
DOI: 10.4018/IJSDA.20220701.oa1

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

1

Enhancing Behavioral Dependency
for Effective Computing in Software
Deepa Bura, Manav Rachna International Institute of Research and Studies, India

Amit Choudhary, Maharaja Surajmal Institute, India

ABSTRACT

Software plays an important role in effective computing and communication of any services. It becomes
crucial to identify some critical parts of the software that can lead to enhanced computing and increases
efficiency of the software. Dependency plays a significant role in finding relationship amongst classes
and predicting change-prone classes. This paper aims to enhance behavioral dependency by defining
six types of dependencies amongst classes. These are (1) direct behavioral dependency, (2) indirect
behavioral dependency, (3) internal behavioral dependency, (4) external behavioral dependency, (5)
indirect internal behavioral dependency, and (6) indirect external behavioral dependency. Evaluating
these dependencies gives accurate results for the prediction of change-prone classes. Further, the
paper compares the proposed approach with existing methods.

Keywords
Behavioral Dependency, Change-Prone Classes, Communication, Computing, Fault-Prone Classes, Software
Engineering, Software Project Management, Software Systems

INTRODUCTION

In the past few years, software industry has grown at a very fast pace. Software systems change
constantly with time i.e. every developed software needs to be changed at some point of time in
software life cycle. Software change is significant for any organization’s progress. As each organization
spends a lot of money on their software systems. For maintaining the value of these systems, change
is required with changing customer needs.

In any software, there are some parts which are more frequently changed than others. These
sensitive parts which are highly prone to changes are known as change prone classes in an object-
oriented (OO) software. If such classes are identified early in a software it can help developers to
pay more attention on peer review process, testing phase, requirements analysis, maintenance phase
and restructuring efforts on particular classes.

UML is a de-facto standard for representing the design of software systems. UML class diagrams
depict the dependency among different classes and methods involved in these classes. Thus, it plays
a major role in the software development process. When a change in structure or behavior of a class

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

2

affects the other related class, then there exists a dependency amongst the two classes. So it becomes
important to find the change prone classes.

RELATED WORK

Abdeen et al. (2015) predicted improvement, revision, bug fixing and perfective maintenance are also
some of the reasons of a software to change. This necessitates software change to be handled properly.

Mathur et al. (2014) analysed that many software projects fail for one or the other reason. One
of the major reasons of software failure is incapability to understand the changing requirements and
uncontrolled change propagation. Godara et al. (2018) suggested that classes which are prone to
changes needs major consideration as these involve more effort and higher amount of maintenance
costs and development costs.

Dependency can be defined as degree of association amongst two classes, if change in structure
or behavior of one class affects other classes, dependency is said to exist between the classes. Sharafat
and Tahvildari (2008) used Unified Modeling Language (UML) diagrams for the evaluation of
dependency amongst classes. And the process of reverse engineering was used to find the degree
of relationship amongst classes. Jflex software was used for evaluating the results. However, the
evaluated results were based on several assumptions.

Lee et al. (2016) worked on co-change, i.e. if one class is changed it affects the other classes
also. Research proposed an approach for prediction of co-change volume, using regression line co
change was evaluated. Success rate achieved was around 82%. Research focused only on regression
line however other factors were ignored. Arisholm et al. (2004) examined change prone classes using
dynamic coupling feature. The proposed method was built on relating the amount of modifications
in each class with dynamic coupling feature. Godara & Singh (2-15) proposed a new technique to
find change in classes using Artificial Bee Colony algorithm.

Accordingly, the proposed model does not fit into the category of change prediction model as
effort was not done to associate the anticipated metrics with changes in future versions. The research
mainly focussed on finding the relations amongst dynamic coupling and change prone classes. Elish
et al. (2014) used the same concept and extended the work of Arisholm et al. (2004) by removing the
existing gap of not considering the changes in future versions. Research derived statistical correlation
of coupling metrics and change proneness and indicated coupling metrics as a better indicator of
change prone classes from one release to another. Software quality is related with software design.
High quality software design can benefit in reduction of maintenance and testing costs. Eski et al.
(2011) related change prone classes with quality of software. Research indicated software parts which
have poor quality tend to change more frequently.

Bura et al. (2017) gave a dynamic measure of predicting change prone classes. Using run time
information such as execution time, frequency of methods called, inter-dependency and popularity.
Results were validated using OpenClinic and OpenHospital software. Godara and Singh (2014) gave
a new hybrid approach for finding change prone classes, in which frequent item set mining algorithm
is used to find how many times a method is being called by other methods and how many times a
method calls another method. These rules are optimized using Artificial Bee Colony algorithm (ABC)
and using decision tree a class is classified as change prone and non- change prone class.

Penta et al. (2008) focussed on prediction of sensitive parts which are more change prone and
in addition to this predicted changes which mostly affect some specific classes in a software. The
research was based on design patterns which were more affected by change than others. In software
evolution, there are design patterns which are more likely to change than others. Considering earlier
research, the research was different in the context, as it focussed on certain parts of design patterns
rather than focussing on system’s entire design pattern.

Godara and Singh (2014) gave a review of different techniques of finding change prone classes
and discussed advantages and disadvantages of each method. Further, the paper proposed how

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

3

some of the techniques can be improved. Lu et al. (2012) applied statistical techniques for finding
the relationships amongst 62 Object-Oriented attributes and change prone classes. The research
covered several object-oriented metrics which can be divided in four zones: size, coupling, cohesion
and inheritance. For analysing the relationships and combining the outcomes from several studies,
the research used random effect model and statistical techniques. Research ranked these categories
(size, coupling, cohesion and inheritance) based on their obtained results. Size metrics was given first
rank as it can efficiently use in differentiating classes which are having high probability of change in
future from other classes. Coupling and cohesion metrics was given second rank, as they have lesser
predicting capability as compared to size metrics. Inheritance metrics was given third rank, as they
have very poor predicting capability as compared to size metrics and coupling & cohesion metrics.

Godara & Singh (2014) used Behavioral Dependency (BD) to measures the degree of how much
a class is dependent on another class. For example, Source Line of Code (SLOC) contains n number
of classes, and a class constitutes n number of methods. A method can be called by several classes
which causes dependency amongst classes. It is the primary factor of dependency amongst classes,
there exists several factors which causes dependencies amongst classes. Bura and Choudhary(2020)
proposed a system in which retrieval of classes can be improved by the prediction of change proneness.

Godara & Singh (2014) suggested evaluating dependencies, in the form of class diagrams can
help software developers to predict impact of change made in one class on other classes. Predicting
behavioral dependencies, in one version of software helps the software developers as they can focus
more on such sensitive classes in next version of software. Research of Han et al.(2010), Godara &
Singh (2017) suggests to transform these types of dependencies in the form of UML class diagrams
in one version of software, such that it is available in design phase in next version of software which
can help software developers to concentrate more on such classes and can allocate effort according
to evaluated impact of change. Bura and Choudhary (2020) explained the model for finding change
prone classes by taking some metrics derived from the software, the suitability of the metrics was
proved by finding accuracy. Han et al. (2008) used the concept of behavioral dependency in sequence
diagrams and class diagrams.

Galli (2020) gave a review of risk management on the applications of systems. Various factors
were determined for the analysis of risk in a system. Herrera et al. (2019) studies the concept of supply
chain and the behavior of customer on the applications of various factors. Shanbhag and Pardede
(2019) studied the behavior of software when a new project or startup is initiated. Study shows that
software is dynamic and it changes, study revealed varius factors on which a software can be evaluated.
Al-Kadeem et al. (2017) studied the how the work system changes in an industry. Soni & Chorasia
(2017) studied various policies related to training in higher sectors. Pradhan (2017) gave a model for
minimizing the risk in any project.

INTRODUCTION TO UML

UML has emerged as a standard language in Object-Oriented software industry. It is used by software
developers for design and development of Object-Oriented (OO) systems. This modelling language
helps in visualizing, constructing and documenting the software system. It is used for developing
software applications and it is applied in several domains. It is employed to design software,
communicate software or business processes, and capture the necessary data for requirement and
analysis phase. Garousi et al. (2006) analysed that UML acts as a bridge between idea formulation
and implementation phase. It offers several types of diagrams. The arrival of the UML has brought
numerous advantages since it has unified various Object-Oriented analysis and design methods into
one standard modeling language. Due to the evident utilization and tool support to model the design,
Inpirom & Prompoon (2013) discussed that UML occupies a vital part in design and coding part of
software development life cycle. Over the years, it has been extensively used as a standard language
in Object Oriented software industry.

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

4

UML Class Diagrams and Change Proneness
Prediction of change proneness in classes provides a vital information to software developers in
the course of software development and maintenance. Such information is significant to software
developers as they can make more flexible software by giving more attention on such classes. UML
class diagrams plays a major role in providing information about change prone classes. Software
developers can get insight of the classes which classes are more dependent on one another by
analysing various levels of dependencies. This derived information from source code can help software
developers to build a better software in next release of software.

Changes in a software can be due to two reasons. Firstly, it can be due to addition of source
code i.e. if a new class is added, or existing class gets deleted. Change can spread from other classes
also. Such as if change is implemented in one class, and this change has impact on other related
classes also. These changes in software are termed as “spread changes”. UML class diagrams helps
in predicting such type of changes in software systems. By analysing various types of dependencies,
change prone classes can be effectively predicted which can also help in finding impact of change.
Amongst various types of dependencies paper considers behavioral dependency for predicting change
proneness of classes and estimating impact of change occurring in related classes.

Early finding of change proneness in classes allows the programmers and software professionals
to devote their valued time and resources on these domains of software. Predicting such sensitive
classes can help in developing a stable software, such as software developers can focus on these
classes and can choose alternate design before implementation starts. UML class diagrams plays a
major role in predicting such classes in design phases of software development life cycle. Changes
made to a class are not restricted to that class only, it affects other classes also, therefore it becomes
important to analyse changes in individual classes and show changes in related classes. For this
purpose, various types of relationships existing in UML diagrams helps significantly in predicting
how change propagates to other classes. Change prediction in source files which are highly sensitive
to change can aid in the effective distribution of efforts and software resources.

The possibility of occurrence of change in a class is referred to as change proneness of class to
future changes. The independent variables are a set of object oriented metrics listed below:

•	 Coupling between object (CBO): It is count of classes whose attributes are used by a particular
class in addition to that classes which uses the attributes or methods of that particular class.

•	 Number of Children (NOC): It is the count of direct child of a class.
•	 Number of Attributes (NOA): It is the count of attributes defined in a class.
•	 Number of Instance Variable (NIV): It is a measure of relationship of a class with other objects

in the software system.
•	 Depth of Inheritance Tree (DIT): It is the count of levels from class node to the parent of the tree.
•	 Number of Methods (NOM): It is the count of methods defined in each class.
•	 Number of Instance Method (NIM): Number of Instance Methods.
•	 Number of Local Methods (NLM): It is the count of local methods i.e. number of methods

which are not inherited.
•	 Response for Class (RFC): It is the count of class’s method and methods called by class’s

methods. Sum of these methods is response for a class.
•	 Number of Local Default Visibility Methods (NLDM): It is the count of local default

visibility methods.
•	 Number of Private Methods (NPRM): It is the count of local private methods in a class which

are not inherited.
•	 Number of Protected Methods (NPROM): It is the count of local protected methods in a class.
•	 Number of Public Methods (NPM): It is the count of public methods which are not inherited.
•	 Lack of Cohesion amongst methods (LCOM): It is the count of methods that uses the data

field of that particular class. It calculates how much a class is related with its field.

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

5

Above discussed Object-Oriented metrics helps in the prediction of change prone classes.
Earlier, most of the researcher have used these existing metrics for finding the change prone classes.
Information regarding most of these metrics can be generated from UML class diagrams. ObjectAid
UML Explorer can be utilized for generating the class diagrams which are used for finding the
dependencies. This tool depicts the Java source code and libraries in UML class diagrams.

BEHAVIORAL DEPENDENCY

Dependency is a type of relationship amongst classes. If a class is dependent on other class, it is not
necessary that other class is also dependent on the first class. A class which affects other is known
as dependent class and classes that are dependent on this class are known as depending classes.
Any changes made in dependent class affects the functionality of depending class. Thus, it becomes
necessary to deal with such types of dependencies amongst classes.

Dependency is a directed relationship which is utilized to depict that certain UML elements
or a group of elements depends on other elements for specification or implementation. Changing
a dependent class impacts the related depending classes and it can be predicted by evaluating
dependencies between dependent class and depending classes. For example, when a method of one
class is called in other class, method invocation in first class and values returned by other class is a
type of dependencies between classes.

Behavior is defined as a direct consequence of the actions of objects. It states how the states
of the contributing objects alter over time. Behavior specifications can be utilized to define state or
demonstrate the behavior of an object. A number of methods are available in UML to state behaviors
such as use case diagrams, sequence diagram, etc. This research work uses UML class diagrams to
determine behavioral dependency.

Inheritance and polymorphism are two most important factors for calculating behavioral
dependency. Because of these two factors behavioral dependency amongst classes become more
complex. Thus, it becomes necessary to consider both these factors for evaluation of dependency
amongst classes, which is further crucial for evaluation of change prone classes. In the class diagram
of Figure 1, the class2 and class3 are dependent on class1, which shows that the classes class2
and class3� calls the method1(). This dependency information can be derived from the UML class
diagram. If the methods in class1 changes then it is propagated to the dependent classes also.

Figure 1. Dependency

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

6

To measure the behavioral dependency six types of behavioral dependencies are defined and
used in this paper. These are (i) direct behavioral dependency (ii) indirect behavioral dependency
(iii) internal behavioral dependency (iv) external behavioral dependency (v) indirect internal
behavioral dependency and (vi) Indirect External Behavioral Dependency. Evaluating all these types
of dependencies, considers all possible types of inter dependencies that exists between classes. Thus,
prediction of change impact analysis and change prone classes gives accurate results when these
depicted dependencies are implemented for finding change prone classes.

Research methodology is to start with the first version of software, find all the six specified
behavioral dependencies between classes. Dependency gives a measurement of how much a class is
related to other. If the dependency comes out be larger, it indicates that the class is highly prone and
if the dependency is less it indicates the class is less prone. Accordingly, the class can be divided
onto one of the two groups i.e. change prone and non-change prone.

Direct Behavioral Dependency

Definition: Given two classes’ C1 and C2 . C2 has a direct behavioral dependency on C1 . If C2�
needs some service of C1 it achieves it by calling some methods of C1 and C1 returns the
values to C2 . The direct behavioral dependency is denoted by → . Here C C2 1→ .

Figure 2 illustrates direct dependency. Here there are two classes C1 and C2 where C2 is
dependency class and C1 is dependent class. The class C2 . exhibits direct dependency on C1 since
it gets some services of C1 by calling the methods of C1 . The changes made in C1 are propagated
to C2 as C2 is based on C1 .

Indirect Behavioral Dependency

Definition: Given three classes’ C1 , C2 and C 3 , C 3 has a direct behavioral dependency on C2 ,
C2 as a direct behavioral dependency on C1 (i.e. C 3 has an indirect behavioral dependency
on C1). If C 3 needs some service of C1 it calls the methods of C1 via C2 and C1 returns
values to C 3 through C2 . The indirect behavioral dependency is denoted by  . Here C C2 1→ ,
C C3 2→ and C C3 1 .

Figure 3 depicts the indirect behavioral dependency between various classes. There are three
classes C1 , C2 and C 3 where C2 is dependency class of C1 and C 3 is dependency class of C2 .

Figure 2. Direct Behavioral Dependency

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

7

C1 is the dependent class. The class C2 exhibits direct dependency on C1 since it gets some services
of C1 by calling the methods of C1 . Class C 3 invokes methods of C2 which in turn invokes the
methods of C1 . Hence, C 3 exhibits indirect dependency on C1 . Any change made in the C1 affects
C2 which in turn affects C 3 .

Algorithm Tracing direct and indirect behavioral dependency

Input: Java files
Output: behavioral dependency class count (BDCNT), behavioral
 dependency class name, behavioral dependency interface
 names, dependent class name DCLS, depending class name
 (DNGCL), dependent interface name (IDCLS), depending
 interface name (IDNGCLS).
Step 1: for each java program
Step 2: Start function – dependency finder
Step 3: Initialize the value of BDCNT as 1
Step 4: Repeat till the end of readline
Step 5: Start
Step 6: If class is present and if extends or implements is present
Step 7: Increment the value of BDCNT
Step 8: If BDCLS contains extends then the class that precede
 the keyword extends is depending class. Store the class
 name of depending class. The class that comes after
 extends is dependent class, store the class name of dependent class

Figure 3. Indirect Behavioral Dependency

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

8

Step 9: If BDINTERF contains implements then the class that
 precede the keyword implements is depending interface.
 Store the interface name of depending interface name
 IDCLS . The interface that comes after implements is
 dependent interface, Store the name of dependent interface
 as IDNGCLS
Step 10: End the function

Internal Behavioral Dependency

Definition: Given three classes’ C1 , C2 , and C 3 . C 3 has a direct behavioral dependency on C2
and C1 is an independent class. If C 3 needs some service of C2 by calling the methods of
C2 , C2 returns the values to C 3 . If C 3 needs some service of C1 it gets it by creating object
of C1 and then using C1 object to invoke methods of C1 . Finally, C1 returns values to C 3 .
The internal behavioral dependency is denoted by  . Here C C3 2→ and C C3 1 . Figure
4 illustrates the internal behavioral dependency.

Here there are three classes C1 , C2 and C 3 where C 3 is dependency class of C2 . C1
is the dependent class. The class C 3 exhibits direct dependency on C2 since it gets some
services of C2 by calling the methods of C2 . Class C 3 invokes methods of C1 by creating
objects of C1 . Hence, C 3 exhibits internal dependency on C1 . Any change made in C1
affects C 3 .

Figure 4. Internal Behavioral Dependency

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

9

External Behavioral Dependency

Definition: Given four classes’ �C1 , C2 , C 3 and C 4 . C 3 has a direct behavioral dependency on
C2 , C2 has a direct behavioral dependency on C1 (i.e. C 3 has an indirect behavioral
dependency on C1). C 4 is the independent class of another package. If C 3 needs some service
of C 4 by importing another package, then object of C 4 is created to invoke methods of C 4
and C 4 returns values to C 3 . This type of dependency between C 3 and C 4 is known as
external behavioral dependency. It is denoted by  . Here C C2 1→ and C C3 1 , C C3 4 .

Figure 5 depicts the external behavioral dependency. Here there are four classes C1 , C2 , C 3
and C 4 where C2 is dependency class of C1 and C 3 is dependency class of C2 . C 4 is an
independent class belonging to another package. �C1 is the dependent class. C 3 invokes methods of
C 4 by importing the package that has C 4 and then invoking it in C 3 . Class C2 exhibits direct
dependency on C1 since it gets some services of C1 by calling the methods of C1 . Any change
made in the classes C1 , C2 or C 4 affects C 3 . Hence, the change is propagated through classes.

Algorithm Find internal and external behavioral dependency

Input: Java files
Output: behavioral dependency class count BDCNT, behavioral
 dependency class name, behavioral dependency interface
 names, dependent class name DCLS, depending class name DNGCL.
1. Start function – dependency finder
2. Initialize BDCNT -> 1

Figure 5. External Behavioral Dependency

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

10

3. Repeat until readline
4. If keyword method or class-> found
4a: If keyword “new ” -> found or classname ->found
4b: Store BDFNAME & �BDCNT BDCNT= +1 . Store BDCLSNAME .
5: For each BDCLS :
5a: Initialize count =1
5b. If count I is 1 , then it is dependent class. Otherwise it is
 depending class name.
6: Increment I , Go to 5b.
7. Stop

Indirect Internal Behavioral Dependency

Definition: Given two classes C1 and C2 . C2 has a direct behavioral dependency on class C1 , if
C2 needs some service of class C1 by calling some parameterized constructor methods of C1
and C1 returning some values to C2 via super method or keyword. The indirect internal
behavioral dependency is denoted by  . Here C C2 1→ and C C2 1 . Figure 6 illustrates
indirect internal behavioral dependency.

There are two classes C1 and C2 , in which C2 invokes methods of C1 by using parameterized
constructors and hence C2 is changed when the C1 is changed. Here C2 is internally and indirectly
depending on C1 .

Indirect External Behavioral Dependency

Definition: Given four classes C1 , C2 , C 3 , C 4 . C 3 has a direct behavioral dependency on C2 ,
C2 has a direct behavioral dependency on C1 (i.e. C 3 has an indirect behavioral dependency
on C1). C 4 is the independent class of another package.

If C 3 needs some service of C1 by calling some methods of C1 via C2 and C1 returns some
values to C 3 via C2 . If C 3 needs some service of C 4 by importing another package, then invoking
some parameterized constructor methods without Object of C 4 and C 4 returning some values of
C 3 leads to indirect external behavioral dependency. It is denoted by ➻. Here C C2 1→ , C C3 1
and C C3 4 .

Figure 6. Indirect Internal Behavioral Dependency

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

11

Figure 7 portrays indirect external behavioral dependency. Here there are four classes C1 , C2 ,
C 3 and C 4 where C2 is dependency class of C1 . C 4 is an independent class belonging to another
package. C 3 invokes methods of C 4 by importing the package that has C 4 and then invokes
parameterized constructors in C 3 . Any change made in the classes C1 , C2 or C 4 affects C 3 .
Also, the change is propagated through classes.

Algorithm Find indirect internal and external behavioral dependency.

Input: Java files
Output: behavioral dependency class count BDCNT, behavioral
 dependency class name, behavioral dependency interface
 names, dependent class name DCLS, depending class name DNGCL.
1. for each java program
2. Start function – dependency finder
3. Initialize the value of BDCNT -> 1
4. Repeat until readline
5. If a method -> found or keyword class -> found or keyword
 super -> found
6a: If the keyword ‘new ’ -> found or class name -> found
6b: Store BDFNAME and BDCNT BDCNT= +1. Store the BDCLSNAME
7. For each BDCLS do the following steps
8. Initialize count value I = 1
9. If count I is 1, class=dependent class, else class= depending class.
10. Increment I , Go to step 9
11. Stop

Figure 7. Indirect External Behavioral Dependency

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

12

Using all the above mentioned algorithms, dependency of a class is calculated which gives the
total count of dependency as discussed in next section.

MEASURE OF BEHAVIORAL DEPENDENCY

BD C Sum of D D D D D D
j

j n
D I INT EXT II IE() =

≤
∑ � � � � �

�
, , , ,

,
	 (1)

where, C j n
j
,1≤ ≤ , and n is the total number of classes:

D
D

 – direct behavioral dependency
D
I

 – indirect behavioral dependency
D
INT

 – internal behavioral dependency
D
EXT

 – external behavioral dependency
D
II

 – indirect internal behavioral dependency
D
IE

 – indirect external behavioral dependency

Algorithm Algorithm to measure behavioral dependency

Step 1: Compute the direct dependency (D
D
), indirect dependency (D

I
).

Step 2: Compute the internal dependency (D
INT

), external dependency (D
EXT

).

Step 3: Compute the indirect internal dependency (D
II
) and

 indirect external dependency (D
IE
).

Step 4: Behavioral dependency is computed by using equation (1).

DEPENDENCY MODEL FOR CHANGE IMPACT ANALYSIS

Research provides mathematical model for dependency evaluation in Object-Oriented Software
systems. This model helps in evaluation of dependencies using various attributes, which can be used
for finding relationship amongst classes. The evaluated relationships are used for finding the impact
of changes amongst classes. Dependency model is build using behavioral dependencies which were
defined in paper 5.

This dependency model gives a theoretical approach for finding similarity between various classes.
Similarity is estimated by evaluating attribute and operations similarity between various levels of
defined dependencies amongst classes. Estimation of dependency between various classes using this
dependency model can help in early prediction of impact of changes amongst classes.

Direct Behavioral Dependency

Consider two classes C
1
 and C

2
 having direct dependency between them. Class similarity matrix is

obtained using equation (2):

NIS C C v NSM C C v ISM C C
n i

(,) (,) (,)
1 2 1 2 1 2

= × + × 	 (2)

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

13

where, C
1
, C

2
 are two classes:

v and v
n i
 - Represent arbitrary weights assigned to the name similarity and internal similarity

respectively.

NIS represents Name Internal Similarity (NIS), NSM represents Name Similarity Matrix which
measures the similarity between the names of two classes, C1 and C2, based on their semantic similarity.

ISM is the Internal Similarity Matrix (ISM) which measures the internal similarity of two classes
C1 and C2, as a weighted similarity of their attributes’ and operations similarity.

NSM and ISM are evaluated using equation (3) and (4):

NSM C C SS Name C Name C
1 2 1 2
, ,() = () ()() 	 (3)

ISM C C v ASim C C v OSim C C
a m

(,) (,) (,)
1 2 1 2 1 2

= × + × 	 (4)

v and v
a m
 - Represent arbitrary weights assigned to the attributes and operations similarity

respectively.

SS represents the semantic similarity which is stated as a metric over a set of documents, where
the similarity is evaluated based upon their similar meaning rather than syntactical representation.

Attribute similarity and operations similarity is evaluated using equations (5) and (6) ASim
and OSim between classes C

1
 and C

2
 in the interval of 1 to i is given by:

ASim C C Max aSim a a A
k l

n

Ai

(,) , /
1 2

1
2

= ∀ ()














=

∑ 	 (5)

OSim C C Max oSim o o O
k l

n

Oi

(,) , /
1 2

1
2

= ∀ ()














=

∑ 	 (6)

Finally, the neighbourhood similarity is derived from following equation (7):

NNHSM C C v NSM C C v NHSM C C
n nh

(,) (,) (,)
1 2 1 2 1 2

= × + × 	 (7)

where, NNHSM is Name Neighbourhood Similarity matrix, NHSM is the Neighbourhood Similarity
Matrix. It is used to calculate neighbourhood similarity in the same way.

Indirect Behavioral Dependency
Given three classes’ C1 , C2 and C 3 , C 3 has a direct behavioral dependency on C2 , C2 has a
direct behavioral dependency on C1 (i.e. C 3 has an indirect behavioral dependency on C1). If C 3
needs some service of classname1 it calls the methods of C1 via C2 and C1 returns values to C 3
through �C2 . The indirect behavioral dependency is denoted by  . Here C C2 1→ , C C3 2→ and
C C3 1 . Class similarity is obtained using following metrics in the classes which have indirect

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

14

behavioral dependency. Consider three classes C
1
, C

2
 and C

3
 having indirect dependency between

them. Suppose, there is an indirect dependency between C
1
 and C

3
 through C

2
.

Name Similarity Matrix is given by the following equation (8):

NIS C C C v NSM C C C v ISM C C C
n i

(, ,) (, ,) (, ,)
1 2 3 1 2 3 1 2 3

= × + × 	 (8)

where, C
1
, C

2
 and C

3
 are classes and C

3
 is given by, C C

3 1
= in terms of C

2
.

v and v
n i
 - Represent arbitrary weights assigned to the name similarity and internal similarity

respectively.

Similarly, NSM, ISM, ASim , OSim and NNHSM are evaluated using equations (9), (10), (11),
(12),(13):

NSM C C C SS Name C Name C Name C(, ,) ((), (), ())
1 2 3 1 2 3

= 	 (9)

ISM C C C v ASim C C C v OSim C C C
a m

(, ,) (, ,) (, ,)
1 2 3 1 2 3 1 2 3

= × + × 	 (10)

v and v
a m
 - Represent arbitrary weights assigned to the attributes and operations similarity

respectively:

ASim C C C Max aSim a a A
k l

n

Ai

(, ,) , /
1 2 3

1
2

= ∀ ()














=

∑ 	 (11)

OSim C C C Max oSim o o O
k l

n

Oi

(, ,) , /
1 2 3

1
2

= ∀ ()














=

∑ 	 (12)

NNHSM C C C v NSM C C C v NHSM C C C
n nh

(, ,) (, ,) (, ,)
1 2 3 1 2 3 1 2 3

= × + × 	 (13)

v and v
n nh
 - Represent arbitrary weights assigned to the name similarity and neighborhood similarity

respectively.

Here, all the values are examined between C
1
 and C

3
 through C

2
.

Internal Behavioral Dependency
Name internal similarity and name neighbourhood similarity is evaluated for three classes using
equations (14) and (15):

NIS C C C v NSM C C C v ISM C C C
n i

(, ,) (, ,) (, ,)
1 2 3 1 2 3 1 2 3

= × + × 	 (14)

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

15

NNHSM C C v NSM C C C v NHSM C C C
n nh

(,) (, ,) (, ,)
1 2 1 2 3 1 2 3

= × + × 	 (15)

v and v
n i
 - Represent arbitrary weights assigned to the name similarity and internal similarity

respectively.
v and v
n h
 - Represent arbitrary weights assigned to the name similarity and neighborhood similarity

respectively.

where, C
1
, C

2
 and C

3
 are classes and C

3
 is given by:

C
3

= C
2
and C

2
= C

1
and C C3 1 �via C

2
	

Name similarity matrix and internal similarity matrix is given by equations (16) and (17):

NSM C C C SS Name C Name C Name C(, ,) ((), (), ())
1 2 3 1 2 3

= 	 (16)

ISM C C C v ASim C C C v OSim C C C
a m

(, ,) (, ,) (, ,)
1 2 3 1 2 3 1 2 3

= × + × 	 (17)

v and v
a m
 - Represent arbitrary weights assigned to the attributes and operations similarity

respectively:

ASim C C C Max aSim a a A
k l

n

Ai

(, ,) , /
1 2 3

1
2

= ∀ ()














=

∑ +	 (18)

OSim C C C Max oSim o o O
k l

n

Oi

(, ,) , /
1 2 3

1
2

= ∀ ()














=

∑ +	 (19)

Using equations (18) and (19) attribute similarity and operations similarity of the classes is
obtained.

A1 and A2 are two sets of attributes of Classes C1, C2, C3 respectively:

a A and a A A A
k l
∈ ∈ ≤

1 2 1 2
 , 	

The attribute similarity aSim a a
k l

(,) between two attributes, a and a
k l
 is computed based on

their semantic similarity as quantified by above equation (18).
Similarly:

o O and o O O O
k l
∈ ∈ ≤

1 2 1 2
 , 	

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

16

The operations similarity OSim o o
k l

(,) between two attributes, o ando
k l

 is computed based on
their semantic similarity as quantified by above equation (19).

External Behavioral Dependency
External behavioral dependency is denoted by  . Here C C2 1→ and C C3 1 , C C3 4 .

The Name Similarity Matrix is given by the following equation (20):

NIS C C C C v NSM C C C C v ISM C C C C
n i

(, , ,) (, , ,) (, , ,)
1 2 3 4 1 2 3 4 1 2 3 4

= × + × 	 (20)

where, C
1
, C

2
, C

3
 and C

4
 are classes and C

1
 = C

3
 via C

2
 = C

4
 via C

3
.

NSM, ISM, ASim and OSim are evaluated in the following equations (21), (22), (23), (24):

NSM C C C C SS Name C Name C Name C Name C(, , ,) ((), (), (), ())
1 2 3 4 1 2 3 4

= 	 (21)

ISM C C C C v ASim C C C C v OSim C C C C
a m

(, , ,) (, , ,) (, , ,)
1 2 3 4 1 2 3 4 1 2 3 4

= × + × 	 (22)

ASim C C C C Max aSim a a A
k l

n

Ai

(, , ,) , /
1 2 3 4

1
2

= ∀ ()














=

∑ 	 (23)

where, A1 and A2 are two sets of attributes of Classes C1, C2, C3 and C4 respectively.

v and v
a m
 - Represent arbitrary weights assigned to the attributes and operations similarity

respectively:

a A and a A A A
k l
∈ ∈ ≤

1 2 1 2
 , 	

The similarity ASim a a
k l

(,) between two attributes, a and a
k l
 is computed based on their

semantic similarity as quantified by above equation 22:

OSim C C C C Max oSim o o O
k l

n

Oi

(, , ,) , /
1 2 3 4

1
2

= ∀ ()














=

∑ 	 (24)

where:

o O and o O O O
k l
∈ ∈ ≤

1 2 1 2
 , 	

The similarity OSim o o
k l

(,) between two attributes, o and o
k l
 is computed based on their

semantic similarity as quantified by above equation (25):

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

17

NNHSM C C C C v NSM C C C C v NHSM C C C C
n nh

(, , ,) (, , ,) (, , ,
1 2 3 4 1 2 3 4 1 2 3

= × + ×
44
) 	 (25)

Name neighbourhood similarity matrix is evaluated using equation (25).
Here, all the values was considered such as: 1) C

1
, C

3
 through C

2
; 2) C

2
, C

4
 through C

3
.

COMPARATIVE ANALYSIS

This section shows the comparative analysis with related work given by other authors. Mostly
Researchers have compared two versions of software using source line of code. Such that the change
prone classes have been predicted using attributes such as line inserted, deleted or modified. And
compared different versions of software line by line using tool such as Winmerge software. Using
this information researchers predicted class as change prone and non-change prone class. This work
provides an advantage over related work, as it provides change prone classes using design measures,
which is dynamic in nature.

Comparative Analysis With Existing Work
The efficiency of the proposed is compared with the existing technique Han et al. (2010) in terms
of prediction of number of change prone classes. The behavioral dependency measure is evaluated
on a diverse version of open-source software JFlex, which is implemented in Java and is taken from
http://sourceforge.net. The concept behind the working of JFlex lexers is deterministic finite automata
(DFAs). It is quick, do not introduce exclusive backtracking and is intended to operate along with
the LALR parser generator by Scott Hudson, and the Java modification of Berkeley Yacc BYacc/J
by Bob Jamison.

Table 1 provides the comparison of number of classes identified as change prone classes. From
Figure 8, it is seen that for 8 packages, the proposed technique predicts 114 classes and the existing
technique identified 106 classes. The proposed technique extracted classes based on the six behavioral
dependencies whereas the existing method extracted classes with two behavioral dependencies. Thus,
the proposed approach outperforms and gives better refined results based on the extended behavioral
dependency concept.

The prediction capability of the proposed technique was also evaluated with existing approach
Malhotra and Khanna (2013) against data sets obtained from two versions of open source software
(Frinika and FreeMind).

FreeMind is leading software for mind-mapping which is implemented in Java. Source code of
the software is available at www.sourceforge.net. In addition to mind map functionality, FreeMind is
a hierarchical editor that is easy to use and focus more on folding. It is used to manage knowledge and
content. Frinika is free software that offers entire music workstation which can run on Linux, Windows,
Mac OSX and other operating systems. It is implemented in Java and has many characteristics like
sequencer, soft-synths, real time effects and audio recording. Table 2 gives the number of change
prone classes predicted using proposed and existing approaches .

Figure 9, gives the number of change prone classes in Frinika software version 0.2.0 and 0.6.0
and Freemind software versions 0.9.0 RC1 and 0.9.0 RC7 using proposed and existing approach.

Table 1. Number of change prone classes detected using proposed and existing methods

Metrics Name Version 1 Version 2 No. of Classes Packages

Existing Jflex 1.3 1.4.3 106 8

Proposed Jflex 1.3 1.4.3 114 8

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

18

Figure 8. Change proneness prediction using proposed and existing Han et al. (2010) methods

Table 2. Number of change prone classes detected using proposed and existing Malhotra and Khanna (2013) methods

Techniques Name Version 1 Version 2 Number of classes

Existing
Frinika 0.2.0 0.6.0 1812

Freemind 0.9.0 RC1 0.9.0 RC7 1875

Proposed
Frinika 0.2.0 0.6.0 894

Freemind 0.9.0 RC1 0.9.0 RC7 1284

Figure 9. Number of change prone classes predicted using proposed and existing methods

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

19

Number of change prone classes predicted using proposed approach in Frinika software 0.2.0
and 0.6.0 are 894. However, using existing methodology Malhotra and Khanna (2013), number
of change prone classes were predicted as 1812. While evaluating the efficiency of the proposed
technique using two dissimilar versions 0.9.0 RC1 and 0.9.0 RC7 of Freemind software, the number
of classes identified as change prone classes are 1284. However, the number of change prone classes
were 1875 using existing technique for the Freemind software versions 0.9.0 RC1 and 0.9.0 RC7. Fig.
7.3 depicts the identification of number of classes as change prone using the proposed and existing
techniques for two different versions of software Frinika and FreeMind. It is evident that the proposed
technique predicts change prone classes with better accuracy as the existing technique considers
just Object- Oriented metrics for evaluating change prone classes, however the proposed approach
considers OO metrics and other features for predicting change proneness. The performance of the
proposed technique was compared with existing technique Malhotra and Jangra (2013) in predicting
the change proneness using data sets obtained from three open source software of different versions
Art-of Illusion and Sweet Home-3D.

Art of Illusion is complete software that has all the features of 3D modelling, rendering, and
animation studio. It is implemented completely in Java, and can work on all operating system. Sweet
Home-3D is application software that provides interior design to draw house plans, arrange furniture
and view the results in 3D. Source code for these software is available on website www.sourceforge.net.
Table 3 mentions the number of change prone classes predicted using proposed and existing method.

From Figure 10, the classes exhibiting change in Sweet Home-3D software version 3.6 and 3.7
using the proposed technique was found to be 200 and the classes without change was 743. But, the
existing technique detected 15 classes as classes exhibiting change and 333 classes without change for
the two versions of Sweet Home-3D software version 3.6 and 3.7. While evaluating the performance
of the proposed technique using two different versions 2.7 and 2.9.2 of software Art-of Illusion, the
number of classes exhibiting change was 167 and classes without change was 1005. However, the
numbers of classes with and without change were 131 and 303 respectively, using the existing technique
for the 2.7 and 2.9.2 of software Art-of Illusion. The prediction of change prone classes of proposed
system was better than the existing system. As a summary of this evaluation, the proposed approach
for change proneness prediction can be used in intra system scenarios to predict change prone classes.

CONCLUSION

Early detection of change prone classes benefits software developers and maintainers such as they can
devote significant time and effort on such sensitive classes. Keeping this view in mind, this paper made
an attempt to understand use of UML diagrams in software development life cycle. Further, discussed
various types of behavior diagrams in UML such as use case diagrams, interaction diagrams, state–chart
diagrams, and activity diagrams. Because of the simplicity of UML class diagrams, research suggests
software developers to use UML class diagrams for analyzing the types of dependencies that exists

Table 3. Number of change prone classes detected using proposed and existing Malhotra and Jangra (2013) methods

Technique Software Version 1 Version 2 P/L
used

Total
classes

Classes
exhibiting

change

Classes
without
change

Existing
Art-of Illusion 2.7 2.9.2 Java 434 131 303

Sweet Home-3D 3.6 3.7 Java 348 15 333

Proposed
Art-of Illusion 2.7 2.9.2 Java 1172 167 1005

Sweet Home-3D 3.6 3.7 Java 943 200 743

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

20

between classes. For getting a better understanding of UML class diagrams, a detailed study of these
diagrams is given in above sections of this paper. Paper highlighted various types of relationships that
exists between classes of UML class diagrams. And discussed advantages of using UML class diagrams
in prediction of change prone classes. This research extends the concept of behavioral dependency in
this paper and suggested six types of behavioral dependencies: direct behavioral dependency, indirect
behavioral dependency, internal behavioral dependency, external behavioral dependency, indirect
internal behavioral dependency and indirect external behavioral dependency. Various definitions
and algorithms for computing different types of behavioral dependency is discussed in this paper.
With the help of these dependencies, UML class diagrams can help in finding how much a class is
dependent on other class, such that in next release of software such sensitive classes can be more
focused for efficient resource allocation and timely completion of software. Research aims to give
predictions to next version of software.

Different types of behavioral dependencies given in this paper evaluates how much a class is
dependent on another class. And when a change is made in a class how it impacts other related classes.
Evaluating various types of given dependencies helps in predicting how change propagates amongst
classes. Paper mainly discussed about spread changes and prediction of these spread changes using
various types of dependencies at a detailed level.

This paper provides description of the most significant feature of change proneness prediction
model, evaluation of these dependencies classifies a class into dependent and depending class. Further,
for the evaluation of these dependencies a dependency model is given in paper.

Applications of the proposed research can be in the field of Reverse Engineering so that the
maintenance phase takes less time and becomes easier. Secondly the study can be used to identify
the classes in two groups that is change prone and non-change prone class, so that the prone classes
can be more focused.

Figure 10. Number of change prone classes detected using proposed and existing methods

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

21

Future Scope
Maintenance phase of Software Development Life Cycle takes around 65-70% percent of time. If
change prone classes are identified in the initial phases of the lifecycle model. It becomes easier
to handle such classes, in an effective manner. Even the process of Reverse Engineering becomes
easier, as when the change is demanded by customer it can be easily handled. This paper gives an
approach of identifying change prone classes by finding behavioral dependency between classes. In
future, a model can be built in which more object oriented features can be combined with behavioral
dependency to predict the proneness of a class.

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

22

REFERENCES

Abdeen, H., Bali, K., Sahraoui, H., & Dufour, B. (2015). Learning dependency-based change impact predictors
using independent change histories. Information and Software Technology, 67, 220–235. doi:10.1016/j.
infsof.2015.07.007

Al-Kadeem, R., Backar, S., Eldardiry, M., & Haddad, H. (2017). Review on using system dynamics in designing
work systems of project organizations: Product development process case study. International Journal of System
Dynamics Applications, 6(2), 52–70. doi:10.4018/IJSDA.2017040103

Arisholm, E., Briand, L. C., & Fyen, A. (2004). Dynamic Coupling Measurement for Object-Oriented Software.
IEEE Transactions on Software Engineering, 30(8), 491–506. doi:10.1109/TSE.2004.41

Bura, D., & Choudhary, A. (2020). A novel change impact model for enhancing project management. International
Journal of Project Organisation and Management, 12(2), 119–132. doi:10.1504/IJPOM.2020.106373

Bura, D., & Choudhary, A. (2020). Enhancing Information Retrieval System Using Change-Prone Classes.
In Critical Approaches to Information Retrieval Research (pp. 40–68). IGI Global. doi:10.4018/978-1-7998-
1021-6.ch003

Bura, D., Choudhary, A., & Singh, R. K. (2017). A Novel UML Based Approach for Early Detection of
Change Prone Classes. International Journal of Open Source Software and Processes, 8(3), 1–23. doi:10.4018/
IJOSSP.2017070101

Elish, M., & Zouri, A. (2014). Effectiveness of Coupling Metrics in Identifying Change-Prone Object-Oriented
Classes. Proceedings of the 2014 International Conference on Software Engineering Research and Practice
(SERP’14), 44-50.

Eski, S., & Buzluca, F. (2011). An Empirical Study on Object-Oriented Metrics and Software Evolution in
Order to Reduce Testing Costs by Predicting Change-Prone Classes. IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), 566 – 571.

Galli, B. J. (2020). Application of Systems Engineering to Risk Management: A Relational Review. International
Journal of System Dynamics Applications, 9(2), 1–23. doi:10.4018/IJSDA.2020040101

Garousi, V., Briand, L. C., & Labiche, Y. (2006). Analysis and visualization of behavioral dependencies among
distributed objects based on UML models. Proceedings of the 9th international conference on Model Driven
Engineering Languages and Systems, 365-379. doi:10.1007/11880240_26

Godara, D., Choudhary, A., & Singh, R. K. (2018). Predicting Change Prone Classes in Open Source Software.
International Journal of Information Retrieval Research, 8(4), 1–23. doi:10.4018/IJIRR.2018100101

Godara, D., & Singh, R. (2014). A new hybrid model for predicting change prone class in object oriented
software. International Journal of Computer Science and Telecommunications, 5, 1–6.

Godara, D., & Singh, R. K. (2014). A review of Studies on Change Proneness Prediction in Object Oriented
Software. International Journal of Computers and Applications, 105(3).

Godara, D., & Singh, R. K. (2014). Implementation of UML2. 0 Based Change Proneness Prediction in OO
Software through Dependency. Academic Press.

Godara, D., & Singh, R. K. (2014, September). Improving change proneness prediction in UML based design
models using ABC algorithm. In 2014 International Conference on Advances in Computing, Communications
and Informatics (ICACCI) (pp. 1296-1301). IEEE. doi:10.1109/ICACCI.2014.6968320

Godara, D., & Singh, R. K. (2014). Understanding change prone classes in object oriented software. International
Journal of Computers and Applications, 107(1).

Godara, D., & Singh, R. K. (2015). Enhancing Frequency Based Change Proneness Prediction Method Using
Artificial Bee Colony Algorithm. In Advances in Intelligent Informatics (pp. 535–543). Springer. doi:10.1007/978-
3-319-11218-3_48

Godara, D., & Singh, R. K. (2017). Exploring the relationships between design measures and change proneness in
object-oriented systems. International Journal of Software Engineering, Technology and Applications, 2(1), 64–80.

http://dx.doi.org/10.1016/j.infsof.2015.07.007
http://dx.doi.org/10.1016/j.infsof.2015.07.007
http://dx.doi.org/10.4018/IJSDA.2017040103
http://dx.doi.org/10.1109/TSE.2004.41
http://dx.doi.org/10.1504/IJPOM.2020.106373
http://dx.doi.org/10.4018/978-1-7998-1021-6.ch003
http://dx.doi.org/10.4018/978-1-7998-1021-6.ch003
http://dx.doi.org/10.4018/IJOSSP.2017070101
http://dx.doi.org/10.4018/IJOSSP.2017070101
http://dx.doi.org/10.4018/IJSDA.2020040101
http://dx.doi.org/10.1007/11880240_26
http://dx.doi.org/10.4018/IJIRR.2018100101
http://dx.doi.org/10.1109/ICACCI.2014.6968320
http://dx.doi.org/10.1007/978-3-319-11218-3_48
http://dx.doi.org/10.1007/978-3-319-11218-3_48

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

23

Han, A. R., Jeon, S. U., Bae, D. H., & Hong, J. E. (2008, July). Behavioral dependency measurement for change-
proneness prediction in UML 2.0 design models. In 2008 32nd Annual IEEE International Computer Software
and Applications Conference (pp. 76-83). IEEE.

Han, A. R., Jeon, S. U., Bae, D. H., & Hong, J. E. (2010). Measuring behavioral dependency for improving
change-proneness prediction in UML-based design models. Journal of Systems and Software, 83(2), 222–234.
doi:10.1016/j.jss.2009.09.038

Herrera, M. M., Carvajal-Prieto, L. A., Uriona-Maldonado, M., & Ojeda, F. (2019). Modeling the Customer
Value Generation in the Industry’s Supply Chain. International Journal of System Dynamics Applications, 8(4),
1–13. doi:10.4018/IJSDA.2019100101

Inpirom, A., & Prompoon, N. (2013, May). Diagram change types taxonomy based on analysis and design models
in UML. In Software Engineering and Service Science (ICSESS), 2013 4th IEEE International Conference on
(pp. 283-287). IEEE. doi:10.1109/ICSESS.2013.6615306

Lee, S. J., Lo, L. H., Chen, Y. C., & Shen, S. M. (2016). Co-changing code volume prediction through association rule
mining and linear regression model. Expert Systems with Applications, 45, 185–194. doi:10.1016/j.eswa.2015.09.023

Lu, H., Zhou, Y., Xu, B., Leung, H., & Chen, L. (2012). The ability of object-oriented metrics to predict change-
proneness: A meta-analysis. Empirical Software Engineering Journal, 17(3), 200–242. doi:10.1007/s10664-011-9170-z

Malhotra, R., & Khanna, M. (2013). Inter project Validation for Change Proneness Prediction using Object-
Oriented Metrics. Software Engineering. International Journal (Toronto, Ont.), 3(1), 21–31.

Malhotra, R., & Jangra, R. (2013). Prediction & Assessment of Change Prone Classes Using Statistical &
Machine Learning Techniques. Journal of Information Processing Systems, 1-26.

Mathur, S., Soni, A. K., & Sharma, G. (2014). C2MC: An Automated Tool of the Requirement Engineering
Model for a Non Fading Data Warehouse. International Journal of Data Mining And Emerging Technologies,
4(2), 111–119. doi:10.5958/2249-3220.2014.00009.3

Penta, M., Cerulo, L., Gueheneuc, Y., & Antoniol, G. (2008). An empirical study of the relationships between
design pattern roles and class change proneness. Proceedings of IEEE International Conference on Software
Maintenance, 217-226. doi:10.1109/ICSM.2008.4658070

Pradhan, P. L. (2017). Proposed Heuristics Model Optimizing the Risk on RTS. International Journal of System
Dynamics Applications, 6(2), 31–51. doi:10.4018/IJSDA.2017040102

Shanbhag, N., & Pardede, E. (2019). The Dynamics of Product Development in Software Startups: The Case
for System Dynamics. International Journal of System Dynamics Applications, 8(2), 51–77. doi:10.4018/
IJSDA.2019040104

Sharafat, A. R., & Tahvildari, L. (2008). Change prediction in object-oriented software systems: A probabilistic
approach. Journal of Software, 3(5), 26–39. doi:10.4304/jsw.3.5.26-39

Soni, S., & Chorasia, B. K. (2017). Policy Planning in Higher Technical Education: A System Dynamic Approach.
International Journal of System Dynamics Applications, 6(3), 87–110. doi:10.4018/IJSDA.2017070105

Deepa Bura received her B.E. degree from Maharishi Dayanand University, Rohtak,India and M.Tech. degree in
Information Technology from Guru Gobind Singh Indraprastha University, Delhi, India. She completed her Ph.D.
degree from Uttarakhand Technical University, Dehradun, India. Her field of research includes Software Engineering,
Database systems and Datawarehouse and data mining. She is working as Associate Professor in Manav Rachna
International Institute of Research and Studies, India. She has more than 30 research papers to her credit.

Amit Choudhary is currently working as an Associate Professor and Head in the Department of Computer Science
at Maharaja Surajmal Institute, New Delhi, India for the last 17 years. He has done MCA, M.Tech and M.Phil in
Computer science and doctoral degree in Computer Science and Engineering from M. D. University, Rohtak, India.
His research interest is focused on Machine Learning, Pattern Recognition and Artificial Intelligence. He has many
international publications to his credit.

http://dx.doi.org/10.1016/j.jss.2009.09.038
http://dx.doi.org/10.4018/IJSDA.2019100101
http://dx.doi.org/10.1109/ICSESS.2013.6615306
http://dx.doi.org/10.1016/j.eswa.2015.09.023
http://dx.doi.org/10.1007/s10664-011-9170-z
http://dx.doi.org/10.5958/2249-3220.2014.00009.3
http://dx.doi.org/10.1109/ICSM.2008.4658070
http://dx.doi.org/10.4018/IJSDA.2017040102
http://dx.doi.org/10.4018/IJSDA.2019040104
http://dx.doi.org/10.4018/IJSDA.2019040104
http://dx.doi.org/10.4304/jsw.3.5.26-39
http://dx.doi.org/10.4018/IJSDA.2017070105

