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ABSTRACT

Task scheduling on the cloud involves processing a large set of variables from both the task side and 
the scheduling machine side. This processing often results in a computational model that produces 
efficient task-to-machine maps. The efficiency of such models is decided based on various parameters 
like computational complexity, mean waiting time for the task, effectiveness to utilize the machines, 
etc. In this paper, a novel Q-Dynamic and Integrated Resource Scheduling (DAIRS-Q) algorithm is 
proposed which combines the effectiveness of DAIRS with Q-Learning in order to reduce the task 
waiting time and improve the machine utilization efficiency. The DAIRS algorithm produces an initial 
task-to-machine mapping, which is optimized with the help of a reward and penalty model using 
Q-Learning, and a final task-machine map is obtained. The performance of the proposed algorithm 
showcases a 15% reduction in task waiting time and a 20% improvement in machine utilization when 
compared to DAIRS and other standard task-scheduling algorithms.
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1. INTRODUCTION

Scheduling tasks over the cloud is a multi-domain problem, which includes pattern analysis, filtering, 
classification, clustering and prediction. Usually the following processes are followed in order to 
schedule cloud tasks (Asghari et al., 2020),

•	  Identification of undertaking boundaries from the task dataset
•	  Identification of machine parameters from the asset pool
•	  Strategizing rules and thresholds for machine and task scheduling
•	  Task execution on the given machine
• 	 Evaluation of irregularities in execution, and changing methodology based to output parameters
• 	 Post processing of tasks and machines if needed

In view of these steps, the researchers can see that at first the task parameters must be investigated. 
These parameters must incorporate essential assignment measurements like the undertaking execution 
delay, the task cutoff time, the task holding up time, while they can likewise incorporate optional 
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parameters like undertaking mutual exclusiveness, shared reliance, and others (Nawrocki & Sniezynski, 
2020). Typically, the all-out assignment execution prerequisites are administered by condition 1,
T F T T T TTE ed dl wt sec� � ��� �, , ,[ ] 1

Where, TTE  is the total task execution requirement, Ted is the total task execution delay, Tdl  is 
the task deadline, Twt  is the task waiting time, while, Tsec  are secondary application specific 
parameters needed to execute the task.

Once the task parameters are identified, then the resource parameters are observed, and evaluated. 
These parameters are again divided into primary and secondary parameters. Primary parameters 
include but are not limited to number of execution units available, capacity of each unit to execute the 
task, execution requirements for the resources, and others (Sui et al., 2019). A typical task scheduler 
can be observed from figure 1, wherein the tasks coming from users are given to the data center 
broker, the broker sends these tasks to the cloud controller for processing. The controller finally gives 
it to the host for further processing and scheduling on different machines.

The next section describes about such task scheduling systems in brief, and is followed by the 
proposed DAIRS-Q algorithms. This text further evaluates the said algorithm on different application 
specific datasets, and compares its efficiency with some state-of-the-art methods. Finally, the concludes 
with some interesting observations about the proposed protocol, and recommendations on how to 
further explore the field of work.

2. LITERATURE REVIEW

AI has become a true norm for task scheduling research. The work (Ge & Liu, 2020) uses Q-Learning 
for scheduling undertakings on a cloud-based Internet of Things (IoT) climate. The principle bit of 
leeway of Q-Learning is that, it gives a motivating force (reward) and punishment procedure while 

Figure 1. A typical task scheduler
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finding out about the basic issue. For example, in Ge & Liu, (2020), analysts have utilized a worldwide 
view strategy for task scheduling, wherein the calculation’s choice is compensated if the general cloud 
execution improved by it, or it is given a punishment if the cloud execution debases. The prize and 
punishment is as a mathematical worth, which is augmented by the calculation. They have isolated the 
errand nodes into energy unwinding and energy tense nodes. The energy tense nodes are answerable 
for imparting back and forth between the cloud and the clients. While the energy unwinding node 
assumes control over a portion of the heap structure the energy tense nodes. The principle point of 
the calculation is to improve the network lifetime, by enhancing the heap on every one of the node. 
A similar calculation can be applied to any sort of assignment scheduling applications, and it is 
prescribed that perusers apply it to assess its exhibition on various applications. The calculation can 
be stretched out by supplanting Q-Learning with fortification realizing, which is an unrivaled method 
for quicker union and better learning results. This can be seen from the work in Melnik & Nasonov, 
(2019), wherein fortification learning is joined with neural networks for scheduling work processes. 
The engineering takes in the assignments which need scheduling, and offers them to a processing 
climate. The figuring climate assesses a prize capacity dependent on the scheduling done by the neural 
network. Normally the neural network plans errands arbitrarily, and attempts to limit the blunder in 
scheduling with the assistance of learning models like Levenberg–Marquardt, inclination plummet, 
and so forth Support learning can be broadened utilizing a more intricate preparing condition set, 
which can think about both essential and auxiliary boundaries for undertakings and execution units 
the same. For example, the work in Waschneck et al., (2018), broadens support learning, and assesses 
a profound fortification learning component dependent on Deep Mind which is Google’s Deep 
Q-Learning Network (DQN). It utilizes a mix of Markov learning measure with directed learning (so 
the calculation find out about the execution climate), for better undertaking scheduling effectiveness. 
The model can improve the asset use, and decrease the undertaking holding up time, yet has a high 
displaying multifaceted nature. Since each time something changes in the processing plant climate, a 
comparative change must be made in the computerized twin climate. Generally, ongoing undertaking 
execution frameworks have an enormous number of changes happening occasionally, subsequently 
this system isn’t appropriate for such exceptionally powerful conditions. However, the exploration 
accomplished for planning a 2-level learning calculation is excellent, and hence is utilized as the 
reason for this fundamental examination.

Another Q-Learning based calculation is referenced in Kim et al., (2019), wherein an IoT network 
comprising of temperature, mugginess and weight sensors is thought of. Here, a MDP or Markov choice 
cycle is applied, which totals the prizes given to every arrangement set to locate the last prize worth. 
The work in Waschneck et al., (2018) and Kim et al., (2019) is stretched out in Zhang et al., (2019), 
wherein a profoundly dispersed climate is considered for task scheduling in programming as a help 
(SaaS) cloud. They have utilized the idea of versatile unique programming (ADP) to plan undertakings 
dependent on both assignment and execution unit boundaries. It tends to be seen that the proposed 
component performs in a way that is better than a portion of the cutting-edge calculations, and can 
be utilized as a decent sending methodology when scheduling assignments in a conveyed climate.

A use of this calculation can be seen from Hu et al., (2019), wherein the errand scheduling 
issue is first changed over into min-max number direct programming (MMILP), and afterward it is 
changed over to a distinguishable curved target work with a unimodular imperative grid for adding 
non-linearity. The capacity and the framework information gain from the conveyed disseminated 
network, and improve the undertaking scheduling productivity by diminishing the computational 
deferral, and lessening the quantity of bytes moved during scheduling. The work in Nawrocki et 
al., (2020) presents an energy viable arrangement, uses energy relevant boundaries like CPU use, 
network association, defer required for calculations, and so on to assess the best scheduling procedure. 
A similar setting mindfulness can be utilized to upgrade some other boundary, similar to defer 
required for scheduling, mean holding up time, cutoff time hit proportion, and so forth Because of 
which this work has been chosen to advance certain boundaries in the fundamental exploration. The 
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energy utilization is diminished with the assistance of neighborhood learning, and the conveyed task 
scheduler can plan the assignments on the nodes that are the most energy proficient. This decreases the 
framework’s productivity to enhance other undertaking and node boundaries, yet improves the general 
framework lifetime. Such a framework can be utilized where the undertaking to node scheduling needs 
to streamline just a single boundary. In any case, as number of boundaries increment, the setting of 
the issue will in general change, and complex calculations like Stavrinides & Karatza, (2017), that 
utilizations rough calculations for task-scheduling can be used. Because of this, the settle on range 
and administration level understanding infringement proportion lessens, accordingly improving the 
errand scheduling proficiency.

Another CNN roused cross breed profound neural network scheduler is talked about in Zang et 
al., (2019), which uses convolution two-dimensional change technique to perform task scheduling. 
Another 2-stage task scheduler is portrayed in Zhang & Zhou, (2017), which uses both current and 
recorded information for scheduling errands. Because of the utilization of both authentic and current 
errand and node information, the calculation can foresee task examples and VM utility examples. A 
utilization of this framework can be seen in Zheng et al., (2020), wherein task scheduling is applied 
to savvy city situations. They presume that Extended Hungarian calculation with round support line 
(EHGC) is a superior calculation when contrasted and FIFO and other shortsighted frameworks. 
The use of profound learning and fortification learning can be tried for savvy urban communities. 
Scheduling can likewise be conveyed as a cloud administration, the work in Moorthy & Pabitha, (2019) 
features a utilization of sending scheduling calculations on the cloud, and giving it as assistance. It 
tends to be utilized as a strong use-case for planning scheduling calculations.

An epic particle swarm optimization (PSO) calculation for task scheduling is depicted in Ebadifard 
& Babamir, (2017), wherein the wellness work is changed to be a mix of make-range and the asset 
use. A Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) calculation is applied 
in Khorsand & Ramezanpour, (2020), which uses the best-most exceedingly terrible strategy for task 
scheduling. It additionally utilizes the oversimplified approach as utilized in Dong et al., (2019), and 
can accomplish comparative execution like Dong et al., (2019), but on the other hand can decrease 
the energy utilization because of the utilization of energy as a wellness boundary. However, both 
Dong et al., (2019) and Prasanna Kumar & Kousalya, (2019) have restricted use cases because of the 
restricted capacity of the calculation demonstrated, which can be improved by the work in Shobha 
Rani & Pounambal, (2019). Here, another profound fortification learning calculation is depicted that 
uses numerous errand and node boundaries for better optimization. Like PSO (Dong et al., 2019), a 
crow inquiry optimization (CSO) is portrayed in Zhou et al., (2018). It utilizes comparable exploration 
boundaries like Dong et al., (2019), and accomplishes a comparative execution on shortsighted 
datasets. The work can be streamlined utilizing a profound learning network as depicted in Peng et 
al., (2019), wherein task offloading is improved preparing. It utilizes profound learning CNN for 
task scheduling, and gives better make range and better computational usage when contrasted and 
Zhou et al., (2018). A comparative way to deal with Zhou et al., (2018) is referenced in Huang et al., 
(2019), where an adjusted hereditary calculation (GA) joined with voracious methodology (MGGS) 
is applied. The GA utilizes a voracious methodology for wellness assessment and traverse activities, 
which makes it viable for scheduling undertakings. However, like Dong et al., (2019) and Zhou et 
al., (2018), the methodology has characteristic downsides because of set number of boundary use 
for wellness assessment. Accordingly, the work in Mostafavi & Hakami, (2020), which utilizes a 
profound Q-Learning network can be utilized for execution upgrade. Comparative profound learning 
techniques are referenced in Huang et al., (2019), Mostafavi & Hakami, (2020) and Tong et al., (2019), 
where Q-Learning and fortification learning is either utilized independently or joined with neural 
networks to accomplish unrivaled execution. Consequently, the underlying research likewise utilizes 
Q-Learning in mix with DAIRS to improve the framework execution for load adjusting over the cloud.
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3. PROPOSED DAIRS-Q ALGORITHM

The original DAIRS algorithm (Anjum et al., 2020) does not perform well under hybrid storage 
conditions, and nowadays all cloud systems are based on hybrid storage (which combine SSDs, 
HDDs, etc.). Therefore, the proposed Q-learning based DAIRS is proposed that uses dummy reads 
and writes in order to evaluate the performance of the original algorithm, and get the final optimized 
scheduling results. The overall architecture of the proposed DAIRS can be observed from figure 2. 
The proposed hybrid DAIRS (DAIRS-Q) system, works in the following steps,

1. 	 For a cloud with ‘N’ types of storage systems, arrange each of these systems in descending order 
of processing. Due to this the highest performance system is placed at the top, while the lowest 
performing system is placed at the bottom.

2. 	 Perform ‘N’ dummy reads and ‘N’ dummy writes on each of the cloud systems, and observe the 
following parameters,
a. 	 The reading delay for all systems Tr1, Tr2, …, TrN
b. 	 The writing delay for all systems Tw1, Tw2, …, TwN
c. 	 The processing delay for all systems Tp1, Tp2, …, TpN

3. 	 Evaluate the total time needed for processing one task using the following equation 1,

Td w Tr w Tw w Tpi r i w i p i� � �* * * 	 (1)

where, wr , ww  and wp  are the weights for reading, writing and processing. Higher values of 
weights indicate that the application needs that particular element to be enhanced. For instance, an 
application that requires faster processing will have higher value of wp , while the values of wr  and 
ww  would be lower than that of wp .

Figure 2. Proposed DAIRS-Q method for real time clouds
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4. 	 Evaluate the lowest total completion time for each of these machines and store them into an array. 
Let the elements in this array be named as D1, D2, D3, … DN

5. 	 For each storage system, the time needed to process the task on the system will be different. Let 
Tni represent the time needed for a task to be executed on that system, this can be evaluated with 
the help of equation 2 as follows,

Tni Di Ni
Tdi

=
*

	 (2)

where Tdi is the sum of processing time for the cloud, Ni is the total number of task units to be 
executed on the cloud, Di is the per unit task delay for the system.

6. 	 Now evaluate the following dependency table, which indicates the execution time for a given 
task on a given set of machines,

7. 	 This table consists of all ‘k’ tasks on the rows, and all the ‘N’ machine configurations on the 
column side

8. 	 Find the double average value of the task execution threshold using the following equation 3,

Sth
TnT

N k
i

N

j

k
i j

� � �� �1 1

*
	 (3)

9. 	 Now find the interval factor for the task using the following formula,

IF Sth
Nt = 	 (4)

Here, ‘N’ is used as the number of memory configurations are ‘N’ in the system.

Table 1. Relationship between system memory type and input task

Tn1
T1

Tn2
T1

Tn3
T1

…. TnN
T1

. . . . .

. . . . .

. . . . .

Tn1 
Tk

Tn2 
Tk

Tn3 
Tk

… TnK 
Tk
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10. 	Find the column-wise average value from the dependency table, and let the values of these 
averages be AT1, AT2, …, ATk

11. 	Arrange these tasks in descending order of the AT values, and let the new order for these tasks 
be Ts1, Ts2, ..., Tsk

12. 	For allocating a task ‘i’ to any machine, it must fulfill the given condition,

i IF ATd i IFt t�� � � �1 * * 	 (5)

Where, ‘d’ is the ID of the task
Based on the equation 5, the task is given a penalty value if it doesn’t follow equation 5, while 

it is given a reward value if the task follows it. All tasks are allocated to a machine only if they are 
rewarded, else the task is left unallocated. The process is repeated unless all tasks are successfully 
allocated by the system. Based on this allocation, the task with higher requirement is given to a 
memory system with better performance, while a task with lower requirement is given to a memory 
system with lower configuration/performance. This enables the task scheduler to schedule tasks with 
higher efficiency, and get better quality of experience performance for the end user. This performance 
can be observed from the next section, where a statistical comparison is made between the existing 
DAIRS and IDE algorithms with the proposed DAIRS-Q algorithm.

4. RESULT EVALUATION AND COMPARISON

To compare the performance of the proposed DAIRS-Q algorithm with the existing IDE (Wu et al., 
2018) and DAIRS algorithms, the NASA load balancing dataset from the following website is used,

https://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/index.html
This dataset consists of more than 100k records with an average makespan of 600 ms for each 

task. Makespan is the average delay needed for execution of the task. Based on this dataset, the 
average cloud utilization ratio (CUR), the delay needed for task scheduling (Da) and the mean task 
waiting time (Tmwt) are evaluated. The following tables indicate the comparison of these values for 
different algorithms.

Similarly, the other parameters can be observed from table 2 and 3 as follows:
It can be observed that the proposed DAIRS-Q reduces the delay of task scheduling by 15% 

when compared with the existing DAIRS and IDE algorithms, while the cloud utilization ratio is 
improved by more than 10%. This happens due to the dummy reads and writes architecture which is 
proposed, that allows the system to evaluate the performance of the system before deployment, and 
therefore assigns the best task scheduling plan in place for the given set of tasks and virtual machine 
combinations.
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Table 2. Comparison of cloud utilization ratio for different algorithms

VM-s Tasks CUR (DAIRS) CUR (IDE) CUR (DAIRS-Q)

10 1000 74.50 70.95 80.81

10 2000 75.60 72.00 82.00

10 5000 75.90 72.29 82.33

10 10000 76.30 72.67 82.76

10 20000 77.50 73.81 84.06

10 50000 79.10 75.33 85.80

10 100000 79.90 76.10 86.66

20 1000 80.51 76.68 87.33

20 2000 81.40 77.52 88.29

20 5000 82.29 78.37 89.25

20 10000 83.17 79.21 90.21

20 20000 84.06 80.05 91.17

20 50000 84.94 80.90 92.13

20 100000 85.83 81.74 93.09

50 1000 86.71 82.59 94.06

50 2000 87.60 83.43 95.02

50 5000 88.49 84.27 95.98

50 10000 89.37 85.12 96.94

50 20000 90.26 85.96 97.90

50 50000 91.14 86.80 98.86

50 100000 92.03 87.65 99.82
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Table 3. Comparison of task execution delay

VM-S Tasks Da (s) (DAIRS) Da (s) (IDE) Da (s) (DAIRS-Q)

10 1000 5.20 4.95 4.13

10 2000 5.50 5.24 4.37

10 5000 5.70 5.43 4.53

10 10000 5.90 5.62 4.68

10 20000 6.23 5.93 4.94

10 50000 7.10 6.76 5.63

10 100000 7.50 7.14 5.95

20 1000 2.60 2.48 2.07

20 2000 2.75 2.62 2.18

20 5000 2.85 2.71 2.26

20 10000 2.95 2.81 2.34

20 20000 3.12 2.97 2.48

20 50000 3.55 3.38 2.82

20 100000 3.75 3.57 2.98

50 1000 1.30 1.24 1.03

50 2000 1.38 1.31 1.09

50 5000 1.43 1.36 1.13

50 10000 1.48 1.40 1.17

50 20000 1.56 1.48 1.23

50 50000 1.78 1.69 1.41

50 100000 1.88 1.79 1.49
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5. CONCLUSION AND FUTURE SCOPE

Based on the result evaluation it can be observed that the proposed algorithm outperforms both DAIRS 
and IDE algorithms in terms of cloud utilization ratio, delay of task execution and mean task waiting 
time. The cloud utilization is improved by almost 10%, while the delay for execution is reduced by 
15, and the mean waiting delay is reduced by 10% as well. This indicates that the proposed algorithm 
can be applied to any real-time cloud deployments, thereby improving the overall applicability of 
the proposed DAIRS-Q system. The proposed algorithm can be further improved with the addition 
of more sophisticated scheduling algorithms that do not require dummy reads and writes, because 
using these dummy requests increases the computational overheads on the system. In order to reduce 
them, machine learning techniques like deep-reinforcement learning can be used, along with better 
mapping algorithms for scheduling tasks on real-time clouds.

Table 4. Comparison of mean waiting time for tasks

VM-S Tasks Tmwt (s) DAIRS) Tmwt (s) (IDE) Tmwt (s) (DAIRS-Q)

10 1000 6.90 6.57 6.12

10 2000 7.50 7.14 6.66

10 5000 8.90 8.48 7.90

10 10000 13.50 12.86 11.98

10 20000 14.90 14.19 13.22

10 50000 15.60 14.86 13.84

10 100000 16.20 15.43 14.38

20 1000 3.45 3.29 3.06

20 2000 3.75 3.57 3.33

20 5000 4.45 4.24 3.95

20 10000 6.75 6.43 5.99

20 20000 7.45 7.10 6.61

20 50000 7.80 7.43 6.92

20 100000 8.10 7.71 7.19

50 1000 1.73 1.64 1.53

50 2000 1.88 1.79 1.66

50 5000 2.23 2.12 1.97

50 10000 3.38 3.21 3.00

50 20000 3.73 3.55 3.31

50 50000 3.90 3.71 3.46

50 100000 4.05 3.86 3.59
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