11. Frequency distribution of score
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As it was also stated in previous studies (Nasr et al., 2018; Sun et al., 2015) the packet length 
has a significant impact on the traffic correlation model. To verify the testing results of the packets 
in different lengths, the 2,000 pairs of additional long traffic with a packet length of 900 are added 
to the testing set. According to the results presented in Table 7, by increasing the packet length, the 
Precision of GAN is increased from 0.896 to 0.955, its Recall increased from 0.947 to 0.975, and its 
F1 score is 0.965 points. These suggest that the increase in packet length improves the identification 
precision of the proposed model. In contrast, although the F1 score of DeepCorr is increased from 
0.728 points to 0.899 points, the result is not better than that of GAN. In practice, if the observed 
traffic is not limited, any model would show strong competitiveness.

Figure 12. Precision-recall curve of score

Figure 13. The ROC curves of the models with the identification traffic length of 300
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As it is seen the processing efficiency of the models played a crucial role in scenarios with 
large traffic. It is also noted that the attackers determine the node location first and then identify the 
observed traffic due to the attack process of middle nodes. Therefore, the processing needs to be in 
serial. Nevertheless, the internal operation of the GAN supports parallel processing of the packet 
size and packet interval. The following experiments are carried out on a system with an Intel Core 
i7-9700K CPU @ 3.70GHz processor and NVIDIA GeForce RTX 2080ti. Table 8 lists the processing 
speed and F1 score of the combined attack model on single traffic.

The results in Table 8 shows that the total processing time is increased with the increase of the 
traffic length to varying degrees. The (Onionpop+RAPTOR) model is the quickest in processing 300 
packets which is 3.33 ms faster than that of the (SVM+GAN) model. Its F1 score is however only 
one-third of the (SVM+GAN) model. The efficiency of the (SVM+GAN) model is also lower than 
that of the (Onionpop+DeepCorr) model. By comparison, the longer the traffic to be processed, the 
larger the increase of the processing time. The (SVM+GAN) model requires 12.06 ms to process the 
traffic with a length of 900. The major cause of this is that the LSTM backbone network used in the 
IPD reduces the judgment efficiency when processing long traffic. Moreover, since the set model of 
Algorithm 1 can only determine the location after multiple times of judgment, the mean processing 
time of the node location (4.74 ms) is longer than that of the Onionpop (3.37 ms). In summary, if 
the attackers select 300 packets of the observed traffic, the efficiency and precision of the circuit 
correlation are guaranteed at the same time.

Table 7. The identification traffic length of the model

Traffic length Attack model Precision Recall F1

300

GAN 0.896 0.947 0.921

DeepCorr 0.773 0.688 0.728

RAPTOR 0.353 0.325 0.338

900

GAN 0.955 0.975 0.965

DeepCorr 0.916 0.884 0.899

RAPTOR 0.432 0.412 0.421

Table 8. Processing efficiency of the attack models applied on a single node traffic

Attack model          *time (ms) Traffic length F1

SVM 
+ 
GAN

   7.36 (4.74+2.62) 300 0.912

   8.88 (4.74+4.14) 500 0.937

   12.06 (4.74+7.32) 900 0.959

Onionpop 
+ 
DeepCorr

   5.33 (3.37+1.96) 300 0.703

   5.98 (3.37+2.61) 500 0.788

   7.25 (3.37+3.88) 900 0.867

Onionpop 
+ 
RAPTOR

   4.03 (3.37+0.66) 300 0.298

   4.59 (3.37+1.22) 500 0.346

   5.22 (3.37+1.85) 900 0.406

*Total time: Mean identification time of the node location + mean classification time of the traffic correlation
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7. CONCLUSION

In this paper, a circuit reconstruction attack was proposed based on the middle node traffic. The 
problems of difficult correlation were also solved according to the node location identification and 
traffic correlation identification steps. In considered cases where the node location applied to the 
padding mechanism and the overall identification precision was improved by the effect of multi-
classifiers. Further, the framework of AutoEncoder+CNN+BiLSTM is proposed to learn the basic 
features of the correlated traffic. After performing dimension reduction and mapping of the sample 
data, the reconstruction loss function of the generator and the discrimination loss function of the 
discriminator are obtained. The experimental results showed that the SVM+GAN model proposed 
in this paper accurately distinguishes the correlated and non-correlated traffic and overperforms the 
existing attack models. In future studies, the learning and identification abilities of the LSTM and 
CNN backbone networks will be optimized to satisfy the identification precision and computational 
efficiency of attackers in scenarios with large traffic.
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