
DOI: 10.4018/IJBIR.20210701.oa4

International Journal of Business Intelligence Research
Volume 12 • Issue 2 • July-December 2021

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Recommendation System
for People Analytics
Nan Wang, DeepMacro, USA

Evangelos Katsamakas, Gabelli School of Business, Fordham University, USA

 https://orcid.org/0000-0002-3249-2017

ABSTRACT

Companies seek to leverage data and people analytics to maximize the business value of their
talent. This article proposes a recommendation system for personalized workload assignment in the
context of people analytics. The article describes the system, which follows a novel two-level hybrid
architecture. The authors evaluate the system performance in a series of computational experiments
and discuss future extensions. Overall, the proposed system could create significant business value as
a decision support system that could help managers make better decisions. The article demonstrates
how computational and machine learning approaches can complement humans in improving the
performance of organizations.

Keywords
Collaborative Filtering, Data Science, Decision Support System, Network Analysis, People Analytics,
Recommendaton System, Software Development, Talent Analytics, Workload Assignment

INTRODUCTION

People analytics is a data-driven approach to managing people at work. Companies use data
and analytics to create effective and fair solutions regarding employee recruitment, performance
management, promotion, and retention (Allen et al. 2010; Davenport et al. 2010). Google, for example,
is leveraging workplace data to motivate employees and create a high-quality working environment
(Bloomberg, 2015). People analytics is sometimes called talent analytics.

This article aims to contribute a new system to the people analytics field. It proposes a novel
recommendation system for personalized workload assignment to optimize talent performance and
productivity.

Recommendation (recommender) systems have been used successfully in various data science
applications and domains (Adomavicius & Tuzhilin, 2005). We believe there is a great promise of
using recommendation systems in the context of people analytics as well. This approach is most
relevant in organizations with rich data and trackable metrics, as in the case of software development.

This article uses non-publicly available data from a software firm to build a workload assignment
recommendation system for people analytics. The article introduces a novel two-level hybrid (2LH)
recommendation system. 2LH has two base hybrids and integrates them in the upper level:
organizational network analysis (ONA) based hybrid and graph projection-based hybrid. For base I
hybrid, we employ network analysis to profile users and identify neighbors. We show that this is an

https://orcid.org/0000-0002-3249-2017

International Journal of Business Intelligence Research
Volume 12 • Issue 2 • July-December 2021

2

effective user profiling approach and a solution for sparsity. For base II hybrid, we employ cross-
correlation as a complementary similarity metric to a recently proposed one (two-step random walk).
We discuss standard performance metrics and introduce a customized one: frequency of the system
failing to recommend at least 10 items. We empirically validate the predictive accuracy and
recommendation effectiveness of the proposed approach. The merits of the system include scalability,
flexibility, and extensibility. We also discuss future extensions and applications of our recommendation
system that could create business value.

The next section describes the dataset and background. We then present the recommendation
system and evaluate its performance. The last section discusses the findings and identifies opportunities
for future work.

DATA AND BACKGROUND

We describe the dataset and collaborative filtering in recommendation systems.

Dataset
The dataset contains the contribution and efforts of 2621 developers to 1705 repositories in a real-life
enterprise in a period of 92 days (from July 1, 2015 to September 30, 2015). Data has four variables,
namely Date, Developer ID, Repository ID and Coding Effort.

There are 172,354 records in total, where “Developer ID” and “Repository ID” respectively
identify each unique developer and repository. Data regarding developers activity is collected daily,
using source code repositories like Subversion and Git, and task tracking systems such as Jira. Table
1 shows a subset from the dataset.

As long as a developer is involved in a repository, coding effort is recorded regardless of the
presence or absence of contribution. To keep the information of developers’ involvement as a
supplement to their coding effort, we retain all data records, even when coding effort is zero.

We represent data as a bipartite weighted graph (Gdev rep−) with developers being one class of
nodes and repositories another. Edges are weighted by a developer’ total coding effort to a repository.
Table 2 shows the attributes of the static graph over the entire time period.

Table 1. Sample of original dataset. Coding Effort measures software developers’ contribution to repositories in terms of a
series of metrics including volume, complexity and interrelatedness of codes (Newswire 2013).

International Journal of Business Intelligence Research
Volume 12 • Issue 2 • July-December 2021

3

Figure 1 shows the density of degree centrality (the number of ties that a node has) for developer
nodes and repository nodes. Notice that the degree of both types of nodes centers around one. More
than half of developers (1440 out of 2621) work in only one repository, and many repositories (725 out
of 1705) are individual repositories. Data is sparse under this situation, which constitutes a problem
for most collaborative filtering solutions.

Collaborative Filtering
Collaborative filtering (CF) is a method of making predictions, or recommendations, about the
interests of a user by collecting preferences or taste information from many users (collaborative) (Su
& Khoshgoftaar 2009).

There are three major types of CF algorithms. Memory-based approaches use user rating data
to compute the similarity between users or items. Model-based approaches use machine learning
algorithms to predict users’ rating of unrated items. Hybrid approaches combine memory-based
and model-based algorithms to avoid certain limitations of memory-based and model-based models
((Adomavicius & Tuzhilin 2005; Ricci et al. 2011).

SYSTEM DESCRIPTION

We propose a two-level hybrid (2LH) recommendation system for personalized work assignment
in people analytics. 2LH has two base hybrids: ONA based hybrid and graph projection based hybrid.
The two base hybrids are integrated in the upper level of the system.

First, we discuss rating normalization and then describe in detail the system components.

Table 2. Graph attributes

Number of developer nodes 2621

Number of repository nodes 1705

Number of edges 6414

Average weight for edges 60

Average degree of developer nodes 2.45

Average degree of repository nodes 3.76

Figure 1. Degree distribution for developer nodes and repository nodes

International Journal of Business Intelligence Research
Volume 12 • Issue 2 • July-December 2021

4

Rating Normalization
In movie or music recommendation systems, ratings can be largely affected by diversity in users’
expression of preferences. For example, user i and user j both like movie A. However, user i might
give the movie 4.9 on a scale of 5 while user j only gives 4.5, because user i thinks only a rating
as high as 4.9 can show his or her strong preference, while user j feels that a rating of 4.5 is high
enough.

To overcome this problem of scaling diversity, ratings are normalized. In our context, we consider
coding effort as a “rating” measuring developer’s “preference” to a repository, and thus we normalize it.

As a normalization method, we subtract the coding effort of a developer from her average coding
effort and add a scaling constant to make all coding effort positive (1).

r r ri b i b i, ,
 � � � � 	

Base Hybrid I: Organizational Network Analysis Based
Our first hybrid model (Base hybrid I) incorporates model-based characteristics into a memory-
based approach, to which we apply organizational network analysis (ONA). ONA can provide a
comprehensive view of an organization regarding information flow and collaboration. We identify
neighbors by grouping users with community detection techniques (Fortunato 2010; Malliaros &
Vazirgiannis 2013; Porter et al. 2009) and clustering on user profiles.

Our Base hybrid I modeling process has five steps: (1) User Profiling for Clustering; (2) Find
Neighbors through Clustering; (3) Find Neighbors through Community Detection; (4) Assign
Recommendation Power to Neighbors; (5) Recommend Repositories.

User Profiling for Clustering

First, we project the developer-repository graph (Gdev rep−) into one-mode developer-developer graph
(Gdev dev−) in a binary way. Edge weights are not considered.

Then, we extract graph property metrics, such as degree centrality, betweenness centrality,
closeness centrality, eigenvector centrality, and PageRank as profiling features (Newman 2001).
These metrics are used to infer developers’ roles and influence (Rodriguez et al. 2010). For example,
nodes having high PageRank tend to be central people who play prominent roles in organizations,
and nodes carrying more significant betweenness centrality are influencers in information sharing.

Find Neighbors through Clustering
We apply four Gaussian mixture models with varied covariance structures (Pedregosa et al. 2011) to
group nodes together based on generated user profiles. The cluster number is optimized using Bayesian
information criterion (BIC) (Bhat and Kumar 2010).

Find Neighbors through Community Detection
Community detection provides insights about the overall network structure, behavioral patterns
of nodes, and their relations. In our case, community detection reveals insights about developers’
collaboration preference.

We apply four commonly-used and well-performed community detection algorithms, namely
Fast Greedy, Walktrap (Pons & Latapy 2006), Infomap, and Louvain (Blondel et al. 2008; Csardi &
Nepusz 2006).

International Journal of Business Intelligence Research
Volume 12 • Issue 2 • July-December 2021

5

The motivation of using both clustering and community detection is to better group developers
with a thorough consideration of both their connections and attributes. Rather than limited to one
single cluster, developers can belong to several different subgroups.

Assign Recommendation Power to Neighbors
As we apply four Gaussian mixture models and four community detection models to identify neighbors,
each developer will have neighbors from eight sources. Therefore, we define a weighting scheme to
assign neighbors’ recommendation power. Recommendation power (RP) indicates how much a user
is willing to let others represent his or her preference (Zhou et al. 2007).

A subgroup-number based weighting scheme (SNBS) is applied. Inspired by inverse user

frequency (Breese et al. 1998), we define log Cn
β

as recommendation power of neighbors

identified by nth model ()RPn . Cn is the number of subgroups generated by nth model, and β is
a scaling parameter. β is greater than one and determined by grid search (Bergstra and Bengio

2012).	

RP log Cn
n�
�

	

Suppose that model A divides all developers into 50 subgroups, while model B divides them into

200 subgroups. Neighbors identified by A will have RP of
50

β
, while those by B will have log 200

β
.

The intuitive way to interpret SNBS is that as B divides developers into more subgroups, it differentiates
them in a more detailed way.

We will compare model performance with and without SNBS to validate the effectiveness of
SNBS.

Recommend Repositories
We then recommend repositories in a descending order of their recommendation scores. (3) shows
the scoring function for repository b recommended to developer i.

RS W RPb i
n j J

b j n
n

n, ,
� �� �

� �
��
1

8

	

Base Hybrid II: Graph Projection Based
The second hybrid model implements several memory-based models and merges the results with a
voting scheme. Memory-based models are in the form of graph projection, with weight allocation
being the equivalent of similarity calculation. wi j, is the weight of edge between i and j on the

projected developer-developer graph (Gdev dev−). This weight is equal to the similarity sim� � of i
and j.

There are three steps to building the projection hybrid: (1) Calculate Neighbor Similarity with
Four Projection Methods; (2) Generate Four Recommendation Lists; (3) Merge Recommendation Lists.

International Journal of Business Intelligence Research
Volume 12 • Issue 2 • July-December 2021

6

Calculate Neighbor Similarity with Four Projection Methods
The four weight allocation methods we apply are: Two-step random walk (Shang et al. 2008), Pearson’s
coefficient, cross-correlation similarity (Papoulis 1962; Bracewell 1965), and Manhattan distance.

Two-step random walk process has been proved superior as a weight allocation method. (4)
calculates the edge weight between node i and node j on the projected graph based on this metric.

w
W
W

W
Wi j

a A

i a

i

a j

a
,

, ,� �
�

�
�

�

�
�

�
� 	

Pearson’s correlation coefficient �� � is the covariance of the two variables divided by the

product of their standard deviations. If we use � i j,� � to represent Pearson’s correlation coefficient
between developer i and j , the weight of edge between node i and j on the projected graph is
� i j, .� �

The intuition for both Pearson’s coefficient and cross-correlation similarity is that if two
developers behave similarly in shared repositories in terms of coding contribution, they might share
skillsets or proficiency level. Thus they are similar and have a higher chance to collaborate in the future.

Cross correlation has wide application in the fields of pattern recognition, but hasn’t been popular
as similarity metric in collaborative filtering.

In the above analysis, we assume developer similarity as an explanation for high collaboration
frequency. However, developers having diverse skills are more likely to collaborate. Repositories
need mixed expertise (testers, reviewers, supervisors, etc.), and developers showing different working
patterns are complementary to each other.

w MD W Wi j i j
b B

b i b j, , , ,� � �
�
� 	

Generate Four Recommendation Lists
The recommendation score function for a repository is the sum of the product of corresponding edge
weights on Gdev rep− and Gdev dev− (6). Repositories are recommended in descending order of this
score. As we apply four projection methods, we will get four recommendation lists.

RS W wb i
j J

b j i j, , ,� �� �
�
� 	

Merge Recommendation Lists
We use a customized voting scheme to merge results. Assume for each developer, model M generates
a r ecommenda t ion l i s t o f M M M M Mn1 2 3 4

, , , ,�� � , wh i l e mode l G g ive s

G G G G Gn1 2 3 4
, , , ,�� � . If model M performs better than G in terms of MAP@10 , our

ensemble results would be M G M G M Gn n1 1 2 2
, , , , , .�� � After de-duplicating the list, we take

the first ten items as our final recommendation list.

International Journal of Business Intelligence Research
Volume 12 • Issue 2 • July-December 2021

7

Second-Level Hybrid
The second-level hybrid model is created by merging predictions from two base hybrids with the
same voting scheme described earlier. In particular, suppose base I model generates a list of
I I I I In1 2 3 4
, , , , ,�� � while base II model generates a list of II II II II IIn1 2 3 4

, , , , ,�� � . If base
I model is better than base II in terms of MAP@10 , then our final recommendation list is
I II I II I II I II
1 1 2 2 3 3 4 4
, , , , , , , ,�� � .

PERFORMANCE EVALUATION

First, we discuss the training-testing split of the data, then performance metrics and experimental
results.

Training and Testing Split
We split the data into the training set and testing set, with the former to construct graphs, identify
neighbors, build models and generate recommendations, and the latter to validate and evaluate model
performance.

As mentioned before, the data covers 92 days of developers’ activities, from July 1 to September
30. We split the training and testing set following the order of time. Typical ratios for training and
testing split are like 80% versus 20%, or 75% versus 25%, with the training set containing many more
records than the testing set.

Our modeling process doesn’t require massive training data to reach accurate results. Furthermore,
most working routines, take one or more weeks. Thus, we use three training-test split schemes:
7 85 14 78 21 71− − −, , , which respectively use first 7 days, 14 days and 21 days of developers’
behavior as training data.

Performance Metrics
Traditional metrics for evaluating the performance of recommender systems, for example, precision,
recall, and ROC curve, are focused on two aspects: coverage and accuracy (Adomavicius & Tuzhilin
2005). Advanced metrics, such as mean average precision and discounted cumulative gain, take the
order of retrieved documents into account (Jarvelin & Kekalainen 2002).

We take accuracy, coverage and order into consideration. Applied metrics are mean average
precision at K MAP K@� � (Manning et al. 2008) and recall @ K (Recall K@) .

We set K to be 10. In other words, we give each developer ten suggested repositories. Then based
on whether they work on our recommendations in the testing periods, we evaluate the predictive
accuracy of our model.

Furthermore, due to data sparsity, systems may generate no or few recommendations for some
users. Users’ choices are accordingly limited, and the effectiveness of the system is diminished. To
ensure that our system generates at least ten options for as many developers as possible, we propose
frequency of recommendation lists shorter than 10 items Rl�� �10

 as another metric. Rl<10 is zero
when our system recommends ten repositories to all developers, which is the ideal case.

Experiments and Results
We evaluate and compare 2LHmodel with seven other models in terms of three metrics MAP@10 ,
Recall@10 and Rl<10 under three training-test split schemes (7 85 14 78 21 71− − −, ,). Tables
3 to 8 show the results of the experiments.

The seven other models used for comparison are unweighted RP hybrid (base I without SNBS),
weighted RP hybrid (base I), two-step random walk graph projection (2step-P), cross-correlation

International Journal of Business Intelligence Research
Volume 12 • Issue 2 • July-December 2021

8

graph projection (CC-P), Pearson’s coefficient graph projection (Pearson-P), Manhattan-distance
graph projection (MD-P) and projection-based hybrid (base II).

7 85− Training-test split

14 78− Training-test split:

21 71− Training-test split:
The results show that our proposed approach, 2LH, is the best model since, under three training-
testing split schemes, it consistently outperforms all other models in terms of all three metrics. The
2LH approach manages to absorb the merits of two base hybrids and counterbalance their defects.

Moreover, all eight models can provide recommendations to all targeted developers. Two base
hybrids overall outperform corresponding individual models. Especially for base I hybrid, both and
are improved compared to unweighted hybrid. This result validates the effectiveness of the proposed
weighting scheme (SNBS).

Projection-based models (2step-P, CC-P, Pearson-P, MD-P and base II) universally have high
MAP@10, and CC-P and 2step-P methods have the highest values. However, they all suffer from
high Rl<10 due to data sparsity. For example, under 7 85− Training-test split, Rl<10 of projection
methods is as high as 97.7%, meaning that 97.7% of developers are unable to receive at least ten
recommendations. In contrast, ONA based models (unweighted RP hybrid and base I) perform
poorly regarding MAP@10 but achieve good Rl<10 .

DISCUSSION

Companies use people analytics technology to maximize the value of their talent as they seek to
compete effectively and gain competitive advantage. This article proposed a novel recommendation

Table 3. Descriptions of training and testing graph

Total nodes Total
Edges

Avg. number
of edges

Avg. number of
new repositories

Number of
developer to
recommend

Train set 2321 3172 1.37 - -

Test set 2775 6228 2.24 2.34 824

Table 4. Model results

unweighted
RP hybrid

2step-P CC-P Pearson-P MD-P base I base II 2LH

MAP@10 0.2044 0.3698 0.3675 0.3416 0.3363 0.3279 0.3689 0.3787

Recall@10 0.3446 0.4911 0.4890 0.4796 0.4865 0.4786 0.4906 0.4970

Rl<10 9.0% 97.7% 97.7% 97.7% 97.7% 9.0% 97.7% 8.7%

International Journal of Business Intelligence Research
Volume 12 • Issue 2 • July-December 2021

9

system for personalized workload assignment to help managers make better decisions in the context
of people analytics.

In this work, we see people analytics as a systems thinking challenge that can be solved
computationally using a recommendation system approach. The approach captures system complexity
in the form of graph structure, graph metrics, and graph algorithms.

Table 5. Descriptions of training and testing graph

Total nodes T o t a l
edges

Avg. number
of edges

Avg. number of
new repositories

Number of developer
to recommend

Train set 2350 3635 1.55 - -

Test set 2577 6018 2.34 2.31 734

Table 6. Model results

unweighted
RP hybrid

2step-P CC-P Pearson-P MD-P base I base II 2LH

MAP@10 0.1956 0.3645 0.3674 0.3389 0.3366 0.3222 0.3666 0.3782

Recall@10 0.3391 0.5129 0.5129 0.5025 0.5117 0.5105 0.5165 0.5497

Rl<10 3.7% 85.1% 85.1% 85.1% 85.1% 3.7% 85.1% 3.4%

Table 7. Descriptions of training and testing graph

Total nodes Total
edges

Avg. number
of edges

Avg. number of
new repositories

Number of
developer to
recommend

Train set 2377 3986 1.68 - -

Test set 2547 5830 2.29 2.26 678

Table 8. Model results

unweighted
RP hybrid

2step-P CC-P Pearson-P MD-P base I base II 2LH

MAP@10 0.1748 0.3593 0.3608 0.3277 0.3355 0.2942 0.3615 0.3673

Recall@10 0.3307 0.5375 0.5297 0.5154 0.5272 0.4953 0.5390 0.5568

Rl<10 2.5% 79.6% 79.6% 79.6% 79.6% 2.5% 79.6% 2.5%

International Journal of Business Intelligence Research
Volume 12 • Issue 2 • July-December 2021

10

The high-level architecture of our system is described as a two-level hybrid (2LH). The proposed
system outperformed other methods in terms of predictive accuracy and recommendation effectiveness.
The proposed recommendation system is also promising in terms of its scalability, flexibility, and
extensibility. As only the past few weeks’ data is used to generate recommendations, the model is
computationally efficient and thus scalable. Overall, our evaluation through a series of computational
experiments suggests that such a system could add value in the context of people analytics initiatives
in companies (Wang & Katsamakas 2019).

The proposed workload assignment recommendation system can also be seen as a Decision
Support System (DSS). Companies would benefit the most by using the system as a tool aiding and
supporting management decisions. Despite the renewed fears about technology replacing humans,
we believe that most of the value of machine-learning techniques, like the proposed system, comes
from augmenting and supporting humans in making better decisions.

Future extensions of the proposed system could further enhance system performance. For example,
considering the influence of distant nodes can effectively improve performance (Palau et al 2004).
Another extension is to employ more advanced clustering techniques in ONA based hybrid. Future
work could also consider contextual information (Adomavicius & Tuzhilin 2011), such as workload
schedule, budget, and business objectives. Other work could incorporate economics-oriented metrics
that capture the business value of recommendations.

International Journal of Business Intelligence Research
Volume 12 • Issue 2 • July-December 2021

11

References

Adomavicius, G., & Tuzhilin, A. (2005). Towards the next generation of recommender systems: A survey of
the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6),
734–749. doi:10.1109/TKDE.2005.99

Adomavicius, G., & Tuzhilin, A. (2011). Context-aware recommender systems. In Recommender Systems
Handbook. Springer.

Allen, D. G., Bryant, P. C., & Vardaman, J. M. (2010). Retaining talent: Replacing misconceptions with evidence-
based strategies. The Academy of Management Perspectives, 24(2), 48–64.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning
Research, 13, 281–305.

Bhat, H. S., & Kumar, N. (2010). On the derivation of the Bayesian Information Criterion. Academic Press.

Blondel Vincent, D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in
large networks. arXiv:0803.0476.

Bloomberg. (2015). Google’s Using Workplace Data to Build a Better Employee. Retrieved from https://www.
bloomberg.com/news/videos/2015-11-11/google-s-using-workplace-data-to-build-a-better-employee

Bracewell, R. (1965). Pentagram Notation for Cross Correlation. The Fourier Transform and Its Applications.
New York: McGraw-Hill.

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative
filtering. Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence.

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research, InterJournal.
Complex Systems, 1695. http://igraph.org

Davenport, T. H., Harris, J., & Shapiro, J. (2010). Competing on talent analytics. Harvard Business Review,
88(10), 52–58. PMID:20929194

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174. doi:10.1016/j.
physrep.2009.11.002

Jarvelin, K., & Kekalainen, J. (2004). Cumulated gain-based evaluation of IR techniques. ACM Transactions on
Information Systems, 20(4), 422–446. doi:10.1145/582415.582418

Jones, E., Oliphant, E., & Peterson, P. (2001). SciPy: Open Source Scientific Tools for Python. https://www.
scipy.org/

Konstan, J. (2014). Teaching Recommender Systems at Large Scale: Evaluation and Lessons Learned from a
Hybrid MOOC. ACM Transactions on Computer-Human Interaction, 22, 61–70.

Malliaros, F. D., & Vazirgiannis, M. (2013). Clustering and community detection in directed networks: A survey.
Physics Reports, 533(4), 95–142. doi:10.1016/j.physrep.2013.08.002

Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. Cambridge University
Press. doi:10.1017/CBO9780511809071

Newman, M. E. J. (2001). Scientiðc collaboration networks. II. Shortest paths, weighted networks, and centrality.
Physical Review. E, 64(1), 016132. doi:10.1103/PhysRevE.64.016132 PMID:11461356

Newswire. (2013). BlueOptima Coding Effort Analytics™ Analytics Announces Support for Git. Retrieved from
https://www.newswire.com/blueoptima-coding-effort-analytics/252989

Palau, J. (2004). Collaboration Analysis in Recommender Systems Using Social Networks. In M. Klusch,
S. Ossowski, V. Kashyap, & R. Unland (Eds.), Lecture Notes in Computer Science: Vol. 3191. Cooperative
Information Agents VIII. CIA 2004. Springer. doi:10.1007/978-3-540-30104-2_11

Papoulis, A. (1962). The Fourier Integral and Its Applications. New York: McGraw-Hill.

Pedregosa, . (2011). Scikit-learn: Machine Learning in Python. JMLR, 12, 2825–2830.

http://dx.doi.org/10.1109/TKDE.2005.99
https://www.bloomberg.com/news/videos/2015-11-11/google-s-using-workplace-data-to-build-a-better-employee
https://www.bloomberg.com/news/videos/2015-11-11/google-s-using-workplace-data-to-build-a-better-employee
http://igraph.org
http://www.ncbi.nlm.nih.gov/pubmed/20929194
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1145/582415.582418
https://www.scipy.org/
https://www.scipy.org/
http://dx.doi.org/10.1016/j.physrep.2013.08.002
http://dx.doi.org/10.1017/CBO9780511809071
http://dx.doi.org/10.1103/PhysRevE.64.016132
http://www.ncbi.nlm.nih.gov/pubmed/11461356
https://www.newswire.com/blueoptima-coding-effort-analytics/252989
http://dx.doi.org/10.1007/978-3-540-30104-2_11

International Journal of Business Intelligence Research
Volume 12 • Issue 2 • July-December 2021

12

Nan Wang is a data scientist at DeepMacro, a NYC based macro investing company. Her work involves supporting
systematic investment strategies in US and emerging markets, through looking at Macro Economics in a data-driven
way. The data she deals with on a daily basis is a combination of structured (e.g. time series) and unstructured
(e.g. large images), to which she applies statistical exploratory analysis and machine learning modeling. She has
strong research interest in the field of social network analysis and applied machine learning. She holds an MS
degree in Business Analytics from Gabelli School of Business, Fordham University, where she also worked as
research assistant.

Evangelos “Evan” Katsamakas is Professor of Information, Technology & Operations, at Gabelli School of Business,
Fordham University. He is a faculty member since 2004. He served as department chair from July 2012 until June
2018 leading the growth of curriculum, enrollments and faculty positions. Professor Katsamakas’ research analyzes
the strategic and economic impact of digital technologies focusing on digital transformation, platform strategies, data
science, business analytics, and fintech. His research interests include economic theory and analytical modeling,
machine learning and computational modeling of complex business systems. Prof. Katsamakas’ research has
appeared in Management Science, Journal of Management Information Systems, System Dynamics Review,
International Journal of Medical Informatics, Information Resources Management Journal, Electronic Commerce
Research and Applications, Business Process Management Journal and in multiple other scholarly journals,
conference proceedings and books. His research on digital innovation received the 2016 SIM (Society of Information
Management) Best Academic Paper Award. Prof Katsamakas is an Associate Editor of the European Journal of
IS, among other journals. He served as guest editor of the special issue on the Dynamics of Information Systems
published in Fall 2008 at the System Dynamics Review. Prof. Katsamakas has taught graduate and undergraduate
business school courses including Business Tech & Analytics, Business Analytics Integrated Project, Data Mining,
Text Analytics, Systems Analysis and Design, E-business Strategies and Applications, Cloud Computing, and Tech
Startups. He received the 2018 Dean’s Award for Teaching Innovation for his contribution to curriculum innovation.
He has a strong interest in Fintech innovation: he participated in several conferences, supervised student projects,
advised the student Fintech club and designed, in collaboration with Finance area, a Fintech concentration and
Fintech courses. Professor Katsamakas holds a Ph.D. from the Stern School of Business, New York University, an
M.Sc. from the London School of Economics and a Computer Science and Engineering degree from the University
of Patras, Greece.

Pons, P., & Latapy, M. (2006). Computing Communities in Large Networks Using Random Walks. International
Symposium on Computer and Information Sciences, 284–293. doi:10.7155/jgaa.00124

Porter, M. A., Onnela, J.-P., & Mucha, P. J. (2009). Communities in Networks. Math. Soc., 56, 1082–1097,
1164–1166.

Ricci,, F., & Rokach,, L., & Shapira, B. (2011). Introduction. In Recommender Systems Handbook. Springer.

Rodriguez,, M. G., Leskovec, J., & Krause, A. (2010). Inferring networks of diffusion and influence. KDD:
Proceedings / International Conference on Knowledge Discovery & Data Mining. International Conference on
Knowledge Discovery & Data Mining, 10.

Shang, M., Fu, Y., & Chen, D. (2008). Personal Recommendation Using Weighted BiPartite Graph Projection.
Apperceiving Computing and Intelligence Analysis, 2008. ICACIA 2008. International Conference.

Shirkhorshidi, A. (2015). A Comparison Study on Similarity and Dissimilarity Measures in Clustering Continuous
Data. 10.1371/journal.pone.0144059

Su, X. Y., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in Artificial
Intelligence, 2009, 1–19. doi:10.1155/2009/421425

Wang, N., & Katsamakas, E. (2019). A Network Data Science Approach to People Analytics. Information
Resources Management Journal, 32(2), 28–51. doi:10.4018/IRMJ.2019040102

Yang, Z., Cheng, H., & Yu, J. X. (2009). Graph clustering based on structural/attribute similarities. Proceedings
of the VLDB Endowment International Conference on Very Large Data Bases, 2, 1.

Zhang, Y., Callan, J., & Minka, T. (2002). Novelty and Redundancy Detection in Adaptive Filtering. Proc. 25th
Ann. Int’l ACM SIGIR Conf., 81-88. doi:10.1145/564376.564393

Zhou, T., Jiang, L.L., Su, R. Q., & Zhang, Y.C. (2007). Effect of initial configuration on network-based
recommendation. arXiv:0711.2506.

Zhou, T., Ren, J., Matus, M., & Zhang, Y.-C. (2007). Bipartite network projection and personal recommendation.
Physical Review. E, 76(4), 046115. doi:10.1103/PhysRevE.76.046115 PMID:17995068

http://dx.doi.org/10.7155/jgaa.00124
http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.4018/IRMJ.2019040102
http://dx.doi.org/10.1145/564376.564393
http://dx.doi.org/10.1103/PhysRevE.76.046115
http://www.ncbi.nlm.nih.gov/pubmed/17995068

