
DOI: 10.4018/IJDSST.286677

International Journal of Decision Support System Technology
Volume 14 • Issue 1

This article published as an Open Access Article distributed under the terms of the Creative Commons Attribution License (http://cre-
ativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the

original work and original publication source are properly credited.

*Corresponding Author

264

Towards Group Decision Support in
the Software Maintenance Process
Dinedane Mohammed Zoheir, Université Oran 1, Algeria*

Abdi Mustapha Kamel, Université Oran 1, Algeria

 https://orcid.org/0000-0001-8235-9209

ABSTRACT

Software maintenance is a key element of the life cycle of software. However, the techniques of
software maintenance do not consider the diversity and the complexity of decisions which do not stop
increasing. So, there are at present a few tools, susceptible to insure the relevance and the efficiency
of the decision-making in this phase. The work presented in this paper aims to eliminate or at least
to reduce the effect to fall in an expensive change by reducing the time to find a compromise on the
adequate change. The development of the decision support system for software maintenance is an
answer to the problem. The developed tool allows one to make a fast diagnosis on the software by using
the coupling metrics; to help the decision-makers of the maintenance, according to their preferences
often conflicting; to adopt a change among several proposed. To answer this group decision where
various points of view are considered, the authors propose a negotiation protocol. This protocol tries
to find a compromise that suits best all the decision makers.

Keywords
Coupling Metrics, Decision Support, Negotiation Protocol, Software Maintenance

INTRODUCTION

The maintenance is the last phase of the software life cycle, it is the most expensive phase. According
to (Pfleeger & Bohner, 1990), Software maintenance is defined as the process of modifying the
software system or components, to correct faults, to improve its performance, or to adapt to changes
in the environment (Dhillon, 2002). The maintenance cost depends on the dependency degree between
the entities of software architecture. A change can have considerable and unexpected effects on the
rest of the system. The danger incurred during a modification is the change propagation. Therefore,
it’s better to have an idea of the software architecture to estimate the change impact and so reduce
the maintenance cost. The modularity is considered as an important criterion of the software quality.
A software product is said modular if its components present a weak degree of coupling. Within
the framework of Object Oriented applications, there are various types of coupling between classes.
Measuring these types of relations allows understanding better the link which exists between the
coupling of the classes and the quality attributes (Aggarwal et al., 2006). We define a change in a
program as a modification brought to one of its elements (class, method or variable). So, the impact
is seen in our context as the consequence of a change. The impact analysis is an activity where the
objective is to determine the extent of a change request. It estimates affected elements at the level of

https://orcid.org/0000-0001-8235-9209

International Journal of Decision Support System Technology
Volume 14 • Issue 1

265

the source code. The more a class is coupled with other classes, the more it is sensitive to the changes
made in these classes and the more it may undergo errors.

Several studies have been made in this direction. (Abdi et al., 2009), used a probabilistic approach,
other (Cheikhi, 2005), worked on predicting the impact of change through machine learning, (Ren
et al., 2004), developed a tool for assisting developers with program understanding and debugging.
The common point is the use of coupling metrics as an indicator of impact analysis.

However, In the case of a decision making in maintenance process, coupling property is not the
only indicator of maintenance, various activities such as understanding, readability and modification
of programs are considered to be a factor in reducing the estimate of maintenance effort. The skills
of software maintainers involve knowledge of the programming language. This factor includes the
experience and familiarity of the maintainers with the latter so that the maintenance team can easily
understand the system (de Souza, Anquetil, & de Oliveira, 2005) (Anquetil & de Oliveira, 2005).

In software maintenance, the managers are confronted to a problem of the group decision where
several often conflicting points of view should be considered.

In the face of various proposed changes, the choice of the most relevant change is a complex
problem, especially when we are in a group environment. In this context of research, the decision-
making support in software maintenance is motivated by the lack of tools. Offering a tool which
allows helping the managers in the choice of the change among several represent a financial gain to
companies. The proposed approach allows the development of a decision support system collective
which tries to bring an effective and rational solution. We exploit in our approach the advantages of
the Multi-Agent Systems (Tučník, 2010), to model the decision-makers, so their interactions to arrive
at a beneficial consensus by basing itself on a negotiation protocol.

PROBLEM AND CONTRIBUTION

With the evolution of the software systems, an important stream of changes must be taken in charge as
well as their propagation in the rest of the system. Successfully changing the software of a disciplined
way while maintaining its functioning and its integrity with a reasonable cost requires a change impact
analysis before its implementation. Indeed, the team of maintenance has to be able to supply answers
to the following questions: what type of change is it? What is the extent of the change? What are the
criteria of the engineer?

In the management of the software projects, several changes can be proposed to solve the same
problem at the level of code and satisfy the same need for the user of a software system. However,
different objectives must be considered when it is about a group of decision-makers. For that purpose,
we propose an approach of group decision making support which allows supplying the best assistant
to facilitate the choice of a change, and so to optimize the cost. Minimizing the cost, is to minimize
the time between the proposal of the change, its implementation, and its realization. Choose the right
change in the right moment while considering the differences between the members of the group is a
difficult task. This work aims to help a group of decision-makers in the choice of appropriate change
by taking into account the interests of each decision maker to reach an agreement. In this context of
research, the decision support system uses the advantages of the Multi-Agent Systems to represent
the diversity of the actors implied in the decision. We endow the MAS module with a negotiation
protocol based on mediation. This protocol includes an initiator agent responsible for the negotiation
process and a set of participant agents. The agents represent the different actors of the management
team of the maintenance involved in the decision. The final choice of change in this situation will
be made after a process of negotiation. Section 2 reviews the works concerning the impact analysis,
decision support systems and the reaching agreements in MAS. The third section is reserved for our
approach. Section 4 explains the experimentation and implementation of the tool. The perspectives
of this work are cited in the conclusion.

International Journal of Decision Support System Technology
Volume 14 • Issue 1

266

RELATED WORK

Coupling vs Impact Analysis
The coupling measures the strength of the interconnection between the modules of a system. During the
process of software maintenance (Chidamber & Kemerer, 1994), the coupling predicts the difficulty of
change of the program modules and their implications in the programs in the other modules (Kabaili,
2003). (Lounis & Melo, 1997), the coupling refers to the degree of interdependence between classes.
More a class is coupled with other classes, more is important its sensibility for the changes in these
classes. Good quality software has to obey the principle of weak coupling (Chidamber & Kemerer,
1994, Dahane et al., 2019). A weak coupling facilitates the maintenance seen that dependencies
between the classes are small. For this reason, we have introduced in our tool a module which makes it
possible to calculate the coupling metrics and exploited them as factors which influence maintenance.

Decision Support Systems (DSS)
Group Decision Support Systems (GDSSs) are a special class of group work support systems intended
to provide computational assistance to collaborative decision-making processes. GDSSs define a
widely used collaborative technology that has increased user participation and the quality of decision-
making. Using a GDSS, group members can discuss a problem, exchange ideas, evaluate alternative
solutions, vote and choose a solution. GDSS is supposed to improve the group’s performance by
improving the decision-making process.

A lot of contributions regarding decision-making support were published. We can quote in a not
exhaustive way the works of (Taghezout & Zaraté, 2009), which propose an architecture based DSS in
order to solve some uncertainly problems, (Adla et al., 2011), propose a toolkit for GDSS facilitators
to increase the ability to monitor and control the GDSS process, (Yazdani et al., 2017), propose a
decision support model for selecting logistics providers, the research provides a platform to facilitate
decision process; (Recio-García et al., 2013), which used social factors in the argumentation and
the negotiation for the DSS of group; (Fan & Shen, 2011), shows the effect of the use of decision-
making support of group in the management studies of the value; (Wibowo & Deng, 2013), present
an approach based on the consensus to solve effectively the problem of decision-making of group
multi-criterion; (Shen et al., 2012), propose an approach to integration of systems with low coupling
for the decision support regarding management and regarding maintenance; (Hamdadou & Libourel,
2011), propose a decision support system of for the industrial diagnosis by using the MAS and the
multicriteria analysis, and finally (Oufella & Hamdadou, 2018), propose a group negotiation model
based on argumentation.

Reaching Agreements in MAS
Multi-Agent Systems have proved their effectiveness for modeling but one of the major problems
encountered is to reach agreement on a particular problem. The agent sends messages according to
his preferences to find an acceptable consensus. But agents face a dilemma: on the one hand, they
want to maximize their own preferences, and on the other hand, they have to negotiate to reach a
compromise. In MAS, several techniques are used to reach agreements, mainly auctions (Verrons,
2004), voting systems (Sandholm & Lesser, 1996), negotiation (Grant et al., 2000), and argumentation
(Hamdadou, 2008, Oufella & Hamdadou, 2018). In MAS, a negotiation is a form of interaction that
allows a group of agents to reach an agreement. In general, there are different negotiations protocols in
MAS applications, the most used are: monotonous concession protocol, one-step protocol, contractual
protocols (the net contract protocol, the extended net protocol of the contract) (Verrons, 2004).

Proposed Approach
Our approach consists of two main modules: the module of coupling metrics extraction and the
MAS module. The identification and the understanding of the changes which can be brought to the

International Journal of Decision Support System Technology
Volume 14 • Issue 1

267

objects oriented applications turn out important and fruitful. For that purpose, we have inspired by
the work realized in (Cheikhi, 2005). We took back a questionnaire to collect the perceptions of
people which ensure the maintenance of the software know the nature of the changes. The changes
are grouped by class, method, and attribute, and the result of this questionnaire is either the change
is often, rare, or never.

We extract the concerned coupling metrics of all the classes from a source code Java and each
engineer proposes a change to solve a problem at the code. The final result will be an arrangement
of these changes from the best at least good according to the preferences of the decision-makers.

Let us note that it is possible that a change whose nature is “often” is applied to a strongly coupled
class. As it can have a change whose nature is “rare” is applied to weakly coupled class. Furthermore,
for every change proposed by an engineer, we have indications of the criteria of evaluation (experience
in the domain, familiarization with the environment of the system, experience in the programming
language, and the cost of this change). So we take into consideration all these criteria to try to find
a change that satisfies the group according to their preferences.

The performance matrix in our case includes in lines the proposed changes or the solutions for
the resolution of a problem (the actions); in columns, the various coupling metrics of the classes
carrying the change, the nature of change, and the criteria of every engineer who proposed the change
(the criteria). For example, if solution1 (change of signature of a method of the classe4), the criteria
will be the various metrics of this classe4, the nature of this change, and the criteria of the engineer
who proposed the change. The decision-makers are then invited to introduce their preferences. These
data are going to show at the end an arrangement of changes for every decision-maker according to
their preferences, and then the MAS supplies the process of negotiation to reach a final agreement
that satisfies the largest number of decision-makers.

The Metrics Extraction Module
The purpose of the metrics extraction module is to capture important features like coupling. We chose
the coupling property for two reasons:

•	 To have an idea on the quality of the system in terms of coupling, and this allows to estimate the
change propagation in the system.

•	 To exploit these metrics as criteria in the performance matrix.

The authors develop a tool under Eclipse which allows to analyze a source code Java and to
extract all the important data for the calculation of the considered coupling metrics for every class
of the system. This analysis is insured by plugin ASTParser. The metrics of every class carrying out
the change are exploited as criteria in the performance matrix.

For a problem at software written in Java, or a new need for the user of the latter, several solutions
(changes at the source code level) are proposed to answer the same need, the impact analysis allows
to choose the adequate solution, and the least expensive, by considering several aspects: the nature of
change, its impact on the rest of the system, and the quality of the engineer. In our work, the authors
attribute indices to every change, for the change never (index 0), the rare change (index 1), and the
change often (index 2).

Source Code Analysis Process
This process allows us to analyze a source file Java and to supply its syntactic tree (AST) which
corresponds to a set of nodes representing all the constituents of the system until instructions as
shown in Figure 1. It is a tree structure of objects.

International Journal of Decision Support System Technology
Volume 14 • Issue 1

268

In our work, we try to browse the project tree, file by file, analyze it and bring out the information
useful for the implementation of metrics, namely: classes, superclasses, descendants, attributes,
methods, function calls, etc. For this, we used the notion of Visitor: “Visitor”.

The visitor represents “an operation to be performed on the elements of an object structure.Visitor
lets you define a new operation without changing the classes of the elements on which it operates.”
(Gamma, 1995). This term generally means Analysis. It refers to classes of objects that visit other
objects during the browse and perform appropriate tasks.

ASTVisitor is an abstract class associated with a pair of “visit (T node)” and “endVisit (T
node)” methods for the different categories of nodes in the syntax tree; these are access to an array,
assignment, instruction blocks, break and continue statements, for, while loops, etc.

Visit (T node): allows you to visit the AST node and perform certain operations. If the returned
value is True, then the child nodes will be visited. This class does not provide any implementation,
subclasses must be defined, and the latter implement the method as needed. For example: visit
(CompilationUnit node) allows you to visit the Java source file, visit (MethodInvocation node) allows
you to visit function calls and visit (IfStatement node) allows you to visit if statements.

EndVisit (T node): visits the node to perform operations. This method is called after all the child
nodes have been visited. The default implementation of this class does no task. Subclasses must be
defined to relocate the method.

Description of the Implemented Metrics
The metrics chosen in the context of the study are presented in Table1.

The authors consider it useful to present the definition of certain metrics that we have implemented.

CBO (Coupling Between Object):

CBO c d C c uses c d uses d c() | { { } | (,) (,)} |= ∈ − ∪ 	

Represents the number of classes with which a class is paired. Two classes are said to be coupled,
if the methods defined in one use methods or instance variables of the other. A class c is coupled
to a class d if it uses d or is used by d. The definition of the “uses” predicate (c, d) requires that the

Figure 1. Abstract Syntactic Tree (AST)

International Journal of Decision Support System Technology
Volume 14 • Issue 1

269

method which uses the class d and the method used or the attribute of the class d be implemented
in their classes.

CBO’ (Coupling Between Object):

CBO c d C c Ancestors C uses c d uses d c'() | { ({ } ()) | (,) (,)} |= ∈ − ∪ ∪ 	

Counts the number of classes with which a class c is coupled and not having an inheritance
relation. This definition does not take into account all the ancestors of a class.

RFC (Response For a Class):

RFC c M
i

alli
R() { } { }= ∪ 	

{M} is the set of methods of the class.
{Ri} the set of methods called by method i.
Represents the number of methods invoked in response to a message. It is worth the number of

methods of the class and the number of methods called by each method m of the class c.

Table 1. List of implemented metrics

DAC Data Abstraction Coupling: This metric represents the number of non-inherited attributes that are of type
one of the classes of the application.

CBO Coupling Between Object: Represents the number of classes with which a class is coupled.

RFC Response For a Class: Represents the number of methods invoked in response to a message.

MPC Message Passing Coupling: Counts only method invocations from other classes.

AMMIC Ancestors Method -Method Import Coupling: Corresponds to the number of parent classes with which a
class has a method-method interaction and an IC type coupling.

OMMIC Others Method -Method Import Coupling: Corresponds to the number of classes (other than superclasses
and subclasses) with which a class has a method-method type interaction and an IC type coupling.

DMMEC Descendants Method - Method Export Coupling: Corresponds to the number of subclasses with which a
class has a method-method interaction and an EC type coupling.

OMMEC Others Method - Method Export Coupling: Corresponds to the number of classes (other than
superclasses and subclasses) with which a class has a method-method type interaction and an EC type
coupling.

CBO’ Coupling Between Object: Counts the number of classes with which a class c is coupled and not having
an inheritance relationship.

CBO-IUB CBO Is Used By: This metric consists of the number of classes using the target class

CBO-U CBO Using: Represents the part of the CBO that is interested in the classes used by the target class c

International Journal of Decision Support System Technology
Volume 14 • Issue 1

270

MPC (Message Passing Coupling):

MPC c NSI m m
m SIM m Mi c

m Mi c

() (, ')
' () ()

()

=
∈ −

∈
∑∑ 	

Represents the number of messages sent by one class to other classes. MPC (c) counts only the
method invocations of other classes and not the specific method invocations to class c.

MAS Module
This module aims to represent the various actors who have their objectives, and their preferences of
decision. Multi-agent technology has already shown its ability in different domains. Especially, in
the applications of group decision-making support thanks to the ease which it supplies.

The authors delegate to the MAS the selection of the change elected according to the negotiation
process. To cope with this group decision, it is necessary to pass by a negotiation procedure to reach
a beneficial consensus. To achieve this, the authors endow the MAS with a negotiation protocol base
on the mediation involving two types of agents:

•	 The initiator agent (manager): it is the agent responsible for the management of the negotiation,
the modification of the contract and the choice of the final elected change.

•	 The participant agents (group): are the agents involved in the decision; the objective of every
agent is that its favorite change is chosen.

It is essential that the participating agents pass by a phase of negotiation, according to a well-
structured protocol, to reach a beneficial agreement to the group.

The negotiation is made between the initiator agent and all the participating agents. Once the
model to be built is described, the authors need the infrastructure to implement it. They use JADE
(Java Agent Development framework) (Bellifemine et al., 2002), to generate agents and to implement
the process of negotiation between them. Finally, the tool provides a consensual solution which is a
compromise. In the following section, the authors will describe JADE, and after they will detail the
negotiation process between agents.

JADE Platform
JADE: JADE (Java Agent Development framework) is a multi-agent platform created by the TILAB
laboratory described by (Bellifemine et al., 2005, Bellifemine et al., 2008). JADE allows the
development of multi-agent systems and applications conforming to FIPA standards (Fipa, 2002).
It is implemented in JAVA and provides classes that implement “JESS” for the definition of agent
behavior. JADE has three main modules (necessary for FIPA standards).

1. 	 DF “Director Facilitor” provides a “yellow pages” service to the platform;
2. 	 ACC “Agent Communication Channel” manages communication between agents;
3. 	 AMS “Agent Management System” supervises the registration of agents, their authentication,

access and use of the system.

These three modules are activated each time the platform is started.
There are tools that have been developed in the JADE platform in order to support the difficult

task of debugging multi-agent applications. Each tool is packaged as an agent, obeying the same
rules, the same communication possibilities and the same life cycles of a generic agent.

International Journal of Decision Support System Technology
Volume 14 • Issue 1

271

•	 RMA Remote Management Agent: The RMA allows you to control the life cycle of the platform
and all the agents that make it up. Several RMA can be launched on the same platform as long
as they have different names.

•	 Dammy Agent: The DammyAgent tool allows users to interact with JADE agents in a special
way. The interface allows the composition and sending of ACL messages and maintains a list of
sent and received ACL messages.

•	 Agent Directory Facilitator: The DF interface can be launched from the RMA menu. This action
is in fact implemented by sending an Agent Communication Language ACL message to the DF
asking it to load its graphical interface.

•	 Agent Sniffer: When a user decides to spy on an agent or a group of agents, it uses a sniffer agent.
Each message leaving or going to this group is picked up and displayed on the sniffer’s interface.

•	 Agent Inspector: This agent is used to manage and control the life cycle of a running agent and
the queue of its sent and received messages.

The Phases of Protocol Negotiation
The current negotiation protocol is based on the Contract-Net Protocol (Davis & Smith, 1983). It
is characterized by a series of messages exchanged between the initiator agent and the participant
agents. It proceeds in three phases: the proposal phase, the conversation phase, and the decision phase.

1- The proposal phase: this phase is the first phase of our protocol, it introduces the negotiation,
includes the proposal of the contract by the initiator to the participants and collects of the answers
of each of the participants. Every participant can either accept or refuse the proposal.

2- The conversation phase: this phase intervenes only when the participants were not enough to accept
the proposal of the contract of the initiator and when the counterproposals are authorized. The
initiator indicates then to the participants this possibility. A conversation between the initiator
and the participants takes place during which proposals of modifications are exchanged. Further
to the modifications proposed by the participants, the initiator proposes a new contract. So, a
new phase of the proposal begins.

3- The final decision phase: This final decision phase results in either the confirmation of the
contract or the cancellation of the contract. This decision is made by the initiator according to
the participants’ responses.

Characteristics of the Proposed Protocol
During the negotiation process, many fundamental aspects must be taken into account, such as:

•	 The language used by the agents to exchange information during the negotiation (primitives
and strategies);

•	 The objects of negotiation;
•	 The strategies adopted by the different agents;
•	 The cardinality of the negotiation.

In what follows, we present the main characteristics of the proposed negotiation protocol.

The Objects of Negotiation
Resources are the objects of negotiation; they can be either personal or shared. In our case, they are
common resources (the proposed changes).

International Journal of Decision Support System Technology
Volume 14 • Issue 1

272

The Cardinality of Negotiation
The complexity is an important characteristic for the negotiation. It is one of the main reasons why
it is necessary to use negotiators agents. Let us examine the complexity in the number of messages
inferred by the protocol. In the worst case, the number of messages can be O (mn) where n is the
depth of the process and m the number of agents implied in a negotiation.

The Primitives of Negotiation
To lead a negotiation process to its term, it is necessary to define primitives for the initiator and other
specific primitives for the participants.

Initiator Primitives:
◦◦ Propose (contract): it is the first primitive that the initiator sends to the participants in order

to propose a contract to them. The contract contains different resources to negotiate.
◦◦ Modification request (contract): this message indicates to the participants that the contract

cannot be concluded in its current form and that it must be modified.
◦◦ Confirm (contract): this message indicates to the participants that the contract is confirmed.

The negotiation is successful.
◦◦ Cancel (contract): this message indicates to the participants that the contract is canceled.

The negotiation is failed.
Participants Primitives:

◦◦ Accept (parameters): this message responds to the offer of the contract made by the initiator.
The participant indicates through this message to the initiator that he accepts the contract
as it is.

◦◦ Refuse: this message responds to the offer of the contract made by the initiator. The participant
indicates to the initiator that he refuses the contract.

◦◦ Propose modification: this message responds to a modification request from the initiator. The
participant sends the initiator a list of possible changes to the contract (a counter-proposal).
The number of changes contained in the list is a parameter of the negotiation.

The Agent’s Strategies
The authors resumed the protocol which distinguishes two roles: initiator and participant. The strategy
of negotiation is not the same according to the role of the agent, there are thus two sorts of strategies.

The strategy of the initiator allows him to decide to confirm or to cancel the contract and to
synthesize the various proposals of modification of the participants in order to propose a new contract.
Another strategy is one of the participants who uses it to decide to accept or to refuse the proposal
of contract and to find a modification for the contract when the initiator in demand.

Participant Strategies: we associate with each participant agent three strategies:

The strategy of establishing preferences: each participant assigns priorities to the different
resources according to its preferences. The priority is always an integer between 1 and 10; each agent
is free to change the priorities it has given at any time. Participant Agent compares its preferences
with the criteria of each change to assign a priority to each resource. For example, if for a change,
all the preferences of the participant are satisfied then 10 is awarded. Otherwise, if 70% are satisfied
then a priority is given from 7 to 9, and so on using a random function.

The strategy of acceptance: the negotiation can proceed in several rounds until a compromise is
found. In each new round, the participant receives a new proposal. If it corresponds to its preferences

International Journal of Decision Support System Technology
Volume 14 • Issue 1

273

at the round t, it accepts this proposal. Else, it checks whether the proposition corresponds to one of
an earlier preferences. If it is the case, it accepts the contract indicating its actual preferences.

The strategy of refusal: when the participant does not receive a proposition that corresponds to
its preferences at round t, nor other earlier preferences, it refuses it and makes against the proposal
which corresponds to its preferences at round t.

Initiator Strategy: we associate with the initiator only one strategy used at the time of the modification
phase. Before throwing the negotiation, the initiator attributes priorities to the participating agents
according to their profiles. The priority is an integer from 1 to 10.

The strategy of modification: when the participants are not rather numerous to accept the initiator’s
proposal, the latter is obliged to modify its contract for the next round while taking as a starting point
all modifications sent by the participants at round t, in order to find a new possibility for the contract.

For that, the initiator associates a score SCORE (Ri) with each resource Ri(i= 1,.. n) which takes
into account the priority of the participant agent as well as the relative priority of the resource for the
participant. As in the method of scorages (Ferber, 1995), the resource which has obtained the highest

Figure 2. Graph of interaction between an initiator and a participant

International Journal of Decision Support System Technology
Volume 14 • Issue 1

274

score at round t will be the winner resource and the initiator will propose it in the new contract.
This score is updated each time the participants have been less numerous to accept the contract. The
SCORE (Ri) is given by the following equation:

SCORE Ri priority Ri init *priority init init prior
j

m

� � � � � � � �
�
�, ,
1

iity Ri partj *priority partj init, ,� � � � .	

•	 n, m: the number of resources and decision-makers respectively;
•	 priority (Ri, init) is the priority of the resource Ri for the initiator. For reasons of equity between

the initiator and the participants, we take into account the same number of resources for the
initiator as for the participants.

•	 priority (init, init) is the priority which the initiator gave itself.
•	 priority (Ri, partj) is the relative priority of the resource laughed for the participant partj.

Indeed, the participant does not communicate the priorities which it gives to these resources,
the initiator considers while the first resource sent is the most priority at the participant’s and so
attributes it the maximal priority. Then it decrements the priority of 1 for the following resource,
without coming down under the minimal value. If the resource is not a part of the received list, the
authors attribute it a discriminating priority equal in 0.

EXPERIMENTATION

The implementation of the proposed group decision support process is accompanied by developing
a tool. The goal is to support the approach proposed by a tool and real data. Besides, testing on a real
case allows validation of our approach.

For experimentation, the authors used several systems of small and average sizes. But to validate
the experiment, BOAP system is used (Alikacem & Snoussi, 2002): it is an application developed with
the Java language, supplied by the CRIM Laboratory. BOAP (Toolkit for the Analysis of Programs),
is a set of integrated software tools who allows an expert to estimate quickly the quality level of
software. The authors chose BOAP because it has already used as test system in others works (Abdi,
2007, Abdi et al., 2009), to verify certain hypotheses about change impact analysis and prediction.
The characteristics of BOAP are presented in the following table:

Implementation of the Tool
The extraction option (Figure 3) allows browsing the source code of the system in entry and giving
its AST.

After obtaining the AST, the authors are going to proceed to the structuring in classes, methods,
attributes, inheritance, method invocation,...etc. The structure option (Figure 4) allows posting this
structuring of the source code under an exploitable form to facilitate the manipulation.

The metrics calculation (figure 5) is made based of information extracted from the Figure 4.

- Definition of Actions: The actions are changes proposed by different engineers to meet a need in
the source code. They need to be negotiated to help decision-makers choose the change that will
be retained. The decision is taken by considering a set of criteria and taking into account the
different points of view of the different actors involved in the decision. The changes proposed
for our experimentation are:

International Journal of Decision Support System Technology
Volume 14 • Issue 1

275

Table 2. Characteristics of the test system (BOAP)

Characteristics BOAP System

Number of files 424

Number of modules 22

Number of independent classes 103

Number of classes 208

Number of basic classes 117

Number of methods 107513

Number of attributes 1401

Figure 3. Extraction of the AST

Figure 4. Source code structure

International Journal of Decision Support System Technology
Volume 14 • Issue 1

276

Change1: Addition of a method to BuildAst class.
Change2: Addition of a superclass to DependancePanel class.
Change3: Change of an attribute type of GraphModuleLink class.
Change4: Change of a method type of CompleteModule class.
Change5: Change of implementation of a method of laModuleDependance class.

Figure 6 shows the attribution to each change the criteria of the engineer who proposes it
(experience, delay, estimated cost, knowledge in the field).

After the proposition of the changes by the engineers, the matrix of proposed changes is obtain,
and illustrated in Figure 7.

Figure 5. Calculation of considered metrics

Figure 6. Database of the engineers criteria

International Journal of Decision Support System Technology
Volume 14 • Issue 1

277

-Identification of Decision Makers: in our case, the group decision-makers are:
DM1: Project Manager, DM2: Analyst, DM3: Chief Programmer, DM4: Finance Responsible.

We note that in MAS modeling, the DM1 is the initiator, and other DMs are the participants.
The initiator attributes to each decision maker a priority expressing its weight in the negotiation

according to their profile as shows the Figure 8.

The decision-makers are invited to introduce their preferences as shows the following Figure 9.
After the application of a random function, obtaining vectors of change for every decision-

maker according to their own preferences (the priorities of each change for each decision-maker) as
mentioned in figure 10.

Figure 7. Proposed changes Matrix

Figure 8. Allocation of priorities to Decision-Makers

International Journal of Decision Support System Technology
Volume 14 • Issue 1

278

Before beginning the negotiation process, it is necessary to fix a threshold of acceptance (70% of
decision makers are satisfied); the minimal number of agreements necessary to conclude the contract
(3 decision-makers), and the maximal number of rounds of negotiation (10 rounds).

In this example, five changes are considered: Ch1 ​​to Ch5 and the initiator proposes a three-party
contract: D1, D2, and D3. The initiator has the maximum priority (10), a priority equal to 10 to D1,
a priority of 5 to D2, and the priority1 to D3.

Note that D1 will send the changes in the following order Ch5; Ch4, Ch3,

Ch2, Ch1	
D2 will send the resources in order: Ch1, Ch3, Ch4, Ch2, Ch5	
D3 will send resources in order: Ch2, Ch4, Ch3, Ch1, Ch5	

Suppose each participant sends only one resource per change request.

Figure 9. Decision-Makers preferences

Figure 10. Priorities of changes for each DM

International Journal of Decision Support System Technology
Volume 14 • Issue 1

279

D1 then sends the change Ch5, D2 sends Ch3, D3 sends Ch2 and for the initiator the change Ch2.
After the first modification request, the notes will be:	

•	 note (Ch1) = 0 * 10 + 0 * 10 + 10 * 5 + 0 * 1 = 50
•	 note (Ch2) = 10 * 10 + 0 _ * 10 + 0 * 5 + 0 * 1 = 100
•	 note (Ch3) = 0 * 10 + 0 * 10 + 0 * 5 + 0 * 1 = 0
•	 note (Ch4) = 0 * 10 + 0 * 10 + 0 * 5 + 0 * 1 = 0
•	 note (Ch5) = 0 * 10 + 10 * 10 + 0 * 5 + 0 * 1 = 100

The initiator will therefore propose a new contract for the Ch2 resource. Suppose this contract
is rejected again by the participants (which is consistent since none of them proposed this change).

The initiator will again request a modification to the participants. D1 and D3 will then propose
Ch4, D2 will propose Ch3 and the initiator Ch3. The notes will then be updated as follows:

•	 note (Ch1) = 50
•	 note (Ch2) = 100
•	 note (Ch3) = 9 * 10 + 9 * 5 = 130
•	 note (Ch4) = 0 + 9 * 10 + 9 * 1 = 99
•	 note (Ch5) = 0

The ranking of the changes then becomes: Ch3, Ch2, Ch4, Ch1, Ch5. Since Ch2 has already
been proposed, it no longer counts for the selection of new changes to propose. This ensures that the
proposals will stop at the latest when all possible solutions have been proposed.

This time, the initiator will propose a contract for the Ch3 resource to the participants. This
proposal is likely to succeed, based on the priorities assigned to Ch3 by the participants.

•	 note (Ch1) = 50 + 8 * 10 = 130
•	 note (Ch2) = 100
•	 note (Ch3) = 130 + 8 * 10 + 8 * 1 = 218
•	 note (Ch4) = 99 + 8 * 5 = 139

Figure 11. Refusal of the contract

International Journal of Decision Support System Technology
Volume 14 • Issue 1

280

•	 note (Ch5) = 0

After several modifications of the contract and in the third round, the decision-makers arrive at
a consensus; the selected change is the change 3.

According to Figure 9, the change3 is ranked as the second priority for the initiator, third for the
decision maker1 who also has a significant weight, the first for decision maker 2, and the third for the
decision maker3, which explains that he had a negotiation that was made to try to find a compromise
between the decision-makers in order to satisfy as many decision-maker as possible.

Comparative Analysis
In this section, the authors empirically assess the negotiation framework for the group of decision-
makers. The experiments were done with three different scenarios: scenario1, the case with four
decision makers and five changes. The second scenario, the number of proposed changes is increased
to seven, and the number of decision makers is kept at four. The third scenario, the authors left the
number of changes at five, and increased the number of decision makers to five. In all three scenarios,
the aim is to show the value of using the tool in minimizing the time taken to reach consensus among
decision-makers.

The experiments are designed to test the hypothesis that the use of the negotiation protocol is
useful for reaching consensus among group members quickly. Furthermore, our expectation is that
the improvement achieved through negotiation will increase as the number of agents involved in
negotiation increases. Three bars are displayed: Time, Decision-Makers and changes for the three
scenarios as mentioned in figure 12.

After the launch of the experiment, the authors notice that the first scenario shows that using the
negotiation activates the convergence towards a compromise between the decision makers. In addition,
the second scenario also shows that the group of decision-makers quickly came to a compromise when
they used the protocol (5 seconds with the protocol versus 12 seconds without). In the third scenario,
we clearly see the effectiveness of using the protocol. Comparing with the first scenario, the time to
reach a compromise without protocol is 15 seconds (10 seconds for the 1st scenario) while with the
protocol the duration is 4 seconds (3 seconds for the 1st scenario).

Figure 12. Comparative study of the negotiation

International Journal of Decision Support System Technology
Volume 14 • Issue 1

281

Following these experiments, the authors showed that either by increasing the number of changes
(scenario1 vs scenario2), or by increasing the number of decision-makers (scenario1 vs scenario3),
the use of the developed tool is effective insofar as it reduces convergence towards a consensus.

DISCUSSION

The change selection problem in software maintenance is usually a complex problem that involves
a wide range of possible alternatives (changes) and multiple evaluation criteria. Most of the time,
these alternatives and conflicting criteria are often evaluated by a number of decision-makers affected
by the selection of the best possible change. From this perspective, having a group decision support
tool or system is more than desirable in order to make the decision that is most appreciated by the
group, despite the conflicting interests and preferences of the members of the group involved in the
decision making.

Several studies have been made in the field of software maintenance, (Ruhe, 2002, Dingsøyr
et al., 2009), describes fundamental principles and expectations. (Félix et al., 2010), propose a tool
designed to assist software maintainers to solve software maintenance problems. (Kamaludeen et
al., 2013), used the concept of expert system to record the knowledge of the information system in a
knowledge base and inference logic to analyze the recorded knowledge. (Bouslama, 2012), proposed
a knowledge-based approach to analyze and estimate quality factors in object systems. The author
used Weka software to knowledge machine learning and build predictive models. The results obtained
in the context of various experiments allow us to predict and estimate certain quality factors such as
maintainability, reusability and predisposition to faults.

As interest in involving multiple stakeholders participation in evaluating decision problems grew,
the need to incorporate the different decision makers affected by a group decision became an increasing
focus to research efforts. However, the majority of proposed studies intended overlook this detail.

Group decisions are usually more complex compared to individual decision making, as several
factors are involved, such as: conflicting individual goals, personal opinions, goals. To facilitate
decision-making between the group to reach an agreement, negotiation seems the most appropriate
solution.

To support this idea and facilitate decision making, we propose a decision support system for
software maintenance reinforced by three areas of great importance: coupling metrics as an indicator
of the impact of change, MAS to model the behavior of decision-makers, and negotiation through a
protocol to find consensus among decision-makers.

The proposed system makes it possible to: analyze a source code and calculate certain coupling
metrics, integrate the participation of the different MDs in a decision-making process, taking into
account their perceptions, and find a consensus alternative (change) that satisfies a group of decision
makers through a negotiation protocol.

Although this approach has given satisfactory results, there is still the case where the negotiation
protocol arrives at round 10 without finding a consensus, we believe remedied this by adding a voting
system this improvement will be taken into consideration in the perspectives.

CONCLUSION

The relevance of every change at the level of the source code during the software maintenance differs
from a decision-maker to another one. Every proposed change has advantages and disadvantages of
implementation and realization. Since there are usually several suggested solutions, the decision-
makers regarding maintenance are often confronted with difficult choices. Their decisions should
ensure the relevance of the change chosen according to the objectives often contradictory to be achieved
by each of them. The objective of this paper is to propose a group decision-making support process

International Journal of Decision Support System Technology
Volume 14 • Issue 1

282

for facilitating the choice of a change through the integration of a negotiation protocol implemented
in a MAS.

So, in this paper the authors have focused on proposing an approach that allows to:

•	 Have an idea of the quality of the system by the calculation of certain coupling metrics.
•	 Show the representation of the multiplicity of the decision-makers in the maintenance, their

diversity, their behavior and their interaction to select the most appropriate change.

An application on a real system was proposed and served as a basis to demonstrate the feasibility
of such approach. To strengthen the contribution, a negotiation protocol is developed to allow finding
a beneficial consensus between the various actors of decision taking into account the preferences of
every decision-maker. The authors cite some research perspectives as extension of our approach by
considering other types of metrics and developing a negotiation protocol based on the argumentation.

International Journal of Decision Support System Technology
Volume 14 • Issue 1

283

REFERENCES

Abdi, M. (2007). Analyse et Prédiction d’impact de Changement dans un système à objets. Thèse de Doctorat
d’Etat en Informatique, Université d’Oran, Es-Sénia.

Abdi, M., Lounis, H., & Sahraoui, H. (2009). Predicting change impact in object-oriented applications with
bayesian networks. Paper presented at the 2009 33rd Annual IEEE International Computer Software and
Applications Conference. doi:10.1109/COMPSAC.2009.38

Adla, A., Zarate, P., & Soubie, J.-L. (2011). A proposal of toolkit for GDSS facilitators. Group Decision and
Negotiation, 20(1), 57–77. doi:10.1007/s10726-010-9204-8

Aggarwal, K., Singh, Y., Kaur, A., & Malhotra, R. (2006). Empirical Study of Object-Oriented Metrics. Journal
of Object Technology, 5(8), 149–173. doi:10.5381/jot.2006.5.8.a5

Alikacem, E., & Snoussi, H. (2002). BOAP 1.1. 0, Manuel d’utilisation. CRIM, Janvier.

Anquetil, S. d. S. N., & de Oliveira, K. (2005). A Study of the Documentation Essential to Software Maintenance.
Academic Press.

Bellifemine, F., Bergenti, F., Caire, G., & Poggi, A. (2005). JADE—a java agent development framework. In
Multi-agent programming. Springer.

Bellifemine, F., Caire, G., Poggi, A., & Rimassa, G. (2008). JADE: A software framework for developing
multi-agent applications. Lessons learned. Information and Software Technology, 50(1-2), 10–21. doi:10.1016/j.
infsof.2007.10.008

Bellifemine, F., Caire, G., Trucco, T., & Rimassa, G. (2002). Jade programmer’s guide. Jade Version, 3, 13-39.

Bouslama, R. (2012). Vers un système d’aide à la décision pour la conception en génie logiciel: une approche
basée sur les connaissances. Academic Press.

Cheikhi, L. (2005). Estimation de l’impact du changement dans les programmes à objets. Academic Press.

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6), 476–493. doi:10.1109/32.295895

Dahane, M., Abdi, M. K., Bouneffa, M., Ahmad, A., & Basson, H. (2019). Using Design of Experiments to
Analyze Open Source Software Metrics for Change Impact Estimation. International Journal of Open Source
Software and Processes, 10(1), 16–33. doi:10.4018/IJOSSP.2019010102

Davis, R., & Smith, R. G. (1983). Negotiation as a metaphor for distributed problem solving. Artificial Intelligence,
20(1), 63–109. doi:10.1016/0004-3702(83)90015-2

Dhillon, B. S. (2002). Engineering maintenance: a modern approach. CRC Press.

Dingsøyr, T., Bjørnson, F. O., & Shull, F. (2009). What do we know about knowledge management? Practical
implications for software engineering. IEEE Software, 26(3), 100–103. doi:10.1109/MS.2009.82

Fan, S., & Shen, Q. (2011). The effect of using group decision support systems in value management studies: An
experimental study in Hong Kong. International Journal of Project Management, 29(1), 13–25. doi:10.1016/j.
ijproman.2010.01.008

Félix, Y., April, A., & Desharnais, J.-M. (2010). Software maintenance decision support system. Proceedings
of the 11th International Conference on Product Focused Software. doi:10.1145/1961258.1961290

Ferber, J. (1995). Les Systèmes multi-agents: Vers une intelligence collective, InterEditions, 1995. Connaissances
et compétences requises Cette thèse s’ adresse à des étudiants ayant un profil Intelligence Artificielle/Base de
Données et elle nécessite d’avoir des compétences théoriques dans les domaines, 1.

Fipa, A. (2002). Fipa acl message structure specification. Foundation for Intelligent Physical Agents. http://
www. fipa. org/specs/fipa00061/SC00061G. html

Gamma, E. (1995). Design patterns: elements of reusable object-oriented software. Pearson Education India.

http://dx.doi.org/10.1109/COMPSAC.2009.38
http://dx.doi.org/10.1007/s10726-010-9204-8
http://dx.doi.org/10.5381/jot.2006.5.8.a5
http://dx.doi.org/10.1016/j.infsof.2007.10.008
http://dx.doi.org/10.1016/j.infsof.2007.10.008
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.4018/IJOSSP.2019010102
http://dx.doi.org/10.1016/0004-3702(83)90015-2
http://dx.doi.org/10.1109/MS.2009.82
http://dx.doi.org/10.1016/j.ijproman.2010.01.008
http://dx.doi.org/10.1016/j.ijproman.2010.01.008
http://dx.doi.org/10.1145/1961258.1961290
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00061/SC00061G.html

International Journal of Decision Support System Technology
Volume 14 • Issue 1

284

Grant, J., Kraus, S., & Perlis, D. (2000). A logic for characterizing multiple bounded agents. Autonomous Agents
and Multi-Agent Systems, 3(4), 351–387. doi:10.1023/A:1010050603219

Hamdadou, D. (2008). Un Modèle d’Aide à la Décision en Aménagement du Territoire, une Approche Multicritère
et une Approche de Négociation (PhD thesis). Université d’Oran, Algérie.

Hamdadou, D., & Libourel, T. (2011). A MultiCriteria Group Decision Support System for Industrial Diagnosis.
INFOCOMP. Journal of Computational Science, 10(3), 12–24.

Kabaili, H. (2003). Changeabilite des logiciels orientes objet: Proprietes architecturales et indicateurs de
qualite. Academic Press.

Kamaludeen, R. A., Cheah, Y.-N., & Sulaiman, S. (2013). Software maintenance expert base decision support
(soxdes) framework. Paper presented at the 2013 International Conference on Advanced Computer Science
Applications and Technologies. doi:10.1109/ACSAT.2013.13

Lounis, H., & Melo, W. (1997). Identifying and measuring coupling in modular systems. Paper presented at the
8th International Conference on Software Technology ICST’97.

Oufella, S., & Hamdadou, D. (2018). A collaborative spatial decision support system applied to site
selection problems. International Journal of Applied Management Science, 10(2), 127–156. doi:10.1504/
IJAMS.2018.092078

Pfleeger, S. L., & Bohner, S. A. (1990). A framework for software maintenance metrics. Proceedings. Conference
on Software Maintenance 1990. doi:10.1109/ICSM.1990.131381

Recio-García, J. A., Quijano, L., & Díaz-Agudo, B. (2013). Including social factors in an argumentative model
for group decision support systems. Decision Support Systems, 56, 48–55. doi:10.1016/j.dss.2013.05.007

Ren, X., Shah, F., Tip, F., Ryder, B. G., & Chesley, O. (2004). Chianti: a tool for change impact analysis of java
programs. Paper presented at the ACM Sigplan Notices. doi:10.1145/1028976.1029012

Ruhe, G. (2002). Software engineering decision support–a new paradigm for learning software organizations.
Paper presented at the International Workshop on Learning Software Organizations.

Sandholm, T. W., & Lesser, V. R. (1996). Negotiation among self-interested computationally limited agents.
Citeseer.

Shen, W., Hao, Q., & Xue, Y. (2012). A loosely coupled system integration approach for decision support in
facility management and maintenance. Automation in Construction, 25, 41–48. doi:10.1016/j.autcon.2012.04.003

Taghezout, N., & Zaraté, P. (2009). Supporting a multicriterion decision making and multi-agent negotiation in
manufacturing systems. Intelligent Decision Technologies, 3(3), 139–155. doi:10.3233/IDT-2009-0061

Tučník, P. (2010). Multicriterial Decision Making in Multiagent Systems–Limitations and Advantages of State
Representation of Behavior. Advances in Data Networks, Communications, Computers, 105-110.

Verrons, M.-H. (2004). GeNCA: un modèle général de négociation de contrats entre agents. Academic Press.

Wibowo, S., & Deng, H. (2013). Consensus-based decision support for multicriteria group decision making.
Computers & Industrial Engineering, 66(4), 625–633. doi:10.1016/j.cie.2013.09.015

Yazdani, M., Zarate, P., Coulibaly, A., & Zavadskas, E. K. (2017). A group decision making support system
in logistics and supply chain management. Expert Systems with Applications, 88, 376–392. doi:10.1016/j.
eswa.2017.07.014

http://dx.doi.org/10.1023/A:1010050603219
http://dx.doi.org/10.1109/ACSAT.2013.13
http://dx.doi.org/10.1504/IJAMS.2018.092078
http://dx.doi.org/10.1504/IJAMS.2018.092078
http://dx.doi.org/10.1109/ICSM.1990.131381
http://dx.doi.org/10.1016/j.dss.2013.05.007
http://dx.doi.org/10.1145/1028976.1029012
http://dx.doi.org/10.1016/j.autcon.2012.04.003
http://dx.doi.org/10.3233/IDT-2009-0061
http://dx.doi.org/10.1016/j.cie.2013.09.015
http://dx.doi.org/10.1016/j.eswa.2017.07.014
http://dx.doi.org/10.1016/j.eswa.2017.07.014

International Journal of Decision Support System Technology
Volume 14 • Issue 1

285

Dinedane Mohammed Zoheir is currently a Ph.D. student.

Abdi Mustapha Kamel holds a Master’s degree and a Ph.D. degree in computer science from Department of
Computer Science at the University of Oran 1 Ahmed Ben Bella, Algeria. He is currently, professor for the same
Department. His research interests include the application of artificial intelligence techniques to software engineering,
software quality, formal specification, Systems analysis and simulations, Data-Mining and Information Research.

