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ABSTRACT

This paper proposes a lossless data hiding scheme in learning with errors (LWE)-encrypted domain 
based on key-switching technique. Lossless data hiding and extraction could be realized by a third 
party without knowing the private key for decryption. Key-switching-based least-significant-bit 
(KSLSB) data hiding method has been designed during the lossless data hiding process. The owner 
of the plaintext first encrypts the plaintext by using LWE encryption and uploads ciphertext to a 
(trusted or untrusted) third server. Then the server performs KSLSB to obtain a marked ciphertext. 
To enable the third party to manage ciphertext flexibly and keep the plaintext secret, the embedded 
data can be extracted from the marked ciphertext without using the private key of LWE encryption in 
the proposed scheme. Experimental results demonstrate that data hiding would not compromise the 
security of LWE encryption, and the embedding rate is 1 bit per bit of plaintext without introducing 
any loss into the directly decrypted result.

Keywords
Information Security, Key Switching, LWE, Reversible Data Hiding in Encrypted Domain

INTRODUCTION

Reversible data hiding in encrypted domain (RDH-ED) is an information hiding technique that aims 
to not only accurately embed and extract the additional messages in the ciphertext, but also restore the 
original plaintext losslessly (Ma et al., 2013)(Shi et al., 2016). RDH-ED is useful in some distortion 
intolerable applications, such as ciphertext management or retrieval in the cloud, ciphertext annotation 
for medical or military use. With the increasing demand for information security and the development 
of the encrypted signal processing techniques, RDH-ED has been an issue of great attention in the 
field of privacy protection and ciphertext processing.

From the viewpoint of the cryptosystem that RDH-ED methods are based on, existing RDH-
ED methods could be classified into two categories: Symmetric encryption based RDH-ED (Ma et 
al., 2013), (Zhang 2011; Zhou 2016; Wu & Sun 2014; Qian et al., 2014; Puech et al., 2008; Zhang 
et al., 2014; Li et al., 2015; Cao et al., 2016; Zhang 2012; Wu et al., 2017;Puteaux & Puech 2018; 
Huang et al., 2016), and public key encryption based RDH-ED. Symmetric cryptography that has 
been introduced into RDH-ED includes stream encryption (Ma et al., 2013), (Qian et al., 2014; Wu & 
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Sun, 2014; Zhang, 2011; Zhou et al., 2016), (Puteaux & Puech, 2018), advanced encryption standard 
(AES) (Puech et al., 2008), (Zhang et al., 2014), and RC4 encryption (Li et al., 2015).

According to the methods of utilizing the redundancy in the cover for data hiding, symmetric 
encryption based RDH-ED methods were classified into two categories (Ma et al., 2013)(Shi et al., 
2016): “vacating room before encryption (VRBE)” (Ma et al., 2013)(Puech et al., 2008)(Zhang et al., 
2014)(Cao et al., 2016)(Puteaux & Puech, 2018) and “vacating room after encryption (VRAE)”(Qian 
et al., 2014; Wu & Sun, 2014; Zhang, 2011; Zhou et al., 2016). The room, namely the redundancy in 
the cover, is vacated for reversible data hiding. The first RDH-ED method was proposed by Zhang 
for encrypted images (Zhang, 2011), and then (Wu & Sun, 2014; Zhou et al., 2016) enhanced its 
capacity. Qian et al. proposed a similar method to embed data in an encrypted JPEG bit stream (Qian 
et al., 2014). AES was introduced in (Puech et al., 2008) to encrypt the cover image. Each block 
containing n pixels could carry one bit data. The embedding rate (ER) is 1/n bits per pixel (bpp). 
Then difference prediction was introduced before encryption in (Zhang et al., 2014), and AES was 
used to encrypt pixels except the embedding ones, thus resulting in a better embedding capacity (EC) 
and reversibility. However, it needed decryption first before data extraction in the above RDH-ED 
methods, which restricted the practicability in practical applications. The separable RDH-ED was 
proposed in (Zhang, 2012)(Wu et al., 2017). Separability has been so far an important attribute of 
practicality for current RDH-ED.

The redundancy introduced by VABE or VARE is independent from the encryption, resulting 
in the mutual restriction between decryption distortion and the embedding capacity, which is a 
major obstacle to the realization of separability and a high EC. There existed two main solutions 
proposed: one is to improve the quality of redundancy introduced before encryption. For example in 
(Puteaux & Puech, 2018), a separable high embedding algorithm was proposed by making full use 
of prediction error introduced before encryption. Second, the correlation of the plaintext is preserved 
in the ciphertext, so that RDH in spatial domain, such as difference expansion technique (DE) (Tian, 
2003), histogram shifting technique (HS) (Li et al., 2011; Ni et al., 2006; Ou et al., 2013), could be 
implemented in the encrypted domain. For example in (Huang et al., 2016), a new framework of 
RDH-ED was proposed, in which a specific stream cipher was used to preserve the correlation between 
the neighboring pixels. The above mentioned symmetric encryption based algorithms are fast and 
efficient in practice, which has significant research value and technological potential in the future.

However, there are also technical defects in symmetric encryption based RDH-ED. The correlation 
of plaintext would be destroyed because of the confusion and diffusion principles of symmetric 
encryption. To achieve reversible data hiding, it usually needs to introduce embedding redundancy. 
While it is difficult to vacate room after encryption, the current attention focuses more on the VEBE 
methods (Puteaux & Puech, 2018), by which more computational expense is introduced into the 
client end for data hiding. The preprocessing in the plaintext is similar to data compression, and the 
compression capability determines the performance of RDH-ED. As for the methods of preserving 
plaintext correlation by a specific encryption (Huang et al., 2016), it currently mainly relies on 
reusing the same random sequence to encrypt a specific pixel block. It could provide certain security 
guarantees, but key reusing would weaken the encryption intensity of the symmetric encryption in 
theory. The more correlation among ciphertext is remained, the more the encryption intensity is 
reduced. The RC4 encryption was declared breached in 2013 (AlFardan et al., 2013), RDH-ED based 
on early RC4 has certain limitations in future security applications. In addition, symmetric encryption 
requires a geometrically increasing amount of encryption keys with the number of communication 
participants. The local key storage cost is high for each user.

Compared with symmetric encryption, public key encryption has some advantages for RDH-ED, 
which is worthy of our attention: first, public key encryption requires a linear increasing amount of key 
usage in the communication network. The local key storage cost is only the private key of the user’s 
own, while all the public keys are publicly released. It has been widely used in electronic finance 
and network communication protocols, which provides application prospects for RDH-ED. Second, 
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public key encryption introduces ciphertext extension, namely, the redundancy from the ciphertext 
itself. Through a certain embedding strategy (Ke et al., 2018), we could select embedding positions 
and improve EC effectively. Third, flexible cryptosystems of the public key encryption, especially 
the homomorphic encryption, provide reliable technical supports for RDH-ED. However, there are 
still technical limitations and application dilemmas in public key based RDH-ED. We shall discuss 
those in Section II. This paper focuses on the current state of public key based RDH-ED, aiming at 
making full use of LWE-based fully homomorphic encryption (FHE) technique to implement DE 
encapsulation. A novel RDH-ED method is proposed, which is superior to the current public key 
based RDH-ED in practicality, security and reversibility.

The rest of this paper is organized as follows. The following section introduces the art of state 
about public encryption based RDH-ED and analyzes the potential of DE for RDH-ED. Section 
III introduces the techniques of FHE, key-switching, and bootstrapping. Section IV describes the 
detailed processes of the proposed full homomorphic encryption encapsulated difference expansion. 
In Section V, the three judging standards of RDH-ED, including correctness, security and efficiency, 
are discussed theoretically and verified with experimental results. Finally, Section VI summarizes 
the paper and discusses future investigations.

RELATED WORK

Currently, researches of public key encryption based RDH-ED are mainly based on Paillier encryption 
(Chen et al., 2014; Shiu et al., 2015; Wu, Chen & Weng 2016; Zhang et al., 2016; Wu, Cheung & 
Huang 2016; Li & Li 2017; Xiang & Luo 2018) and learning with Error (LWE) encryption (Ke et 
al., 2016; Ke et al., 2018; Li et al., 2018). Probabilistic and homomorphic properties of the above 
cryptography allow the third party, i.e., the cloud servers, to conduct operations directly on ciphertext 
without knowing the private key, which shows potential for more flexible realizations of RDH-ED.

The first Paillier encryption based RDH-ED was proposed by Chen et al. (2014). Shiu et al. 
(2015) and Wu et al. (2016) improved the EC of (Chen et al., 2014) by solving the pixel overflow 
problem. Those algorithms were VRBE methods. Li et al. (2017) proposed a VRAE method with 
a considerable EC by utilizing the homomorphic addition property of Paillier encryption and HS 
technique. The above algorithms were all inseparable. Data extraction was implemented only in the 
plaintext domain. It was a crucial bottleneck of public key encryption based RDH-ED to realize 
data extraction directly from the encrypted domain. Wu et al. proposed two RDH-ED algorithms 
for the encrypted images in (Wu, Cheung & Huang 2016): a high-capacity algorithm based on 
Paillier cryptosystem was presented for data extraction after image decryption. The other one could 
operate data extraction in the encryption domain. Zhang et al. (2016) proposed a combined scheme 
consisting of a lossless scheme and a reversible scheme to realize separability. Data was extracted 
from the encrypted domain in the lossless scheme and from the plaintext domain in the reversible 
scheme. In Xiang & Luo, (2018), Xiang embedded the ciphertext of additional data into the LSBs of 
the encrypted pixels by employing homomorphic multiplication. Only the ciphertext of additional 
data could be obtained during extraction directly from ciphertext. To distinguish the corresponding 
plaintext of the ciphertext of additional data without the private key, a one-to-one mapping table from 
ciphertext to plaintext was introduced while the ciphertext of additional data for embedding was not 
from encryption but from the mapping table. However, the exposure and accumulation of a large 
number of the mapping tables to an untrusted third party might increase the risk of cryptanalysis 
in theory, while the Paillier algorithms cannot resist adaptive chosen ciphertext attack (ACCA or 
CCA2) (Paillier & Pointcheval, 1999).

LWE based RDH-ED was first proposed in Xiang & Luo, (2018) by quantifying the LWE 
encrypted domain and recoding the redundancy from ciphertext. Ke et al. fixed the parameters for 
LWE encryption and proposed a multilevel RDH-ED with a flexible applicability and high EC in 
Ke et al., (2016). However, the data-hiding key used for extraction overlapped partly with the private 
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key for decryption, thus resulting in limitation for embedding by a third party. In Li et al., (2018), 
separability could be achieved by preserving correlation from the plaintext in the ciphertext through 
a modified somewhat LWE encryption. However, the correlation among ciphertext was strong, and 
it was theoretically vulnerable to cryptanalysis attacks. This paper proposes a lossless data hiding 
in encrypted domain (RDH-ED) scheme. To realize the data extraction directly from the encrypted 
domain without the private key, a key-switching based least-significant-bit (LSB) data hiding method 
has been designed. In application, the user first encrypts the plaintext and uploads ciphertext to the 
server. Then the server performs key-switching based LSB to obtain the marked ciphertext. Additional 
data can be extracted directly from the marked ciphertext by the server without the private key, 
which enables the (trusted or untrusted) third party to manage ciphertext flexibly under the premise 
of keeping the plaintext secret. The Experimental results demonstrate that the embedding capacity 
is 1bit per bit of plaintext. Data hiding would not affect the accuracy and the security of encryption.

PRELIMINARIES

LWE Encryption
The private key is denoted as s, and the public key A is generated by s and e satisfying Eq. (1), where 
e is sampled randomly:

A · s = 2e	 (1)

Encryption:
The plaintext is m∈{0, 1}. Set m =(m, 0, 0,…,0). Generate a 0-1 sequence ar  uniformly and output 
the ciphertext:

c = m + ATar	 (2)

Decryption:
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where [.]q means to perform modulo q. The correctness lies in that the total introduced noise could 
be restrained to meet:

a er
T < q/4	 (4)

Key–Switching (Brakerski et al., 2014)
There is data expansion in LWE encrypted ciphertext (Ke et al., 2018). In fully homomorphic 
encryption based on LWE, a secondary expansion would occur when ciphertext got multiplied. 
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Therefore, the amount of data will again expand geometrically. If the secondary expansion cannot 
be eliminated or controlled, the amount of ciphertext data can produce an excessively extension that 
is unacceptable in practice. Key-switching can effectively eliminate the extension by replacing the 
extended ciphertext with new ciphertext of any shorter length without decrypting it, and ensure the 
new ciphertext corresponds to the same decryption as the extended ciphertext.

We use the key-switching technique in the proposed scheme not to eliminate the ciphertext 
secondary expansion, but to operate a key-switching based LSB data hiding by randomly changing the 
LSB of specific ciphertext using key switching until the LSB is the same as the to-be-embedded bit..

THE PROPOSED SCHEME

Parameters Setting and Function Definition
The cryptosystem is parameterized by the integers: n (the length of the private key), q∈ (n2, 2n2) (the 
modulus), d≥(1+ε)(1+n)log2q (the dimension of the public key space), ε>0. If q is a prime, all the 
operations in the cryptosystem are performed modulo q in

q
, β= log

2
q



 . We denote the noise 

probability distribution on 
q

 as χ , χ = Ψ
aq

, where the discrete Gaussian distribution 
Ψ
aq
= { 「qx」mod q | x ~N (0, α2 )}, and 「qx」 denotes rounding qx to the nearest integer (Ke 

et al., 2018).

Definition 1: The private key generating function:

s = SKGen n,q (.)	 (5)

which returns the private key s ∈ Ζ
q
n : s = (1, t), where t ∈ −Ζ

q
n 1  is sampled from the distributionχ .

Definition 2: The public key generating function:

A = PKGen(d,n),q(s )	 (6)

in which a matrix W ∈ × −Ζ
q
d n( )1 is first generated uniformly and a vector e ∈ Ζ

q
d is sampled from the 

distributionχ , then the vector b∈ Ζ
q
d  is obtained:

b = Wt + 2e	 (7)

the n-column matrix A ∈ ×Ζd n  is consisting of b followed by -W, A = b W, -( ) . A is returned as the 
public key.

Remark: Observe that A·s = 2e for Eq. (8).
Definition 3: The encrypting function:

c = EncA (m )	 (8)
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which returns a vector c as the ciphertext of one bit plaintext m∈ { }0 1, with the public key A: Set m 
=(m, 0, 0,…,0) ∈ Ζ

2
n . Generate a random vector a

r
∈ Ζ

2
d  uniformly and output c:

c = m + ATar	 (9)

Definition 4(Brakerski et al., 2014): The function BitDe(x), x∈ Ζ
q
n , decomposes x into its bit 

representation. Namely, it outputs (u1, u2, u3, …, uβ,) ∈ Ζq
nβ , x= 2

0

1
j

j
j

=

−

∑ ⋅
β

u  , uj∈ Ζ2
n .

Definition 5: The decrypting function:

m = Decs (c) = c s,











q 2

	 (10)

which returns the plaintext bit m∈ { }0 1, with the private key s. If the inputs of the decryption function 
are in binary form, we could regard such a function as a decryption circuit, denoted as Dec*S (C), 
C= BitDe(c), S= BitDe(s).

Definition 6(Brakerski et al., 2014): The function Powersof(x), x��q
n , outputs the vector (x, 2x, 22x, 

…, 2β-1x,) � ��q
n � .

Next, we will give the procedure of key-switching, which takes a ciphertext c1 under s1 and 
outputs new ciphertext c2 that encrypts the same plaintext under the private key s2.

Definition 7(Brakerski et al., 2014): The switching key generating function:

B = SwitchKGen (s1, s2)	 (11)

where s1��q
n1 , s2��q

n2 . Atemp= PKGen(n1•β, n2), q(s2). The matrix B� �� ���q
n n1 2� can be obtained by adding 

Powersof(s1) to Atemp’s first column.
Ciphertext c2 can be obtained by using the switching key:

c2 = BitDe (c1)
T · B	 (12)

In our scheme, there is a key-switching based LSB data hiding method proposed to ensure that 
the servers could directly extract additional data from ciphertext without using the private key. We 
generate a pseudo-random binary sequence k for the servers to randomly scramble the additional 
data before key-switching based LSB data hiding. The switching key for key-switching based LSB 
data hiding is:

BLSB = SwitchKGen (s, s)	 (13)
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where s��q
n .All different keys are distributed as shown in Table 1:

Encryption
For the pixel pair (X, Y), whose iLSBs are denoted by bX

i , bY
i  (i=1, 2, …, 8).

Each bit is encrypted by LWE encryption with a new public key. We omit the symbol “A” in Eq. 
(8) for short in this paper: cX

i = Enc ( bX
i  ), cY

i = Enc ( bY
i  ), i=1, 2,…, 8.

Key-Switching Based LSB Data Hiding

Step 1: Randomly scramble the additional data sequence bs by using data hiding key k to obtain the 
to-be-embedded data br:

br =k⊕bs	 (14)

where br ∈  br.
Denote the last element of cX '

1 as cLX1, whose LSB would be replaced by br (X is the “1” signed 
pixel by Mava).

Step 2: If br = LSB(cLX1), cX '
1 maintains the same, or if br ≠ LSB(cLX1), cX '

1 is refreshed by:

cX '
1 =BitDe ( cX '

1 )T ·BLSB.	

Step 3: Repeat Step 2 until LSB(cLX1)=br.

The marked ciphertext is obtained: cX
i

' and cY
i

' (i=1, 2,…, 8).
After receiving the marked ciphertext, the client user could implement the decryption on the 

marked ciphertext to obtain X and Y by using s: bX
i

' = Decs ( cX
i

' ), bY
i

' = Decs ( cY
i

' ), (i=1, 2, …, 8).

LSB Extraction from the Marked Ciphertext
Additional data could be directly extracted from ciphertext without the private key s (X is the “1” 
signed pixel by Mava):

br = LSB(cLX1)	 (15)

bs =k⊕br	 (16)

THEORETICAL ANALYSIS AND EXPERIMENTAL RESULTS

Correctness
The correctness of the proposed scheme includes the lossless restoration of plaintext and the accurate 
extraction of the embedded data. The test images, 512×512 8-bit grayscale images, are from image 
libraries, USC-SIPI (http://sipi.usc.edu/database/database.php?volume= misc) and Kodak (http://
r0k.us/graphics/kodak/index.html).
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The experimental results of six test images were selected in this section to demonstrate the 
correctness. The six test images are as shown in Figure 1. The preprocessing LWE encryption & 
decryption, key switching, and key-switching based LSB were all implemented on MATLAB2010b 
with a 64-bit single core (i7-6800K) @ 3.40GHz.

Parameters setting: Solving the LWE problem with given parameters is equivalent to solving Shortest 
Vector Problem (SVP) in a lattice with a dimension n qlog ( ) / log ( )2 2 δ .

Considering the efficiencies of the best known lattice reduction algorithms, the secure dimension 
of the lattice must reach 500 ( � ����� ) (Gama & Nguyen, 2010), (Ruckert & Schneider, 2010). An 
increase in n will result in a high encryption blowup. To balance security and the efficiency of practical 
use, we set n =240, q=57601, d =4573. To ensure the fidelity of the marked plaintext, we set hfid=10.

Accuracy of Plaintext Recovery
In the proposed scheme, the user directly decrypts the marked ciphertext to get the plaintext. We 
calculated the PSNR of the plaintext

The values of PSNR with the maximum EC are listed in Table 1. From the results of PSNR, it 
could be seen that there is no embedding distortion in the plaintext.

Accuracy of Data Extraction
There are three cases of data extraction in this paper. The realization of the three cases is the 
embodiment of the separability of the proposed scheme:

a) 	 The third-party server directly extracts the embedded data from the marked ciphertext by using 
key-switching based LSB extraction. Figure 2 shows the comparison result bit by bit between the 
extracted data and the additional data with an EC of 100000 bits in the experiment. It demonstrates 
that the extraction accuracy was 100%.

Security
Security of RDH-ED mainly includes two aspects: a) Data hiding should not weaken the security of 
the original encryption or leave any hidden danger of security cracking. b) The embedded information 
cannot be obtained by an attacker without the extraction key or the private key.

In (Ke et al., 2016; Ke et al., 2018), through the derivation of the probability distribution function 
(PDF) on the marked ciphertext and the experimental analysis of the statistical features, it was proved 
that the ciphertext distribution before and after data hiding did not change, so that the security of the 
RDH-ED method was proved by certain reasoning.

In this paper, all the operations of the proposed scheme are equivalent to the operations of re-
encryption (Gentry, 2009), and the encryption security can be directly guaranteed by the re-encryption 
principles. The histograms of ciphertext before and after lossless data hiding are demonstrated in 
Figure 3, in which the statistical characteristics of ciphertext before and after embedding remain 
stable, thus ensuring the secrecy of lossless data hiding method.

The processes of implementing key-switching based LSB on the ciphertext are equivalent to 
the processes of re-encrypting the ciphertext, which would not reveal anything about the private key 
or reduce the encryption security. The additional data is scrambled using sequence encryption by 
the third party before key-switching based LSB data hiding, which ensure the confidentiality of the 
additional data. During the transmission or processing by third-party servers, the third party does 
not obtain any information related to the client user’s private key, nor did it expose any relationship 
between plaintext and its corresponding ciphertext.
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In summary, the security of the proposed scheme can realize the security that LWE encryption 
has achieved. What is more, the security of LWE encryption reaches anti-quantum algorithm analysis, 
while Paillier algorithms cannot resist quantum algorithm analysis.

Efficiency
Public Key Consumption
A new ciphertext can be obtained by performing only once matrix multiplication between a switching 
key and the old ciphertext, which is fast and can ensure the confidentiality of plaintext and the private 
key.

Key-switching based LSB data hiding is to randomly change the LSB of specific ciphertext by 
key switching until the LSB is the same as the to-be-embedded bit. Therefore, the ciphertext from 
one bit of plaintext could carry one bit of additional data after key-switching based LSB method.

Let the number of times of key switching performed for one bit embedding be λ, that is, the 
public key consumption of key-switching based LSB for one bit embedding is λ. Since the LSB of the 
ciphertext is 0 or 1 randomly appeared with a probability of 0.5, λ+1 obeys the geometric distribution 
as shown in Table 2. It demonstrates that it would be a small probability event with a probability less 
than 3% to operate more than 4 times key switching to realize one bit embedding. The theoretical 
value of λ is 0.8906. In the experiment, we performed 1000 key-switching based LSB data hiding 
tests. The actual λ was 0.995 on average, indicating a high embedding accuracy and efficiency.

Elapsed Time
The public key encryption algorithms, including the Paillier algorithm and the LWE algorithm, have 
ciphertext extension. In Ke et al., (2018), the ciphertext extension of Paillier and LWE encryption 
was discussed in detail. Due to the application of the separability of RDH-ED, ciphertext is usually 
stored in the server or the cloud, the local storage cost of users is not too much. However, the elapsed 
time of encryption, decryption, data hiding, and data extraction is related to the efficiency in practice. 
In this section, we mainly demonstrate the elapsed time of each operation. Table 3 lists the elapsed 
time of the four main operations.

Figure 1a. The test images: Peppers 
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The elapsed time is specifically the time (milliseconds) when one bit plaintext gets decrypted, or 
one public key is generated and consumed by the operation, e.g., one bit of plaintext gets encrypted 
after each elapsed time of encryption.

The brief structure and linear operations of LWE provide low time consumption, which are 
significant in practice. The results in Table 2 indicate that the elapsed time of the proposed method 
is acceptable for practical use.

CONCLUSION

This paper proposes a lossless data hiding in encrypted domain (RDH-ED) scheme. To realize the 
data extraction directly from the encrypted domain without the private key, a key-switching based 
least-significant-bit data hiding method has been designed. The Experimental results demonstrate 

Figure 1b. The test images: Lena
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that the embedding capacity is 1bit per bit of plaintext. Data hiding would not affect the accuracy 
and the security of encryption.
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Figure 1c. The test images: Baboon
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Figure 1d. The test images: Crowd
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Figure 1e. The test images: Tank
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Figure 1f. The test images: Plane

Table 1. The PSNR (db) with the maximum EC(bits)

  Image EC   PSNR

Lena   110195   ∞

Baboon   69286   ∞

Crowd   104882   ∞

Tank   108963   ∞

Peppers   110558   ∞

Plane   114834   ∞

Average   103120   ∞
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Figure 2. Errors of the extracted data from LSB extraction on the marked ciphertext

Figure 3a. Histogram of ciphertext before and after lossless data hiding
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Figure 3b. Histogram of ciphertext before and after lossless data hiding

Table 2. The probability distribution of β

  λ   0   1   2   3   4   5

  P   0.5   0.25   0.125   0.0625   0.0313   0.0156

Table 3. Elapsed time (ms) of once operation

  Operation   Encryption   Decryption   Key switching

  Elapsed time   20.5971   0.0067   0.1054
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