
DOI: 10.4018/JCIT.20220701.oa6

Journal of Cases on Information Technology
Volume 24 • Issue 3

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Malware Detection in Android
Apps Using Static Analysis
Nishtha Paul, Jaypee Institute of Information Technology, Noida, India

Arpita Jadhav Bhatt, Jaypee Institute of Information Technology, Noida, India

Sakeena Rizvi, Jaypee Institute of Information Technology, Noida, India

Shubhangi, Jaypee Institute of Information Technology, Noida, India

ABSTRACT

Current studies have revealed startling facts about data harvesting incidents, where user’s personal data
is at stake. To preserve the privacy of users, a permission-induced risk interface MalApp to identify
privacy violations rising from granting permissions during app installation is proposed. It comprises
of a multi-fold process that performs static analysis based on app’s category. First, the concept of
reverse engineering is applied to extract app permissions to construct a Boolean-valued permission
matrix. Second, ranking of permissions is done to identify the risky permissions across category.
Third, machine learning and ensembling techniques have been incorporated to test the efficacy of
the proposed approach on a data set of 404 benign and 409 malicious apps. The empirical studies
have identified that the proposed algorithm gives a best case malware detection rate of 98.33%. The
highlight of interface is that any app can be classified as benign or malicious even before running it
using static analysis.

Keywords
Android OS, Benign, Ensembling, Heuristic Approach, Machine Learning, Malware, Permission Ranking,
Permissions, Risk-Relevance

1. INTRODUCTION

It is nothing much surprising that the mobile app industry is flourishing and growing immediately after
2008 when the first app was launched. In today’s era, everyone’s life revolves around smartphones,
which has raised a serious concern for security and privacy. One of the biggest issues being faced
by this trending technology is the protection of smartphone devices against various security threats
and prevention of user’s privacy leaks. One of the most exciting features of smartphones is that their
functionalities can be expanded by installing third-party applications called as ‘apps’. Android is one
of the most popularly used platforms for smartphones with billions of apps available on its official
‘Play Store’. As reported by buildfire statistics, there were 2.7 billion smartphone users in the world
in 2019 and on an average, a smartphone user uses about 30 apps per month (Blair, n.d.). Apps for the
Android OS are mainly written in the JAVA and KOTLIN language (Bose, 2018). With the increase
in the development of Android apps since 2008 when the first android app was launched, there are
over 2.9 million apps available for download on the Google Play Store globally (Market.us, n.d.).
However, this has also resulted in increase of privacy breach of users. App usage rate is increasing at
a steady rate with no signs of decline in the future. Forbes stated that the testing specialist researchers

Journal of Cases on Information Technology
Volume 24 • Issue 3

2

at Comparitech had found out that the apps which had been installed for more than 28 million times
were detected to show attack paths to threat actors looking to exploit vulnerabilities on the Android
platform (Winder, n.d.). The apps were scanned for dangerous permissions and trackers embedded
within them.

To summarize on one hand, the smartphones provide the users an open platform to download
third party apps from play stores and have fun and enjoyment, on the other hand, they bring loads of
unknown risk to the security of the personal data of the users. The users so conveniently download
the apps without foreseeing the damage they can bring in their lives. Studies have revealed that the
users blindly grant the permissions to run the app in such a hurry that they can’t foresee the harm that
app can cause. Therefore, it is the responsibility of the developers to request only relevant permissions
and they should be transparent so that the users can make informed decisions.

Research studies have also revealed that malware apps can steal sensitive personal information
such as login credentials, biometric information, financial and banking information. Additionally, the
apps are also capable of accessing gallery images of the owner and other people, videos, important
documents, contact details, call logs, messages, emails, location details, IMEI number, IP address,
etc. (TermsFeed, n.d.). Hence analysis of apps needs immediate attention. To analyze behaviour of
apps lot of researchers have performed static analysis of apps to prompt the users and to warn them
even before running the app about its risky behaviour.

Various studies discussed in Section II have detected privacy violations by Android apps data sets
comprising thousands of apps irrespective of the category of the app. In this work, we have incorporated
app’s category which plays a major role in app analysis process to identify malicious behavior. Apps
on Android platform are sorted based on category. An app’s category is very important as it depicts
the general behaviour and function of an app. To substantiate the fact, an app belonging to photo and
video category will require access to user’s photo album and camera to function well. Likewise, there
are several other permissions like location, Bluetooth, SMS read/write permission, microphone etc.
Therefore, it is the responsibility of developer to choose app’s category wisely before uploading on
Play Store. Currently there are 35 categories available on Google Play Store, therefore permissions
play a very important role in our research study (Play, n.d.). As use of some permissions such as user’s
location might be very useful in maps and navigation category while the same permission might be
dangerous for some other categories such us. As permissions embedded in app and category plays
a very important role to identify basic functionality of an app. In the course of this study, we have
performed category-based analysis of the risky permissions requested by android apps when they
are being downloaded and before they are run to an Android device.

A brief summary of the prime contributions of the proposed work is listed level by level as follows:

•	 This work presents an interface developed in JAVA which uses Python at backend to classify
unknown malicious apps. The interface takes an unknown android app’s .apk file along with its
category and predicts whether it is fit to use or not even before running the app.

•	 Incorporates reverse engineering approach using the ‘apktool’ to extract app permissions from
AndroidManifest.xml to construct a Boolean-valued permission matrix P

mxn
, where m represents

number of apps under analysis from various categories and n is the number of permissions. We
have tested about 60 apps for every category over a total of 324 android permissions.

•	 Applies systematic risk ranking approach to rank every permission from each category based
on risk-relevance using Correlation Coefficient. Out of 234 permissions, the top 20 risky ones
were chosen in every category.

•	 Incorporates data heuristic approach that assigns weights to permissions based on category and
risk-relevance by assigning higher heuristic value to a more riskier permission. This helps to
improve the performance of the model.

•	 Uses machine learning and data ensembling techniques to analyse the behaviour of 404 benign
and 409 malicious apps. Several machine learning classifiers namely naive bayes, SVM, decision

Journal of Cases on Information Technology
Volume 24 • Issue 3

3

tree (J48), random forest, as well as ensembling techniques such as bagging, boosting, and voting
have been employed. The proposed malware detection interface has been evaluated on several
performance metrics such as True Positive Rate (TPR), False Positive Rate (FPR), Accuracy
and Area Under the Receiver Operating Characteristic (AUROC) curve.

•	 Applies a comprehensive analysis of performance metrics and chooses the best combination of
classifier and permission matrix for each category.

•	 The proposed interface is capable of testing the new unknown app on the trained model and
predicts the final output as Benign or Malware.

As complementary parts to this introduction, Section II briefs the related research papers consulted
for the study. Section III describes the data set. Section IV describes the methodology of performing
the static analysis with the generation of sparse and heuristic data set followed by classification of
malware apps using various classifiers. Section V shows how the proposed interface is used to detect
the malicious behaviour of an unknown android app before the whole research work is concluded in
Section VI. Section VII finally describes the possible future work.

2. RELATED WORK

This research work is surfeited with white papers, journals, research articles and papers which
focus on exploring the risks and vulnerabilities associated with the use of android permissions. This
section provides an outline of some related studies in this area which have been referred to carry out
behavioural analysis of Android apps.

2.1 Reverse Engineering
The process of reverse engineering is used for analysing the behaviour of an app to determine the
potential sources of privacy leaks. Reverse engineering can be applied using static analysis or dynamic
analysis. During static analysis install time behaviour of app is analysed while in dynamic analysis
run-time behaviour of the app is analysed (Chikofsky & Cross, 1990). Elliot J. Chikofsky describes
reverse engineering as a tool used to extract design information or knowledge from anything made
by man and use it to reproduce something new and effective (Chikofsky & Cross, 1990). Siegfried
Rasthofer discussed that purely automatic analysis is usually not enough for detecting the privacy
leaks and malware apps (Rasthofer et al., 2016). To identify the behaviour of the explicit permissions
which can be used to leak personal data, human intervention is necessary. This can be done via some
tools that can assist manual investigation. CodeInspect, an absolutely innovative reverse engineering
tool for the Android apps which can be used to support analysts and investigators was proposed by
(Rasthofer et al., 2016). Initially, a variety of mobile OS such as Blackberry, Bada, Windows etc.
were designed but got discontinued because they could not compete the momentum already built by
Android and iOS. Some of the best reverse engineering tools for iOS include lldb, otool, nm, etc. In
this work we have used Apktool for reverse engineering. Taranjeet Kaur Chawla and Aditi Kajala
have surveyed many android apps by reverse engineering them and used many types of reverse
engineering tools such as Dex2jar, Apktool, JD-GUI etc. (Chawla & Kajala, 2014). May Thu Kyaw
used reverse engineering and examined many android apps for checking the malicious activities
(Myat, 2019). Their results demonstrated that most malware apps inject the malicious codes and
unnecessary permission in the AndroidManifest.xml file. Lipo Wang has adapted three most popular
Android app reversing tools, including dex2jar, Apktool, and Soot, which transform the executable
source into Jasmin, Smali, and Jimple ILs, respectively (Arnatovich et al., 2018). In this work, reverse
engineering in form of static analysis has been used. Some of the prominent work in field of static
analysis have been described below.

Journal of Cases on Information Technology
Volume 24 • Issue 3

4

2.2 Static Malware Analysis
Wei Wang employed three feature ranking methods, namely, correlation coefficient, mutual
information, and T-test to analyse the risky behaviour of a group of collaborative permissions and rank
them with respect to their risk (Wang et al., 2014). The results of this paper showed that their malapp
detectors which were based on risky permissions gave satisfied performance with a fair detection
rate of 94.62% with a False Positive Rate of 0.6%. Fauzia Idrees presented a unique Android based
malware detection tool, named AndroPIn, whose basic research elements were android permissions
and intents (Idrees et al., 2017). Their framework overcame the limitations of surreptitious techniques
used by malware by exploiting the usage pattern of permissions and intents. Hyunjae Kang proposed
a system which enabled fast detection of malware by using creator information such as serial number
of certificates (Kang et al., 2015). Additionally, it analyzed malicious behaviours and permissions to
increase detection accuracy. The system could also classify malware apps based on some similarity
scoring. The paper concludes that the detection and classification performance of their presented
mechanism was 98% and 90% accuracy, respectively.

2.3 Classification Algorithms
Previous work compiled in (Fereidooni et al., 2016; M & M.N, 2015; Rashidi et al., 2017; Sahal
et al., 2018; Sun et al., 2018; Tao et al., 2018; Yu et al., 2013) mainly focus on applying various
algorithms to analyse the risky permissions in android apps. M. Hossin systematically reviewed many
evaluation metrics and analysed that accuracy is generally considered while comparing the results
of various classifiers but it has several weaknesses like less discriminability, less distinctiveness,
less informativeness and it is bias to majority class data (M & M.N, 2015). The paper also proposed
some other metrics that are specifically designed for discriminating the optimal solution. Hossein
Fereidooni has proposed a technique to classify apps to benign or malware by employing several
algorithms for classification such as SVM, XGBoost, KNN, Logistic Regression, Naive Bayes,
Decision Tree, Random Forest classifiers and Deep Learning using the scikit-learn python library
(Fereidooni et al., 2016).

2.4 Features of our Interface compared with prior research
Inspired by iABC, a permission induced risk model which had been proposed specifically for iOS
devices to detect the privacy breach arising due to permissions granted at the run-time (Bhatt et al.,
2018). We have implemented a similar technique in the form of a JAVA interface for apps built for
Android OS. As compared to the existing works in the research world of android apps, categorized
analysis of malicious behaviour of apps has not been adequately. Therefore, the center of attention
which differentiates our work with the prior studies is the app’s category which is taken into
consideration while detecting malicious apps.

During our study, neither the permission vector sets of android apps were classified on the basis
of categories nor was the apps’ source code readily available in data repositories. Reverse engineering
technique was applied to extract permissions from app’s manifest file and analyse their source code.
The feature ranking technique discussed in (Wang et al., 2014) was used to rank and weigh permissions
according to their risk-relevance. Top 20 risky permissions were selected and then weighing factors
were assigned based on their category. New permission matrix P

mxn

' was constructed after assigning
weighing factors based on permission ranking using heuristic approach. After examining various
papers on machine learning techniques and research works on static analysis, a few were shortlisted
to train the model and then test an unknown app to predict its malicious behaviour.

Journal of Cases on Information Technology
Volume 24 • Issue 3

5

3. DATA SET

A plethora of research has been performed in the field of malware analysis of android apps but minimal
work has been conducted that analyses apps on the basis of their category. In order to conduct an
extensive examined research over the risky behaviour of explicit and implicit android permissions,
our study required a large data set comprising of permission vectors of each app and a note of their
respective categories.

The data set was manually constructed by downloading 30 apks of benign android apps Google’s
official store Play Store (Play, n.d.) and 30 apks from third party malware stores like vShare (vShare,
n.d.) and aptoide (Aptoide, n.d.) for 14 android categories, namely, art & design, augmented reality,
auto & vehicles, beauty, books, comics, communication, house & home, lifestyle, libraries & demo,
maps & navigation, personalization, videoplayers & editors and weather. A total of 404 benign and
409 malware android apks were reverse engineered for analysis.

In this work, 324 permissions have been considered which can contain implicit as well as
explicit permissions provided by the Android system. At the development stage, the app developer
has to explicitly request the permissions by including them in the AndroidManifest.xml file. All
the permissions are listed in the Manifest file of the app’s folder. In this work, static analysis on the
android apps has been done which aims to analyse the behaviour of apps before they start running by
analysing their code. apktool has been utilized to reverse engineer all apks. Later, DOM XML parser
was used to read the AndroidManifest.xml file and extract all the permissions written in it. Finally,
for every category, each app was denoted by a 324 - dimensional boolean vector wherein 1 denotes
that the app requests a particular permission and 0 if it doesn’t. This sums up the sparse data set of
the research work. After construction of permission matrix, machine learning approach was applied
to train classifiers and predict the behaviour of app. Thereafter, a heuristic approach was introduced
to redesign these permission vectors in an attempt to improve the malware classification performance
which will discussed later in detail based on permission ranking. The following section describes the
static analysis approach in detail.

4. STATIC APP ANALYSIS

Static Analysis means an analysis that has been simplified in which the effect of any instantaneous
change to a system is calculated without considering the longer-term response of that system to the
change. On the other hand, dynamic analysis is done to consider how the particular system is expected
to respond to the change over time (Wikipedia, n.d.).

Static analysis performs the exploration of a system or a software without actually executing it.
This is achieved through the analysis of the source code or the binaries of the system. This process
helps in understanding the code structure, and also helps to ensure that the code adheres to industry
standards.

For classifying behaviour of Android apps, different static features such as permissions, Inter-
process communication (IPC), developer ID, API calls, intents, hardware, code semantics and
components have been used to detect malware (Idrees et al., 2017). However, features like permissions,
API calls, and IPC have gained more attention from the researchers. Android apps run as a separate
virtual machine on the device, so by default it does not have any authority to perform operations
such as accessing resources such as SMS, contacts, gallery etc. or altering the settings of Wi-Fi,
Bluetooth etc. It requires the consent or the approval of the user to perform any action on the device.
This is achieved via the concept of permissions. Apps can explicitly request these privileges through
permissions (Idrees et al., 2017).

As discussed in the prior sections, it is quite evident that misuse of these permissions can cost the
users massively. The objective of study in this paper is to perform a static analysis on android apps

Journal of Cases on Information Technology
Volume 24 • Issue 3

6

by examining the permissions requested and the key category factor and finally detecting whether
an app is benign or malware without running it.

This section gives an overview of the static analysis performed and the results which will be
passed in the interface for testing the malicious behaviour of an unknown android app.

4.1 Static analysis pre work phase - Generating Dataset
As previously discussed, due to the lack of availability of dataset divided on the basis of Android
categories, the analysis couldn’t begin without generating the whole dataset from scratch. In this
stage of the first phase of the model, a technique was implemented to extract a list of permissions
requested by an app without actually running the app.

4.1.1 Reverse Engineer Android Apps
An APK (Android Package) is a comprehensive file, most probably a ZIP file that encapsulates the
code, resources, signature, manifest and several other files that need to be executed in order to have
the complete Android app up and running. AndroidManifest.xml comprises the permissions requested
by the app. Being aware of the fact that security is highly correlated to android permissions, the main
task was to get hold of this file.

The Android OS works on code from the “Android Open Source Project,” or AOSP. This code is
open-source and hence, developers can fetch the source code and create their own operating systems
from it (Hoffman, n.d.). To substantiate this fact, reverse engineering was applied using ‘apktool’,
which is a java-based platform-independent tool used to decode resources to nearly original form
and reconstruct them after making some modifications. This tool was used to reverse engineer the
android apks and convert them into their respective folders so as to access the AndroidManifest.xml
file.As previously stated, Google Play categorizes android apps under 35 different categories. Aiming
to study the behaviour and use of various permissions under different categories, 14 most prominent
ones were shortlisted for the research work.

According to the need of training the interface, 30 android apks from Play Store (Play, n.d.)
under the ‘benign’ label and 30 apks from third party malware stores such as vShare (vShare, n.d.)
and aptoide (Aptoide, n.d.) under the ‘malware’ label were downloaded across 14 categories. The
list of categories chosen for analysis and the number of apps installed are shown in Table 1. With
the objective of performing the study, in total 813 apps were installed and then reverse engineering
was performed on every apk individually. Following command was utilized to decompile an apk
apktool d name-of-app.apk

Figure 1 shows the terminal logs while running apktool on a sample apk.

4.1.2 Construct Permission Matrix Pmxn
For the course of the research work, the apps have been trained and analysed on 324 Android
permissions (Paul, n.d.). A JAVA code was written that extracted the user-permissions from the
Manifest.xml and generated a sparse i.e. binary valued permission matrix , where m denotes the no.
of apps (both benign and malware) and n denotes number of android permissions. Each app was
represented by a 324-dimensional Boolean vector, where 1 denotes that the app requests the permission
and 0 otherwise. Figure 2 gives a snapshot of the sparse dataset for Art & Design category consisting
of rows depicting apps and columns depicting permissions and the last column acts as a label which
indicates if the app mentioned is benign or malicious.

4.2 Sparse Phase
The objective of this phase is to study different machine learning algorithms by applying them on the
sparse dataset created in the previous subsection and evaluate the results on the basis of performance
metrics. Thereby, the goal was to select the one which gives the best performance so that it can be

Journal of Cases on Information Technology
Volume 24 • Issue 3

7

Table 1. Category-wise number of applications

S. No. Category Benign Malware

1 Art&Design 30 30

2 Augmented Reality 22 28

3 Auto&Vehicles 30 29

4 Beauty 30 30

5 Books 30 30

6 Comics 22 22

7 Communication 30 30

8 House&Home 30 30

9 Libraries&Demo 30 30

10 Lifestyle 30 30

11 Maps&Navigation 30 30

12 Personalization 30 30

13 VideoPlayers&Editors 30 30

14 Weather 30 30

Total Number of Applications 404 409

Figure 1. Working of apktool

Journal of Cases on Information Technology
Volume 24 • Issue 3

8

used to select the best classifier for the testing the apps in the interface. Figure 3 depicts a flowchart
describing the course of action of this phase. Following subsection describes the machine learning
algorithms for training the classifiers and predict the behaviour of apps.

4.2.1 Machine Learning Algorithms
After extracting the features from apps and constructing the sparse dataset for each category, seven
machine learning algorithms were applied to investigate the effectiveness and select the best classifier
for every individual category. The classifiers used for this purpose were built employing the following
algorithms on python and its library Scikit-learn.

Figure 2. Snapshot of Sparse Permission Matrix (PmXn) of Libraries & Demo category

Figure 3. Flowchart depicting the malware classification technique

Journal of Cases on Information Technology
Volume 24 • Issue 3

9

1. 	 Naive Bayes

Naive Bayes classifier originates from the Bayesian theory of probability. The advantage of using
Bayesian classifiers is that these classifiers are probabilistic models. They work powerfully when it
comes to using real data noise and missing values. It shows a good performance on both weak and
strong attribute dependencies. The Gaussian Naive Bayes has been used from Scikit-learn library
(De Ferrari & Aitken, 2006).

2. 	 SVM (Support Vector machines)

The Support Vector Machine (SVM) is a statistical learning technique suitable for binary
classification techniques. Its main goal is to form a “hyperplane” which divides the data instances
into two classes:- positive and negative. The basic technique is to find out the smallest “hypersphere”
present in training instances and to determine on which side of the hypersphere the test instance
is present. The maximum margin hyperplane has the greatest separation between the classes. The
instances closer to the maximum margin hyperplane are known as support vectors (Zareapoor &
Shamsolmoali, 2015)

3. 	 Decision Trees (J48)

A decision tree classifier is considered as a non-parametric classifier. It does not have a
requirement of any prior statistical assumptions regarding the distribution of data. The data is divided
recursively to create a decision tree in accordance with the attributes and the defined classification
framework. A decision rule is required at every node which can be implemented using a type of test
that splits the data (Otukei & Blaschke, 2010).

4. 	 Random forest

In Random Forest algorithm many CART-like trees are created, that are trained on smaller samples
of the original training data. The algorithm searches across a subset that is randomly selected. This is
done to find a split. After that, all the trees present in the Random Forest at that time, cast a vote for
the most popular attribute at input x. The majority votes determine the output of the classifier. This
algorithm handles high dimensional data. Also, the random selection of variables for a split results
in minimizing correlation among the trees present in the ensemble which further decrease the error
rates (Gislason et al., 2006).

5. 	 Bagging

Bagging is an ensembling technique designed to enhance the stability and accuracy of algorithms
used for classification and regression. It combines the result of classifications of randomly generated
training sets and forms a final prediction set. It works on a principle which is that many “weak
learners” can be used to form a “strong learner”. When the classification of a new instance is to be
done, it is done repeatedly to each of the week classifiers in the ensemble. Each weak classifier casts
a “vote” for a class. The final prediction is gained by that class which has maximum votes (Zareapoor
& Shamsolmoali, 2015).

6. 	 Boosting

Journal of Cases on Information Technology
Volume 24 • Issue 3

10

Adaboost is a type of meta-algorithm. It can coexist with many other learning algorithms so
that performance of the algorithm is improved. The working of the algorithm begins by assigning
the same weight to all instances in the training data. Then the learning algorithm is called so that
it forms a classifier for this data. It reweighs all the instances in accordance with output of the
classifier. The weight instances that are classified by the algorithm correctly is decreased, whereas
that of misclassified ones is increased due to which a set is created that has easy instances with low
weight and another is created that has hard ones with high weight. Once again in the next iteration, a
classifier is created and instances are reweighed, This is mainly done to focus on classifying the hard
instances correctly. Then the weights assigned to instances are increased or decreased in accordance
with the output of this new classifier (Korada et al., 2012).

7. 	 Voting

The simplest ensemble algorithm is the voting method, and is very effective. It can be used for
classification and regression problems. It works by making two or more sub-models. Every sub-
model makes predictions that are combined in such a way, as by calculating the mean or mode of
the predictions, it allows each sub-model to cast a vote on the outcome of the prediction. To really
achieve the expected outcome from the voting ensemble, diverse base classifiers should be used
(Ledisi & Ugochukwu, 2019).

4.2.2 Evaluation Metrics
The classifiers discussed in the previous subsection had been analysed and compared on the basis
of various performance metrics such as the accuracy, TPR, FPR and Area under the ROC (Receiver
Operator Characteristic) curve and the results were combined together to have a broader picture of
the overall analysis (Neptune.ai, n.d.). This will later help us to determine what combination of i)
type of data set and ii) classification algorithm trained would be most suited for each category to
perform a predictive analysis of the risky behaviours of a new Android app. Following evaluation
metrics were employed (Tharwat, 2018).

1. 	 Classification Accuracy

Classification accuracy can be calculated as the ratio of number of correctly classified instances
to overall classifications (Tharwat, 2018).

Accuracy
NumberOfCorrectClassifications

TotalNumberOfSample
=

ss
×100 	 (1)

2. 	 True Positive Rate (TPR)/Recall

Performing analysis on ‘imbalanced class’ problems, it was noticed that accuracy results in a
high value due to an overwhelming majority of instances belonging to a single class. The metric
which should now be used is recall/TPR. It is the ratio of true positives to the data points that actually
were positive.

TPR
TruePositives

TruePositives FalseNegatives
=

+
×100 	 (2)

Journal of Cases on Information Technology
Volume 24 • Issue 3

11

3. 	 False Positive Rate (FPR)

This is the opposite of TPR. It measures the ratio of false positives to the actual number of
negatives in a dataset.

FPR
FalsePositives

FalsePositives TrueNegatives
=

+
×100 	 (3)

4. 	 ROC Curve

A Receiver Operator Characteristic (ROC) curve is visualized as a graphical plot which shows
the diagnostic ability of the binary classifiers. The ROC curve depicts the trade-off between the
sensitivity (or TPR) and specificity (1 – FPR) (Neptune.ai, n.d.). TPR and FPR is calculated for every
threshold and plot it on a single graph.

The higher TPR and the lower the FPR would result in a better threshold and hence, the classifiers
whose curves are nearer to the top-left corner indicate a finer performance level. If the curve comes
closer to the 45-degree diagonal of the ROC space i.e. FPR = TPR, then test or the classifier is
considered to be very less accurate. It is not easy to compare different classifiers by solely analysing
the ROC curve because there is no scalar value to represent the expected performance (Tharwat,
2018). Therefore, Area under the ROC Curve, or ROC AUC score is calculated to analyse how good
the curve or the classifier is. The more top-left cornered the curve is the higher the area and thus
higher AUROC score.

During the analysis, it was very difficult to choose a specific classifier for classifying the
categories accurately solely depending on any one of the first three evaluation metrics. Therefore, ROC
curve which does not depend on the class distribution was chosen for evaluating behaviour of apps.
Accuracy, TPR and FPR were not considered as cost sensitive analysis measures. Overall classifiers’
accuracy is based on one specific cutpoint, while ROC tries to include all of the cutpoints and plots
the sensitivity and specificity curve. So while comparing the overall accuracy, actually, the accuracy is
being compared based on a particular cutpoint. The overall accuracy varies from cutpoint to cutpoint.

For checking any classification model’s performance, Area under the ROC Curve is one of the
most important evaluation metrics to be used and hence this was chosen for proceeding forward
(Tharwat, 2018).

4.3 Heuristic Phase
This phase introduces a heuristic approach used to improve the performance of the malware detection
using various classifiers.

4.3.1 Google’s guideline for app permission and category
The analysis performed till now was dependent solely on the frequency of the permissions requested
by malware and benign apps. But, the analysts could not identify or pin point which all permissions
were specifically responsible for the malicious behaviour of apps of a particular category. So, before
proceeding with the coding of the interface, we studied the Google guidelines which are provided by
Google to android developers to choose an appropriate category and the permissions to be requested
explicitly. It is the responsibility of the developers to follow Google guidelines for incorporating the
allowed user permissions for a category before uploading them to App store (Bhatt et al., 2018).
The guidelines provided by Google clearly mentions that permission requests should make sense to
users. Therefore, it is expected from the developers that only minimal essential permissions which are

Journal of Cases on Information Technology
Volume 24 • Issue 3

12

required to implement the features or services in the app are promoted in the Play Store listing and
they must be requested for authorization. Those permissions which allows the access of user or device
data for disallowed, unimplemented or undisclosed features or purposes should not be used. Sensitive
or personal user data which can be accessed through permissions should never be sold (Google, n.d.).

Google’s guidelines provides basic app functionalities for every category. Any additional features
added by the developers to enhance and make it more useful might be detected as malicious or not.
These are referred as utility functions. Some developers adopt mal-practices to increase the ASO (App
Store Optimization) such as choosing the least competitive category, which might not be related to
the app, so that their app gets a better chance to rank closer to the top. It should be kept in mind that
putting an app in a blatantly wrong category can lead to serious trouble (MobiLoud, n.d.). The app
might not be approved or as far as Google Play is concerned, users can report violations for review.
It’s only a matter of time before someone points them out.

4.3.2 Pearson’s Correlation Coefficient for ranking permissions
Permissions are regarded as basic features that are used to describe functionalities of apps, and
their behaviour indicates their attempts to have interactions with the data, the OS or other installed
apps. In this work, X stands for a permission variable. To indicate the label of an app as benign or
malware, a class variable is defined. In this work, C represents the class variable. The risk-relevance
of requesting a permission could be examined by measuring the relevance between that permission or
feature variable and the given class variable. A strong correlation between both of these depicts the
increase in risk of granting that permission. Feature ranking, which is a measure of the relevance of
any feature and class variables, tends to select the most informative features out of all and improves
the performance of learned models (Singh et al., 2011; Wang et al., 2014). Pearson CorrCoef is used
to measure the relevance between X and C.

R X C
cov XC

var X var C
,

.
() = ()

() ()
	 (4)

which for boolean variable and binary class becomes

R X C
X X C C

X X C C

n

N

n n

n

N

n n

N

n

,() =
−() −()

−() −()
=

= =

∑

∑ ∑
1

1

2

1

2
	 (5)

where X (resp. C) called mean of the values of sample of X (resp. C), X
n

 (resp. C
n

), n = 1...N.
R(X,C) which has a value in [−1, 1], where R X C,() = 0 depicts the in dependency of X and C,
R X C,() = 1 indicates the most positive correlation between them and R X C,() = −1 denotes the
most negative correlation. In this study, R X C,() = 1means that particular permission that is requested
by X makes apps prone to the highest risks, while R X C,() = −1 depicts that permission requests
of X makes the apps prone to lower risks.

4.3.3 Ranking Permissions w.r.t Risk-Relevance
Pearson Correlation Coefficient was used on every category to rank all the 324 permissions and a
greater value of the coefficient indicates a riskier permission. Category wise permission matrix P

mxn

Journal of Cases on Information Technology
Volume 24 • Issue 3

13

was used to identify the top 20 risky permissions. After ranking the risky permissions, the results
were utilized and Play Store guidelines were used to assign weighing factors using heuristic approach.

To demonstrate the permission ranking results, ranking of the top 20 risky permissions of Libraries
& Demo category have been displayed in Table 2 in the decreasing order of correlation coefficient.
Similar work was performed for all the other categories.

Tables depict the results obtained by employing machine learning classifiers without assigning
the weighing factors and solely based on permission ranking results. Table 3 depicts the accuracy
results for all classifiers for each category. Likewise, Table 4, Table 5, and Table 6 depicts summary
of performance metrics TPR, FPR and AUROC for all classifiers and categories.

During analysis, bar graphs were also constructed for every category indicating the frequency of
benign and malware apps using those particular risky permissions. Figure 4 represents the occurrence
percentage of top 20 permissions of libraries & demo category. The ranking of permissions are done
from left to right where left most permission being the most risky one. Length of the solid black bar
line depicts the frequency of malware android apps and length of the dash-patterned bar line depicts
the frequency of benign ones.

A similar analysis was done on the other categories also, and it was clearly evident from most
of the graphs/ categories that the top most risky permissions distinguish mal apps from the benign

Table 2. Ranking of Top 20 Risky Permissions of Libraries & Demo Category

Rank Score Permissions

1 0.9672 WRITE_SYNC_SETTINGS

2 0.9534 AUTHENTICATE_ACCOUNTS

3 0.9388 MANAGE_ACCOUNTS

4 0.9388 INSTALL_PACKAGES

5 0.8901 READ_SYNC_SETTINGS

6 0.8901 USE_CREDENTIALS

7 0.8050 READ_SYNC_STATS

8 0.8050 CHANGE_WIFI_MULTICAST_STATE

9 0.8050 RECEIVE_BOOT_COMPLETED

10 0.7485 ACCESS_WIFI_STATE

11 0.5517 WAKE_LOCK

12 0.1857 VIBRATE

13 0.1857 ACCESS_NETWORK_STATE

14 0.1857 INTERNET

15 0.1857 WRITE_SETTINGS

16 0.1857 BLUETOOTH

17 0.1857 BLUETOOTH_ADMIN

18 0.1857 CHANGE_WIFI_STATE

19 0.1857 SYSTEM_ALERT_WINDOW

20 0.1857 FLASHLIGHT

Journal of Cases on Information Technology
Volume 24 • Issue 3

14

Table 3. Compilation of Accuracy for all classifiers for each category (% wise)

Category Naive
Bayes SVM Random

Forest J48 Bagging Boosting Voting

Art&Design 53.33 78.00 73.33 76.66 78.33 76.66 76.66

Augmented Reality 68.16 60.00 84.00 84.00 82.00 84.00 86.00

Auto&Vehicles 50.84 54.24 77.97 79.66 77.97 76.27 79.66

Beauty 46.67 56.67 56.67 60.00 58.33 61.67 55.00

Books 65.00 56.67 61.67 61.67 63.33 60.00 63.33

Comics 65.91 61.36 65.91 68.18 63.64 63.91 61.36

Communication 80.00 80.00 78.33 73.33 78.33 73.33 75.00

House&Home 98.33 98.33 100.00 100.00 98.33 98.33 98.33

Libraries&Demo 98.33 98.33 98.33 98.33 98.33 96.67 96.67

Lifestyle 75.00 76.67 80.00 76.67 81.67 83.33 78.33

Maps&Navigation 63.33 91.00 83.33 83.33 80.00 86.67 83.33

Personalization 100.00 100.00 100.00 98.33 100.00 100.00 100.00

VideoPlayers&Editors 66.67 60.00 71.67 56.67 65.00 63.33 56.67

Weather 60.00 73.33 81.67 90.00 81.67 83.33 83.33

Table 4. Compilation of TPR for all classifiers for each category

Category Naive
Bayes SVM Random

Forest J48 Bagging Boosting Voting

Art&Design 0.72 0.77 0.75 0.75 0.77 0.75 0.50

Augmented Reality 0.91 0.91 0.86 0.92 0.90 0.92 0.50

Auto&Vehicles 0.62 0.76 0.75 0.79 0.85 0.85 0.50

Beauty 0.60 0.62 0.58 0.55 0.55 0.60 0.50

Books 0.57 0.65 0.68 0.50 0.63 0.42 0.50

Comics 0.73 0.66 0.64 0.57 0.54 0.54 0.45

Communication 0.82 0.80 0.85 0.85 0.85 0.82 0.50

House&Home 0.98 0.98 1.00 1.00 1.00 1.00 0.50

Libraries&Demo 0.98 0.97 0.98 0.98 0.98 1.00 0.50

Lifestyle 0.77 0.50 0.83 0.85 0.85 0.85 0.50

Maps&Navigation 0.90 0.90 0.90 0.92 0.87 1.00 0.50

Personalization 0.50 0.50 0.50 0.98 0.98 0.85 0.50

VideoPlayers&Editors 0.58 0.67 0.68 0.60 0.67 1.00 0.50

Weather 0.68 0.82 0.83 0.83 0.83 0.82 0.50

Journal of Cases on Information Technology
Volume 24 • Issue 3

15

Table 5. Compilation of FPR for all classifiers for each category

Category Naive
Bayes SVM Random

Forest J48 Bagging Boosting Voting

Art&Design 0.28 0.23 0.25 0.25 0.23 0.25 0.50

Augmented Reality 0.09 0.09 0.14 0.06 0.08 0.06 0.50

Auto&Vehicles 0.37 0.23 0.25 0.20 0.15 0.15 0.50

Beauty 0.40 0.38 0.42 0.45 0.45 0.40 0.50

Books 0.50 0.35 0.32 0.50 0.36 0.58 0.50

Comics 0.27 0.34 0.36 0.43 0.45 0.27 0.55

Communication 0.18 0.20 0.15 0.15 0.15 0.63 0.50

House&Home 0.02 0.02 0.00 0.00 0.00 0.00 0.50

Libraries&Demo 0.02 0.03 0.02 0.02 0.02 0.00 0.50

Lifestyle 0.23 0.50 0.16 0.15 0.15 0.15 0.50

Maps&Navigation 0.10 0.10 0.10 0.08 0.13 0.00 0.50

Personalization 0.50 0.50 0.50 0.02 0.02 0.15 0.50

VideoPlayers&Editors 0.42 0.34 0.32 0.40 0.33 0.00 0.50

Weather 0.32 0.18 0.16 0.17 0.17 0.18 0.50

Table 6. Compilation of AUROC Curve for all classifiers for each category

Category Naive
Bayes

SVM Random
Forest

J48 Bagging Boosting Voting

Art&Design 0.71 0.76 0.81 0.73 0.78 0.78 0.50

Augmented Reality 0.89 0.90 0.90 0.87 0.87 0.90 0.43

Auto&Vehicles 0.78 0.76 0.83 0.82 0.83 0.85 0.48

Beauty 0.60 0.67 0.63 0.52 0.62 0.64 0.50

Books 0.65 0.65 0.73 0.57 0.64 0.39 0.50

Comics 0.63 0.65 0.67 0.54 0.54 0.58 0.43

Communication 0.91 0.80 0.93 0.79 0.90 0.88 0.50

House&Home 1.00 0.98 1.00 1.00 1.00 1.00 0.50

Libraries&Demo 0.53 0.79 0.78 0.70 0.78 0.80 0.69

Lifestyle 0.86 0.87 0.93 0.87 0.89 0.87 0.50

Maps&Navigation 0.86 0.90 0.93 0.85 0.86 0.88 0.50

Personalization 1.00 1.00 1.00 0.98 0.96 0.98 0.50

VideoPlayers&Editors 0.69 0.67 0.71 0.64 0.68 0.68 0.50

Weather 0.80 0.81 0.89 0.79 0.85 0.82 0.50

Journal of Cases on Information Technology
Volume 24 • Issue 3

16

ones in a better manner by the frequency of their appearance as the solid black bar exceeds the dash-
patterned one.

To substantiate the above findings, during analysis it was observed that the CHANGE_WIFI_
MULTICAST_STATE permission was consistently ranked as the riskiest permission by almost 50%
of the categories. The malware apps request this permission to make the apps enter into multicast
mode. The other risky permissions considered risky by other categories were INSTALL_PACKAGES,
WRITE_SYNC_SETTINGS, READ_SYNC_SETTINGS and SYSTEM_ALERT_WINDOW. The
difference in the usage of these permissions was more than 50% in malware apps than the benign
ones. It could be easily visualized that the pattern of usage of SYNC_SETTINGS permission was
considerably different in benign or in malware apps. The malware apps tend to read and write data
from the users’ phone via local servers without letting the user know about this hidden action. This
data can be in the form of images, videos, important documents, stored settings of the phone etc. A
large percentage of permissions requested in the category of video players & editors were benign
which means that risk is very less while using apps under this category.

4.3.4 Assign Weighing Factors and Reform Permission Matrix Pmxn to Generate P mxn'
In order to improvise the analysis results and performance of the classifiers, a heuristic approach was
proposed to redesign the sparse dataset. After listing all the permissions in the descending order of
their risk-relevance using Coefficient Correlation method, top 20 permissions were chosen and then,
heuristic values were assigned to every permission. The motive was to provide a greater heuristic
value to the most risky permissions in each category.

JAVA code written for the sparse approach was improvised to generate a new permission matrix
P’mXn, where m denotes the no. of apps (both benign and malware) and n denotes number of android
permissions. Earlier, every value of PmXn was a Boolean value i.e. 0 or 1 and now, each value of P’mXn

Figure 4. Occurrence percentage of top 20 permissions of Libraries & Demo category

Journal of Cases on Information Technology
Volume 24 • Issue 3

17

was in range [0, 0.25, 0.5, 0.75,1] based on permission ranking results and Play Store guidelines for
each category. Heuristic values were assigned to the top 20 risky permissions in the following fashion:

•	 Permission No. 1-5 will be assigned a heuristic value of 1.00
•	 Permission No. 6-10 will be assigned a heuristic value of 0.75
•	 Permission No. 11-15 will be assigned a heuristic value of 0.50
•	 Permission No. 16-20 will be assigned a heuristic value of 0.25
•	 All the other left 304 permissions will be assigned a heuristic value of 0.00

After regenerating the data sets with the newly calculated heuristic values, all the classifiers were
applied again on the heuristic data set to check the efficacy of proposed approach.

4.4 Evaluation of Static Analysis approach
The subsection analyses the improvement in the research by pondering over the differences in the static
and heuristic results. In this phase, heuristically constructed permission matrix was passed as input to
the classifiers. Figure 5 depicts a snapshot of the permission matrix comprising of heuristic values.

The heuristic permission matrices were passed as input to the classifiers and several evaluation
metrics were recomputed to check the efficiency of classifiers for app prediction. Following subsections
describe the analysis of results obtained.

4.4.1 Results of Analysis Without Weighing Factors vs with Weighing Factors
The empirical results identified that about 60% of the categories showed a remarkable increase in the
area under the ROC curve precision metric, when heuristic dataset was used to classify the android
apps.

A comparison of results of both the data sets showing AUROC achieved on applying various
classifiers on the Libraries & Demo category has been collected in the Table 7. It can be inferred
that SVM with the Heuristic Dataset gives the best case result for this category. Similar inferences
were drawn for other categories explained in the next subsection.

Figure 5. Snapshot of Heuristic Permission Matrix (P’mXn) of Libraries & Demo category

Journal of Cases on Information Technology
Volume 24 • Issue 3

18

4.4.2 Best Combination of Dataset and Classifier
After analyzing the results of the classifiers, finally, the best combination of classifier and permission
matrix for each category was chosen which gives the largest area under the ROC curve. The
combination chosen have been compiled in the Table 8.

The combinations were fed in our proposed interface and were used to classify Android apps
based on its category and permission ranking results.

5. INTERFACE

Completing all the above phases finally brings us to the main part of our research work. In this section,
how the interface can be used in malware identification and detection has been explained in detail. The
prime motive of the study was to be able to predict and inform the user whether he/ she should install

Table 7. Comparison of AUROC of Libraries & Demo category

S. No. Category Sparse Matrix Heuristic Matrix

1 Naive Bayes 0.53 0.80

2 SVM 0.79 0.98

3 Random Forest 0.78 0.83

4 Decision Tree 0.70 0.82

5 Bagging 0.78 0.83

6 Boosting 0.80 0.82

7 Voting 0.69 0.83

Table 8. Classifier and Permission Matrix to be used while classifying a particular category

S. No. Category Classifier Perm Matrix

1 Art&Design Random Forest Heuristic

2 Augmented Reality SVM Sparse

3 Auto&Vehicles Bagging Sparse

4 Beauty SVM Heuristic

5 Books Random Forest Sparse

6 Comics Random Forest Sparse

7 Communication Bagging Heuristic

8 House&Home Random Forest Heuristic

9 Libraries&Demo SVM Heuristic

10 Lifestyle Boosting Heuristic

11 Maps&Navigation Random Forest Sparse

12 Personalization Random Forest Heuristic

13 VideoPlayers&Editors SVM Heuristic

14 Weather Random Forest Sparse

Journal of Cases on Information Technology
Volume 24 • Issue 3

19

the app or not without even running the app. We have successfully implemented the interface using
the two most popular platform independent languages among developers i.e. Java and Python which
makes our interface compatible on all Operating Systems. Android is an open source operating system.
A majority of Android apps are developed in Java till date. Therefore, use of platform independent
tools makes it easier to analyze malicious Android apps and hence protect user’s privacy with the
help of static analysis. Moreover, Java and Python are strongly typed and their verbose coding style
makes them faster than other languages. Here, Java is used to design the interface (via swing and
awt) and extract the new app’s permission vector and Python is used to create the prediction model.

5.1 Extraction of Permissions Vector via Reverse Engineering
The interface launches a window asking the user to provide an app and its category for testing. The
starting task is to reverse engineer the new unknown app and study the AndroidManifest.xml file.
Batch processing has been used to run the ‘apktool’ on the app’s apk. All the user permissions are
extracted in the form of a Boolean vector comprising of 1 if the permission is being requested by
the app and 0 otherwise. After getting all the information required for testing the app, category and
the extracted permissions vector will be injected in a python function which will test the app on the
trained dataset.

5.2 Prediction Using Scikit Learn K-Fold Cross Validation
After selecting the area under the ROC Curve as the best evaluation metric and accumulating both
the types of data sets, scikit learn python library is used to apply StratifiedKFold cross validation
technique to create the prediction model of the interface.

StratifiedKFold: The K fold cross validation technique involves splitting the complete dataset
into k folds, with k-1 groups acting as the training sample and the kth i.e. the holdout set as the testing
one. The model is fit and evaluated for every fold and the final result is given as the average of all
the runs. The problem with K Fold cross validation is that it does not provide satisfactory results for
imbalanced classes since it splits the data with the uniform probability. For datasets where there is an
extreme abundance of one of the classes, it is possible for one or more splits to not have any values
from the other minor population. This implies that the model is being trained for the majority class
most of the time and that is what it becomes trained to predict when testing a new data point on it.
The stratified K fold, though, again, splits the dataset randomly but in a way that maintains the same
ratio of classes in every split as was in the original complete dataset (Brownlee, n.d.).

On the basis of the category specified, the classifier is used to test the malware behaviour of
the unknown app on the trained dataset. At last, a prediction is made as whether the app is benign
or malicious and the output will be printed on the interface. It will also tell the user that if the app is
benign, then he/ she might install and use it because it is risk free but if the app is predicted malware,
then it will warn the user not to install the app.

Figure 6 shows a glimpse of all the operations performed in the background of the MalApp
Classification Interface which takes an unknown app’s apk i.e. Vodel animations of the Personalization
category and tests the behavior of the app step by step as described in the paper.

Figure 7 presents the final snapshot of the Interface predicting that the new app is malicious
and therefore, it is not fit to use. Thus, this interface can be used to warn the users from using any
malicious app beforehand.

Journal of Cases on Information Technology
Volume 24 • Issue 3

20

Figure 6. Operations performed in the Interface

Journal of Cases on Information Technology
Volume 24 • Issue 3

21

6. CONCLUSION

In this paper, we have presented a permission induced risk interface, a novel tool for MalApp
Classification. In this work, reverse engineering approach in form of static analysis has been employed
for mal app classification based on category. To identify the risky permissions across category,
permission ranking using correlation coefficient has been employed.

Several machine learning classifiers and ensembling techniques were put to use to check
the efficiency of the proposed approach. Heuristic approach was also employed to improve the
classification results and develop the malware classification interface. The bounding limits towards
the capability of the proposed interface to identify an unknown malicious app are identified with best
case detection rate of 98.33% for the Libraries & Demo category classified by SVM on the heuristic
dataset and worst case detection rate of 73.33% for the Books category classified by Random Forest
on the sparse dataset. Also, the results show an overall average accuracy of 88.2%.

7. FUTURE WORK

The future work can be done by enhancing the performance of the classifiers by improving the
heuristic values. Dynamic analysis can be used to analyse the risky behaviour of those permissions
which are requested after the app runs. For implementing dynamic analysis, as soon as the app starts
to run, an interface can be built which will act as a middle man to stop the app for some moments

Figure 7. Snapshot of MalApp Classification Interface

Journal of Cases on Information Technology
Volume 24 • Issue 3

22

and meanwhile it will capture its traffic using a proxy server such as Charles Proxy, Fiddler etc. The
runtime permissions asked by the app can be tracked. An analysis can also be done on the form of
data which is sent on the server - whether the personal details like password, phone no., messages,
photos, etc are sent in encrypted form or decrypted form.

After combining the static and dynamic analysis, the interface can prompt the user that the app
is safe to run or not.

Journal of Cases on Information Technology
Volume 24 • Issue 3

23

References

Aptoide. (n.d.). Aptoide Download, find and share the best apps and games for Android. Retrieved August 6,
2020, from https://en.aptoide.com/

Arnatovich, Y. L., Wang, L., Ngo, N. M., & Soh, C. (2018). A comparison of android reverse engineering tools
via program behaviors validation based on intermediate languages transformation. IEEE Access : Practical
Innovations, Open Solutions, 6, 12382–12394. doi:10.1109/ACCESS.2018.2808340

Bhatt, A. J., Gupta, C., & Mittal, S. (2018). iABC: Towards a hybrid framework for analyzing and classifying
behaviour of iOS applications using static and dynamic analysis. Journal of Information Security and Applications,
41, 144–158. doi:10.1016/j.jisa.2018.07.005

Blair, I. (n.d.). Mobile App Download and Usage Statistics (2020) - BuildFire. Retrieved August 6, 2020, from
https://buildfire.com/app-statistics/

Bose, S. (2018). a Comparative Study: Java Vs Kotlin Programming in Android Application Development.
International Journal of Advanced Research in Computer Science, 9(3), 41–45. doi:10.26483/ijarcs.v9i3.5978

Brownlee, J. (n.d.). A Gentle Introduction to k-fold Cross-Validation. Retrieved August 6, 2020, from https://
machinelearningmastery.com/k-fold-cross-validation/

Chawla, T. K., & Kajala, A. (2014). International Journal of Computer Science and Mobile Computing
Transfiguring of an Android App Using Reverse Engineering. International Journal of Computer Science and
Mobile Computing, 3(4), 1204–1208. www.ijcsmc.com

Chikofsky, E. J., & Cross, J. H. (1990). Reverse Engineering and Design Recovery: A Taxonomy. IEEE Software,
7(1), 13–17. doi:10.1109/52.43044

De Ferrari, L., & Aitken, S. (2006). Mining housekeeping genes with a Naive Bayes classifier. BMC Genomics,
7(1), 1–14. doi:10.1186/1471-2164-7-277 PMID:17074078

Fereidooni, H., Conti, M., Yao, D., & Sperduti, A. (2016). ANASTASIA: ANdroid mAlware detection using
STatic analySIs of applications. 2016 8th IFIP International Conference on New Technologies, Mobility and
Security, NTMS 2016. doi:10.1109/NTMS.2016.7792435

Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification.
Pattern Recognition Letters, 27(4), 294–300. doi:10.1016/j.patrec.2005.08.011

Google. (n.d.). Permissions - Play Console Help. Retrieved August 6, 2020, from https://support.google.com/
googleplay/android-developer/answer/9888170?hl=en&ref_topic=9877467

Hoffman, C. (n.d.). Android Is “Open” and iOS Is “Closed” — But What Does That Mean to You? Retrieved
August 6, 2020, from https://www.howtogeek.com/217593/android-is-open-and-ios-is-closed-but-what-does-
that-mean-to-you/

Idrees, F., Rajarajan, M., Chen, T. M., Rahulamathavan, Y., & Naureen, A. (2017). AndroPIn: Correlating Android
permissions and intents for malware detection. 2017 8th IEEE Annual Information Technology, Electronics and
Mobile Communication Conference, (IEMCON) 2017, 394–399. doi:10.1109/IEMCON.2017.8117152

Kang, H., Jang, J., Mohaisen, A., & Kim, H. K. (2015). Detecting and Classifying Android Malware Using
Static Analysis along with Creator Information. International Journal of Distributed Sensor Networks, 11(6),
479174. doi:10.1155/2015/479174

Korada, N. K., Kumar, N. S. P., & Deekshitulu, Y. V. N. H. (2012). Implementation of Naive Bayesian Classifier
and Ada-Boost Algorithm Using Maize. Expert Systems: International Journal of Knowledge Engineering and
Neural Networks, 2(3), 63–75.

Ledisi, G., & Ugochukwu, C. (2019). Comparison of Bagging and Voting Ensemble Machine Learning Algorithm
as a Classifier. Academic Press.

M, H., & M.N, S. (2015). A Review on Evaluation Metrics for Data Classification Evaluations. International
Journal of Data Mining & Knowledge Management Process, 5(2), 1–11. 10.5121/ijdkp.2015.5201

https://en.aptoide.com/
http://dx.doi.org/10.1109/ACCESS.2018.2808340
http://dx.doi.org/10.1016/j.jisa.2018.07.005
https://buildfire.com/app-statistics/
http://dx.doi.org/10.26483/ijarcs.v9i3.5978
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
http://www.ijcsmc.com
http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1186/1471-2164-7-277
http://www.ncbi.nlm.nih.gov/pubmed/17074078
http://dx.doi.org/10.1109/NTMS.2016.7792435
http://dx.doi.org/10.1016/j.patrec.2005.08.011
https://support.google.com/googleplay/android-developer/answer/9888170?hl=en&ref_topic=9877467
https://support.google.com/googleplay/android-developer/answer/9888170?hl=en&ref_topic=9877467
https://www.howtogeek.com/217593/android-is-open-and-ios-is-closed-but-what-does-that-mean-to-you/
https://www.howtogeek.com/217593/android-is-open-and-ios-is-closed-but-what-does-that-mean-to-you/
http://dx.doi.org/10.1109/IEMCON.2017.8117152
http://dx.doi.org/10.1155/2015/479174

Journal of Cases on Information Technology
Volume 24 • Issue 3

24

Market.us. (n.d.). Mobile App Download and Usage Statistics and Facts - Market.us. Retrieved August 6, 2020,
from https://market.us/statistics/internet/mobile-app-download-and-usage/

MobiLoud. (n.d.). The Practical Guide to App Store Optimization (ASO). Retrieved August 6, 2020, from https://
www.mobiloud.com/blog/app-store-optimization/#6

Myat, S. M. (2019). Analysis of Android Applications by Using Reverse Engineering Techniques. Academic Press.

Neptune.ai. (n.d.). F1 Score vs ROC AUC vs Accuracy vs PR AUC: Which Evaluation Metric Should You Choose?
Retrieved August 6, 2020, from https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc

Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines
and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and
Geoinformation, 12(SUPPL. 1), 27–31. doi:10.1016/j.jag.2009.11.002

Paul, N. (n.d.). A list of all Android permissions- GitHub. Retrieved August 6, 2020, from https://gist.github.
com/nishthapaul/7933e4acbd46163a669ba7b36254d3a6

Play, G. (n.d.). Android Apps on Google Play. Retrieved August 6, 2020, from https://play.google.com/store/
apps/category/APPLICATION?hl=en_IN

Rashidi, B., Fung, C., & Bertino, E. (2017). Android Malicious Application Detection Using Support Vector
Machine and Active Learning. 13th International Conference on Network and Service Management (CNSM),
1–9. doi:10.23919/CNSM.2017.8256035

Rasthofer, S., Arzt, S., Miltenberger, M., & Bodden, E. (2016). Reverse engineering Android apps with
CodeInspect. CEUR Workshop Proceedings, 1575, 1–8.

Sahal, A. A., Alam, S., & Sogukpinar, I. (2018). Mining and Detection of Android Malware Based on Permissions.
3rd International Conference on Computer Science and Engineering (UBMK 2018), 264–268. doi:10.1109/
UBMK.2018.8566510

Singh, K. P., Basant, N., & Gupta, S. (2011). Support vector machines in water quality management. Analytica
Chimica Acta, 703(2), 152–162. doi:10.1016/j.aca.2011.07.027 PMID:21889629

Sun, L., Srisa-an, W., Ye, H., Li, Z., Li, J., & Yan, Q. (2018). Significant Permission Identification for Machine-
Learning-Based Android Malware Detection. IEEE Transactions on Industrial Informatics, 14(7), 3216–3225.
doi:10.1109/TII.2017.2789219

Tao, G., Zheng, Z., Guo, Z., & Lyu, M. R. (2018). MalPat: Mining Patterns of Malicious and Benign Android Apps
via Permission-Related APIs. IEEE Transactions on Reliability, 67(1), 355–369. doi:10.1109/TR.2017.2778147

TermsFeed. (n.d.). Android Collection of Data and Sensitive Data - TermsFeed. Retrieved August 6, 2020, from
https://www.termsfeed.com/blog/android-sensitive-data-collection/

Tharwat, A. (2018). Applied Computing and Informatics Classification assessment methods. Applied Computing
and Informatics. doi:10.1016/j.aci.2018.08.003

vShare. (n.d.). vShare App (iOS Android and PC). Retrieved August 6, 2020, from https://vsharedownload.org/

Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., & Zhang, X. (2014). Exploring permission-induced risk in
android applications for malicious application detection. IEEE Transactions on Information Forensics and
Security, 9(11), 1869–1882. doi:10.1109/TIFS.2014.2353996

Wikipedia. (n.d.). Static analysis. Retrieved August 6, 2020, from https://en.wikipedia.org/wiki/Static_analysis

Winder, D. (n.d.). 28 Million Android Phones Exposed To “Eye-Opening” Attack Risk. Retrieved August 6,
2020, from https://www.forbes.com/sites/daveywinder/2019/08/03/28-million-android-phones-exposed-to-eye-
opening-attack-risk/#350a5cca7b74

Yu, L., Pan, Z., Liu, J., & Shen, Y. (2013). Android malware detection technology based on improved Bayesian
classification. Third International Conference on Instrumentation and Measurement, Computer, Communication
and Control, IMCCC 2013, 1338–1341. doi:10.1109/IMCCC.2013.297

Zareapoor, M., & Shamsolmoali, P. (2015). Application of credit card fraud detection: Based on bagging ensemble
classifier. Procedia Computer Science, 48(C), 679–685. doi:10.1016/j.procs.2015.04.201

https://market.us/statistics/internet/mobile-app-download-and-usage/
https://www.mobiloud.com/blog/app-store-optimization/#6
https://www.mobiloud.com/blog/app-store-optimization/#6
https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc
http://dx.doi.org/10.1016/j.jag.2009.11.002
https://gist.github.com/nishthapaul/7933e4acbd46163a669ba7b36254d3a6
https://gist.github.com/nishthapaul/7933e4acbd46163a669ba7b36254d3a6
https://play.google.com/store/apps/category/APPLICATION?hl=en_IN
https://play.google.com/store/apps/category/APPLICATION?hl=en_IN
http://dx.doi.org/10.23919/CNSM.2017.8256035
http://dx.doi.org/10.1109/UBMK.2018.8566510
http://dx.doi.org/10.1109/UBMK.2018.8566510
http://dx.doi.org/10.1016/j.aca.2011.07.027
http://www.ncbi.nlm.nih.gov/pubmed/21889629
http://dx.doi.org/10.1109/TII.2017.2789219
http://dx.doi.org/10.1109/TR.2017.2778147
https://www.termsfeed.com/blog/android-sensitive-data-collection/
http://dx.doi.org/10.1016/j.aci.2018.08.003
https://vsharedownload.org/
http://dx.doi.org/10.1109/TIFS.2014.2353996
https://en.wikipedia.org/wiki/Static_analysis
https://www.forbes.com/sites/daveywinder/2019/08/03/28-million-android-phones-exposed-to-eye-opening-attack-risk/#350a5cca7b74
https://www.forbes.com/sites/daveywinder/2019/08/03/28-million-android-phones-exposed-to-eye-opening-attack-risk/#350a5cca7b74
http://dx.doi.org/10.1109/IMCCC.2013.297
http://dx.doi.org/10.1016/j.procs.2015.04.201

Journal of Cases on Information Technology
Volume 24 • Issue 3

25

Nishtha Paul received her BTech degree in Computer Science & Engineering from Jaypee Institute of Information
Technology, Noida in 2020. Currently, she is working as an Application Developer in ThoughtWorks Inc. She has 2
years of experience as a Java software engineer and has won $1000 in MongoDB World Hackathon’19 under the
category of Best Use of MongoDB Mobile. Her keen interests include 3D modelling and graphic design. A strong
believer in the power of positive thinking in the workplace, Nishtha regularly experiments with new technologies
and techniques. She has a strong eye for detail and tenacity to never quit on something until it is absolutely perfect.

Arpita Jadhav Bhatt is Assistant Professor (Senior Grade) in the Department of Computer Science & IT from Jaypee
Institute of Information and Technology, Noida, India. She obtained her Ph.D. degree in Computer Science from
Jaypee Institute of Information and Technology, Noida. She has more than 8 years of teaching experience. She
obtained her Masters in Engineering in Software Systems from Birla Institute of Technology and Science, Pilani
(BITS Pilani) in 2010 and Bachelor of Technology degree from Rishiraj Institute of Technology, Indore in 2008.
Her areas of interest are mobile application engineering, information privacy, software engineering, programming
in Android, mobile computing. She has many publications in international journals and conferences to her credit.

Sakeena Rizvi received her Bachelors in Technology from Jaypee Institute Of Information Technology, sector 62,
Noida in the year 2020. In the same year, she was hired as programmer analyst trainee at Cognizant Technology
Solutions. To her credits, she has various projects on the topics of Android and Machine learning. She has also
researched on nature inspired algorithms and blockchain technology and has written on the same.

Shubhangi received her B.Tech degree in Computer science from Jaypee Institute of Information Technology in
2020. Currently, she is working as an Associate application developer in IBM.

