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ABSTRACT

Supervisory control and data acquisition (SCADA) systems are industrial control systems that are used 
to monitor critical infrastructures such as airports, transport, health, and public services of national 
importance. These are cyber physical systems, which are increasingly integrated with networks and 
internet of things devices. However, this results in a larger attack surface for cyber threats, making 
it important to identify and thwart cyber-attacks by detecting anomalous network traffic patterns. 
Compared to other techniques, as well as detecting known attack patterns, machine learning can also 
detect new and evolving threats. Autoencoders are a type of neural network that generates a compressed 
representation of its input data and through reconstruction loss of inputs can help identify anomalous 
data. This paper proposes the use of autoencoders for unsupervised anomaly-based intrusion detection 
using an appropriate differentiating threshold from the loss distribution and demonstrate improvements 
in results compared to other techniques for SCADA gas pipeline dataset.

Keywords
Anomaly Detection, Autoencoders, Classification, Clustering, Intrusion Detection, IoT, Machine Learning, 
Neural Networks, SCADA

INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) systems are cyber physical systems distributed 
over a large geographical area and if compromised, can severely impact public health and safety. A 
SCADA system (Figure 1) comprises of a layered architecture from lowest level simple sensors and 
actuator field devices through Programming Logic Controllers (PLC) and Remote Terminal Units 
(RTU) over a communications networks to the highest layer comprising SCADA servers and Human 
Machine Interface (HMI).

Historically, SCADA systems were designed as on-site networked systems which were not 
accessible over the Internet. Thus cyber intrusions required physical access to the system, for 
example, as in the case for Stuxnet (Langner, 2011). Over time, SCADA systems have increasingly 
been connected to the Internet and a natural progression to Internet of Things (IoT) connectivity has 
taken place. Internet accessibility provides many benefits, better communications protocols, cost 
effectiveness and remote access; however networked SCADA systems get exposed to a large number 
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of cyber threats (Genge et al., 2012). SCADA systems and protocols were not designed with off-site 
network connectivity in mind as security was not a serious concern for an isolated and secure system. 
However, with interconnectivity and open standards serious vulnerabilities in SCADA system have 
been observed (Erol-Kantarci, & Mouftah, 2013). The sensors and actuators in modern SCADA 
systems can communicate over a variety of communications media, such as WiFi, cellular and 
Bluetooth. Thus SCADA systems comprise of many old as well as new communications technologies, 
potentially providing many entry points for an attack from around the globe (Nazir, et al., 2018).

Vulnerabilities in the communications protocols can be exploited to launch cyber-attacks. Internet 
and cellular network connectivity have amplified the threat (Zhu et al., 2011), as attackers can exploit 
known security loopholes in open standards to gain access to SCADA systems (Igure et al., 2006). The 
widespread availability of free protocol information, increased general technology awareness and the 
current global security situation has made such attacks easier and more likely to be launched (Nazir, 
et al., 2018). Thus these systems have come to the attention of malicious users as evidenced by the 
steadily increasing number of attacks over recent years (Cyber Security Breaches Survey, 2017). One 
way to counter the cyber threats is by learning to identify an attack instance in the network traffic.

SCADA systems are event driven and under normal operations most of the commands and 
responses are time or event triggered, making it possible to use security and monitoring approaches 
unlike in open environments (Mantere, et al., 2013). The Intrusion Detection Systems (IDS) research 
requires realistic datasets for normal and attack scenarios which are generally not available for training 
and testing the algorithms (Buczak, & Guven, 2016). A network traffic data log for gas pipeline was 
created by (Morris et al., 2015) providing both normal and attack operations. The regular command-
response patterns are repetitive, which make them suitable for detecting anomalous behaviours 
(Turnipseed, 2015).

Machine learning techniques can analyse and process data to isolate anomalous instances, which 
signal malicious behaviour, thereby making automated machine learning techniques more appropriate 
and efficient compared to human analysts (Jiang & Yasakethu, 2013). A survey of machine learning 
and data mining for IDS is outlined by Buczak, & Guven (2016) and provides details of the datasets. 
Although supervised techniques have been applied for intrusion detection, they are not very effective 
because they require labelled datasets. Attack data is not available in sufficient quantities to train 

Figure 1. A geographically distributed SCADA system interconnected through Internet and wireless communications
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supervised machine learning techniques, compared to normal operation data for SCADA systems. 
However unsupervised techniques work better to identify novel threats as they do not require labelled 
data. Also, supervised techniques, even after training, are less capable of detecting unseen patterns. 
Thus in unsupervised techniques, the normal traffic features can be learned and an unseen pattern 
can be detected as an intrusion based only on its error or distance from the normal dataset. An 
unsupervised machine learning technique gaining prominence for anomaly detection is autoencoder 
(Aygun, & Yavuz, 2017; Yousefi-Azar, et al., 2017).

The main contributions of this paper, for investigating anomaly detection are:

•	 Feature engineering the dataset for selecting and extracting the most relevant features using 
Recursive Feature Elimination (RFE) and Principal Component Analysis (PCA) for subsequent 
binary and multi-class anomaly detection;

•	 Use of autoencoders to detect unseen attack patterns based on the reconstruction loss through 
selecting an appropriate differentiating threshold from the reconstruction loss distribution.

RELATED WORK

Machine learning techniques have been applied to identify previously unseen threat patterns which 
uncover features and connections hitherto unknown or unobserved by other techniques in SCADA 
cyber security. The research applying machine learning techniques using publicly available SCADA 
datasets and some of the related techniques on public datasets are outlined in Table 1. One Class 
Support Vector Machine (OCSVM) for automated anomaly detection (Schuster, et al., 2015) from 
SCADA telecommunications data was used by (Jiang & Yasakethu, 2013; Maglaras, & Jiang, 2014). 
They proposed clustering the anomalies into different types to generate a corresponding alarm.

An unsupervised anomaly based detection scheme was proposed (Almalawi, et al., 2014) for a 
water distribution system and dataset from an urban waste water treatment plant (Lichman, 2013) 
by detecting inconsistent states and proximity based detection rules. Man-in-the-middle (MITM) 
attacks on Modbus/TCP were investigated and the scheme was compared by (Almalawi, et al., 2014) 
to supervised and semi-supervised schemes to provide better results.

Intrusion detection that complements the normal IDS is proposed in (Nader, et al., 2014). 
The paper investigates intrusion detection using classification techniques of Support Vector Data 
Description (SVDD) and the Kernel Principal Component Analysis (KPCA), showing better error 
detection and a reduced false alarm rate. The selected algorithms provided faster and better results 
on selected datasets (Lichman, 2013; Beaver, et al., 2013). A comparison of 24 machine learning 

Table 1. Techniques Applied for Intrusion Detection in SCADA Systems

Dataset Technique Reference

Gas Pipeline MLP with GWO (Mansouri, et al., 2017)

Gas Pipeline K-means, Naïve Bayesian, PCA-
SVD, GMM (Shirazi et al., 2016)

Gas pipeline LSTM (Feng et al., 2017)

Water Distribution System 
(DUWWTP) KNN, K-means (Almalawi, et al., 2014)

DUWWTP, Gas pipeline SVDD, PCA (Nader et al., 2014)

Network trace OCSVM, K-means (Maglaras, & Jiang, 2014)

CERT Insider Threat RNN (Tuor et al., 2017)
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algorithms is provided (Mansouri, et. al., 2017) for anomaly detection in a gas distribution network 
(Beaver, et al., 2013) and dimensionality reduction techniques for improving accuracy were also 
used. In addition, they proposed a new algorithm for anomaly detection in SCADA. 1% of the data 
from 97019 entries of a gas dataset was used. The gas pipeline dataset (Beaver, et al., 2013) was used 
by (Shirazi, et al., 2016) to implement various anomaly detection techniques to detect attacks. They 
evaluated K-means, Guassian Mixture Model (GMM), Principal Component Analysis-Singular Value 
Decomposition (PCA-SVD) and Naïve Bayesian (NB) techniques in supervised mode and Principal 
Component Analysis (PCA) in unsupervised mode for anomaly detection on (Beaver, et al., 2013) 
dataset. They used the whole dataset with its seven attack classes, and also used the normal data with 
one of the seven attack classes thus yielding 8 trace sets utilizing a selected subset (30%). However, 
the current research focus has shifted to the application of neural networks for intrusion detection 
in SCADA cyber security, as these techniques provide promising results in other complex problems 
such as Natural Language Processing (NLP) and image annotation (Liu, et. al., 2017).

A deep learning framework based on stacked autoencoder was proposed for attack detection and 
classification in smart grids (Wilson et al., 2018). The proposed framework was used for unsupervised 
feature learning in complex security scenarios. Deep denoising autoencoders were used to propose 
a reconstruction scheme to mitigate the impact of covert cyber-attacks in smart grids (Ahmed et al., 
2019). The results identified a low error ratio, compared to other schemes. A maintenance information 
based method is proposed for anomaly detection in SCADA data from wind turbine (Lutz et al., 2020). 
An autoencoder based method is proposed for unsupervised anomaly detection and performance 
benchmarking in building energy data (Fan et al, 2018).

A signature database was created (Feng, et al., 2017) with Bloom filter and used as the next stage 
by Long Short Term Memory (LSTM) softmax classifier for anomaly detection on gas pipeline dataset 
(Beaver, et al., 2013). The classification is based on packet level detection centred on features and 
a time series detection using previously seen packets. A stacked LSTM was trained with unlabelled 
data and the training made use of probabilistic noise labelled packets to reduce the False Positive (FP) 
rate. The anomalous packets used for the training and validation were manually removed although 
the testing data contained anomalous packets. For the Bloom filter some of the features that were 
correlated were clustered and augmented with a discrete value to help reduce FP to 0.03. The LSTM 
model was trained both with and without the added noise for 50 epochs. Feng, et al.(2017) provide 
comparison of their proposed techniques to other techniques such as PCA-SVD, GMM and Bayesian 
networks (BN) and showed improved results.

In comparison, in this paper, we consider the full dataset, using Recursive Feature Elimination 
(RFE) and PCA on the data set to select and transform the important features. We focus on the 
application of autoencoders to detect anomalies through binary classification but also provide multi-
class classification results using other techniques for comparison with published results.

BACKGROUND

Anomaly Based Intrusion Detection
An anomaly is a value or outcome that deviates from the expected or normal value (Alla, 2019). 
Anomaly detection identifies an outlier or deviant value from the normal traffic (Igure et al., 2006; 
Görnitz, et al., 2013). Intrusion detection systems are based on signature or rule based threat detection. 
However, such schemes do not provide protection against unseen threat patterns.

A survey of IDS technologies for SCADA systems is provided by (Heenan, & Moradpoor, 2016). A 
signature-based approach with two IDS engines, Suricata and Snort is described by (Waagsnes, 2017) 
for IEC 60870-5-104, Distributed Network Protocol 3 (DNP3), Modbus, and MITM. The limitation 
of the signature based detection is that it only works and recognizes known threat patterns and would 
fail for a zero-day attack. The IDS signatures are well known to both the system and malicious users 
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(Paterson, 2011) and thus the attackers can take time to circumvent it (Winn et al., 2015). Therefore 
it is critical to detect the intrusion patterns that have not been seen before.

The machine learning application to reduce the manual configurations for IDS is discussed by 
(Mantere, et al., 2013). An IDS to detect malicious traffic was described by (Maglaras, & Jiang, 2014) 
combining OCSVM with recursive K-means clustering to minimize false alarms. OCSVM was found 
to perform well in comparison to other methods for anomaly detection; however, the performance 
could degrade for higher dimensional problems (Sander, 2017). Machine learning techniques have 
been extensively used but the recent breakthrough has been in neural networks.

An in-vehicle network security IDS using deep learning was proposed for Controller Area 
Network (CAN) traffic by (Kang, & Kang, 2016) addressing vanishing gradient problems through 
Deep Belief Networks (DBN). Anomaly detection is regarded as an unsupervised task and a semi-
supervised scheme utilizing some labelled data was proposed by (Görnitz, et al., 2013). LSTM for 
collective anomaly detection for network traffic was proposed by (Thi et al., 2017) for KDD 1999 
(KDD Cup 1999 Data). Recurrent Neural Network (RNN) work well with temporal data and store 
input event representations using their feedback connections (Hochreiter, & Schmidhuber, 1997). 
Tuor, et al. (2017) proposed an unsupervised deep learning approach based on RNN to characterize 
users to defend against insider threat using system logs. User behaviour through web log files was 
investigated by (Ma, et al., 2017) using Multiple Layer Perceptron (MLP) and Decision Trees. A joint 
model of LSTM and OCSVM (or SVDD) was trained for variable length data sequences by (Ergen, 
2017) and the techniques also applied to Gated Recurrent Unit (GRU).

Autoencoders
Autoencoders are neural networks that can be unsupervised and work by creating a compressed 
representation of its input data (Figure 2). The input and output layers have the same dimensions 
whereas the hidden layer is a lower dimensional or compressed representation. It comprises of an 
encoder and decoder. The encoder generates a low dimensional or compressed representation from 
the original high dimensional data, whereas the decoder uses the compressed representation and 
expands it to the same higher dimensional data as the original (Alla, 2019). In the process of encoding 
to a low dimension, the encoder discards irrelevant data and learns important features (Alla, 2019). 
Ideally we would have a low reconstruction loss between the input and reconstructed output from 
the compressed representation. Thus the reconstructed or expanded output is only an approximation 
of the input. The difference in approximating the input can be measured as a reconstruction error or 
loss. The reconstruction loss will be low for inputs similar to the ones used to train the autoencoder 
but would be higher for dissimilar inputs.

The autoencoders are especially interesting for anomaly detection based on the reconstruction 
loss. By measuring the reconstruction loss L  (Equation 1, where X  is the original input and X�  is 
the reconstruction input), or the information loss between the input and reconstructed output, it is 

Figure 2. Relationship between original, compressed and reconstructed input (Chollet 2016)
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possible to isolate an anomalous input from normal inputs. The reconstruction loss will be higher in 
case of an anomalous input:

L X X X X, � �( ) = −
2

	 (1)

The common applications of an autoencoder are segmentation, dimensionality reduction, and 
detection. Dimensionality reduction of data with multilayer neural networks using a small central 
layer to reconstruct the high dimensional input vectors was shown to produce better results than 
PCA (Hinton, G. E., & Salakhutdinov, 2006). The data projections learnt by autoencoders are more 
interesting than PCA or similar simple techniques (Chollet, 2016).

METHODS AND MATERIALS

Dataset
The gas pipeline dataset (Beaver, et al., 2013) used for this research, was specifically developed using 
an in-house SCADA gas pipeline to gather information in the network between a RTU and MTU, and 
also to provide a public SCADA dataset for IDS research. The data is provided in raw and Attribute-
Relation File Format (ARFF) formats with a total of 274,627 instances in each dataset, with each 
row containing multiple columns or features (Turnipseed, 2015). Specifically, gas pipeline 5 dataset 
in ARFF format was used (Table 2). The percentage of normal instances is 78.1% and that of attack 
instances is 21.9%, thus the data is unbalanced. This would in general be true for any dataset as the 
proportion of the normal instances would be more than the attack instances.

The dataset has three types of features (Table 2), that is, network, payload and labels, and 
comprises of network information that can be used to train IDS (Turnipseed, 2015). Also, for the 
features Setpoint, gain, Reset rate, Deadband, Cycle time, Rate, System mode, Control scheme, 
Pump, Solenoid, and Pressure measurement there are a lot of missing values. Payload information 
shows the state, settings and parameters and can be used to detect if the system is in a critical state. 
Labels (Binary attack, Categorized attack, Specific attack) are used to indicate the normal or attack 
transactions (Table 3).

Further details about the dataset are available in (Turnipseed, 2015; Morris et al., 2015). The 
authors (Turnipseed, 2015; Morris et al., 2015) also provide information about missing data which 
has occurred due to Modbus frames being represented as rows which means that information in each 
row is not the same and some features are undefined.

Anomaly Detection Techniques
Multiclass Classification
We used two of the unsupervised machine learning techniques, that is, K-nearest neighbours (KNN) 
and Support Vector Machines (SVM) for multiclass classification in order to provide comparison 
against other reported results in the literature for the gas pipeline dataset. KNN classifier (Scikit-
learn) is an unsupervised scheme that can cluster the data based on a distance measure. Support 
Vector Classification (SVC) (based on libsvm) by default uses a one-vs-one strategy for multiclass 
classification.

Binary Classification
For binary classification, we used autoencoder implementations using Keras (Keras) with Tensorflow 
(Abadi et al., 2016) as backend. Keras is an open source neural networks library enabling quick 
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Table 2. Features of Gas Pipeline Dataset (Turnipseed, 2015; Morris, 2015)

Feature Feature Type Description

Address Network The station address of the MODBUS slave device. This address is 
the same on a query and response to a given slave device

Function Command Payload MODBUS function code.

Length Network The length of the MODBUS packet

Setpoint Command Payload The pressure set point when the system is in the Automatic system 
mode.

Gain Command Payload PID gain

Reset rate Command Payload PID reset rate.

Deadband Command Payload PID dead band.

Cycle time Command Payload PID cycle time

Rate Command Payload PID rate.

System Mode Command Payload The system’s mode automatic (2), manual (1), or off (0).

Control scheme Command Payload The control scheme is either pump (0) or solenoid (1). This 
determines which mechanism is used to regulate the set point.

Pump Command Payload Pump control; on (1) or off (0). Only used in manual mode.

Solenoid Command Payload Relief valve control; opened (1) or closed (0). Only used in manual 
mode.

Pressure measurement Response Payload Pressure measurement.

CRC rate Network Cyclic-Redundant Checksum rate

Command response Network Command (1) or response (0).

Time Network Time stamp.

Binary Attack Label Binary class; attack (1) or normal (0).

Categorized attack Label Category of attack (0-7).

Specific attack Label Specific attack (0-35)

Table 3. Attack Categorization (Turnipseed, 2015)

Type of Attack Code Threat Type

Normal Normal(0) N/A

Naïve Malicious Response Injection NMRI(1) Modification/Fabrication

Complex Malicious Response Injection CMRI(2) Modification/Fabrication

Malicious State Command Injection MSCI(3) Modification/Fabrication

Malicious Parameter Command Injection MPCI(4) Modification/Fabrication

Malicious Function Code Injection MFCI(5) Modification/Fabrication

Denial of Service DoS(6) Interruption

Reconnaissance Recon(7) Interception
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implementation (Keras). In order to train the autoencoder, we used the same split of training and test 
data as used across other techniques for ease of comparison.

Performance Metrics
The performance of anomaly detection is based on how well the model performs on the unseen data. It 
is common practice to consider the evaluation results of the model into four categories: True Positive 
(TP), False Positive (FP), True Negative (TN), and False Negative (FN) (Figure 3).

Figure 3 shows the outputs of a classifier categorized into four classes. Two of the diagonal 
outcomes shown in black (TP and TN) are good, as they represent correct classifications. TP here 
denotes an actual attack classified as an attack, whereas TN is a normal instance classified as a normal 
type. A FP is a classification of a normal instance as an attack type, whereas FN is a classification 
of an attack as a normal instance, both being cases of misclassifications.

We use the following metrics (Sokolova, & Lapalme, 2009; Tharwat, 2018) for the evaluation 
of our models:

•	 Classification Accuracy: This indicates the accuracy of the classifier in making a correct 
decision. It is expressed as:

CA TP TN TP TN FP FN= +( ) + + +( )/ 	 (2)

•	 Precision: For a positive predicted value, it indicates the percentage of correct predictions. This 
is expressed as:

Precision TP TP FP= +( )/ 	 (3)

•	 Recall: For an actual positive value, it indicates the percentage of correct predictions. It is 
expressed as:

Recall TP TP FN= +( )/ 	 (4)

•	 F1 score: See below:

F XPrecisonXRecall Precision Recall1 2= ( ) +( )/ 	 (5)

Figure 3. Four possible classifier output categories
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RESULTS AND DISCUSSION

Pre-Processing and Feature Selection
The data pre-processing and feature extraction is an important first step in data analysis (Tuor, 
et al., 2017; Ma, et al., 2017). The chosen dataset has many undefined values across six features 
represented with a ‘?’. After considering the range of known values, we changed all the ‘?’ values to 
-1 in order to apply the classification algorithms. We found this did not affect the results negatively 
when comparing the results with the reduced subset based on deleting columns with ‘?’ values or 
that based on RFE selection.

A scatter plot depicting the spread of PCA transformed values for normal and seven attack type 
instances is shown in Figure 4. It can be seen that there is some overlap in different attack categories, 
e.g., MPCI and DoS as shown in the top right corner. This is important to note for interpreting the 
results later. Due to the overlap, it becomes difficult to fully segregate some categories.

We also chose a reduced feature subset by applying RFE to the dataset and selected 10 of the 
most relevant features. However, this only improved the KNN results. The reason for this could be 
the hidden relationships between features.

The attack instances in the dataset are less compared to the normal instances and the dataset can 
be considered unbalanced, therefore we applied the models on the full dataset but also used class 
weighting, which is available in different machine learning software.

Anomaly Detection - Multiclass Classification
We applied two techniques for multiclass anomaly classification. The results for the two selected 
models, that is KNN and SVM are provided in Table 4 along with the results from (Shirazi, et al., 
2016; Feng, et al., 2017). The best results across all techniques are shown in bold. The results in 
(Shirazi, et al., 2016) utilize K-means, NB, PCA-SVD and GMM and the best of the results for each 
category are shown in Table 4. However, it is important to consider that Shirazi, et al. (2016) created 
data subsets by combining each of the seven anomalous classes with normal data. In comparison we 
used the machine learning models over the single combined dataset with all eight classes.

Figure 4. PCA normalized values for normal data and the seven attack categories
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There is no clear best algorithm but in general the results for KNN and NB are better across many 
cases. Our proposed architecture does not require steps such as noise addition and additional labels. 
Missing data handling is not discussed by (Shirazi, et al., 2016; Feng et. al, 2017).

Anomaly Detection - Binary Classification
Classification
We used the autoencoder for binary classification of the data into attack and normal instances, and 
provide comparison of results with (Shirazi, et al., 2016; Feng, et al., 2017). In order to segregate 
the attack instances from the normal instances we require a suitable threshold on reconstruction loss.

Table 4. Multiclass Classification Results on Gas Pipeline Dataset

Attack Technique Precision Recall F-Score

NMRI

KNN 0.64 0.60 1.0

SVC 0.37 0.99 0.53

(Shirazi, et al., 2016) 1.0 (NB, GMM) 0.81 (NB) 0.87 (NB)

(Feng et al., 2017) - 0.88 -

CMRI

KNN 0.77 0.80 0.62

SVC 0.97 0.022 0.04

(Shirazi, et al., 2016) 1.0 (NB) 0.83 (NB) 0.87 (NB)

(Feng et al., 2017) - 0.67 -

MSCI

KNN 0.91 0.99 0.79

SVC 0.64 0.43 0.52

(Shirazi, et al., 2016) 0.99 (PCA-SVD) 0.72 (NB, 
K-means)

0.82 (NB, 
K-means)

(Feng et al., 2017) - 0.62 -

MPCI

KNN 0.98 0.97 0.95

SVC 0.77 0.91 0.83

(Shirazi, et al., 2016) 0.70 (NB) 0.66 (NB) 0.74 (GMM)

(Feng et al., 2017) - 0.80 -

MFCI

KNN 0.95 1.0 0.97

SVC 0.91 1.0 0.95

(Shirazi, et al., 2016) 1.0 (NB, GMM) 0.54 (PCA-SVD) 0.67 (PCA-SVD)

(Feng et al., 2017) - 1.0 -

DoS

KNN 1.0 0.89 0.94

SVC 1.0 0.40 0.58

(Shirazi, et al., 2016) 1.0 (K-means) 0.79 (NB) 0.88 (NB)

(Feng et al., 2017) - 0.94 -

Reconnaissance

KNN 1.0 0.93 0.96

SVC 0.99 0.87 0.92

(Shirazi, et al., 2016) 0.99 (NB) 0.75 (K-means) 0.84 (K-means)

(Feng et al., 2017) - 1.0 -
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A plot of TP, TN, FP and FN by selecting reconstruction loss threshold values from 0 to 2.5 is 
shown in Figure 5. An appropriate threshold value can identify anomalies based on their loss value 
being higher compared to the normal instances. As shown in Figure 5, if the threshold is chosen as 
too low (less than around 0.3) then some normal instances will be categorised as attack (FP), and 
similarly if it is too high (greater than around 1.1) then some attack instances will be categorised as 
normal (FN). We provide results for two selections of threshold as 0.3 and 1.8.

Comparative results for other techniques reported in the literature with the proposed autoencoder 
based scheme (with a loss threshold of 0.3 and 1.8) are shown in Table 5. Feng, et al. (2017) combine 
a Bloom filter to store the signature data base and LSTM network based softmax classifier. The 
data is pre-processed to segregate the normal data which is further fragmented into packages based 
on their time series anomaly detector. The model is based on selection of a parameter λ and k. The 
value of k = 4 provided highest F-scores. Adding probabilistic noise during training is proposed to 
avoid false positives. They provide comparisons with BF, BN, SVDD, IF, GMM and PCA-SVD by 
tuning hyper parameters (Nazir et al.2018) for best F-scores. (Shirazi et al, 2016) provide results of 
four techniques (K-means, PCA-SVDD, NB, GMM of which the best results are represented for each 
category in Table 5. Mansouri, et al. (2017) used a set of 24 techniques on the dataset and reported 
an accuracy of 97.5% for their proposed system based on a Gray Wolf Optimizer (GWO) algorithm.

It can be seen from Table 5 that the results for the proposed autoencoder based scheme for both 
a low and high threshold provide improved results compared to other techniques. Anomaly detection 
based on autoencoders only requires the setting of a threshold. After setting the threshold, the system 
can autonomously determine and report any anomalous data. With a threshold value of 1.8, although 
it gives good results, it also allows some attack values to be passed undetected. Similarly, considering 
threshold value of 0.3 (Figure 5), any decrease below this has a progressive increase in the number 
of FP, from a very low to a very high value. The important fact to note here is that unlike many other 
schemes where there are very tight constraints for the threshold value, an optimum threshold value 
exists as a continuum from 0.3 to 1.0, where FN and FP values do not occur.

There is an obvious trade-off in the choice of threshold that depends on the application type. For 
a SCADA network, a high threshold will result in FN values, that is, some attack patterns will pass 
through as normal data, which could be disastrous. Choice of a lower threshold will suppress FN 

Figure 5. The values of TP, TN, FN, and FP corresponding to a range of reconstruction loss thresholds
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but depending on the traffic may result in occasional FPs which is better than having FNs for critical 
applications. We contend that a suitable threshold can be selected based on the available normal data 
patterns to then differentiate between an attack and a normal instance of network traffic.

Determining the Threshold Value
The training of autoencoder with only the normal data is sufficient to learn input features and a 
corresponding reconstruction loss for normal instances. Therefore it is useful to select a threshold 
value based on the reconstruction loss distribution. The distribution of reconstruction loss for the test 
data (Figure 5) is shown in Figure 6.

From Figure 6, it can be seen that the normal data has a maximum reconstruction loss of 
approximately 0.28. A threshold value greater than this will ensure there are no FPs. Similarly, the 
minimum reconstruction loss for attack data is approximately 1.0. A threshold value less than 1.0 
ensures that there are no FNs. Further data exploration and statistical techniques can help where there 
is an overlap of an attack and normal reconstruction loss values.

Table 5. Comparative results for Anomaly Detection using Autoencoder (Normal and Attack Traffic) with a reconstruction loss 
threshold of 1.0 and 1.8

Technique Precision Recall Accuracy F-Score

Autoencoder (threshold = 
0.3) 1.0 1.0 1.0 1.0

Autoencoder (threshold = 
1.8) 1.0 0.97 0.99 0.98

LSTM (Feng et al., 2017) 0.94 0.78 0.92 0.85

K-means, NB, PCA-SVD, 
GMM (Shirazi et al., 2016) 0.8319 (K-means) 0.7692 (NB) 0.9036 (NB) 0.8605 (NB)

GWO (Mansouri et al., 
2017) - - 0.975 -

Figure 6. Histogram showing the number of values vs reconstruction threshold for (a) Normal data (b) Attack data
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Discussion
Intrusion detection for SCADA systems has become an active and major research area due to the 
current cyber threat environment and the high potential to damage because the systems can be easily 
compromised. Anomaly detection is an unsupervised learning task as the anomalous distributions are 
unknown. Cyber security research is focusing on unsupervised neural networks based classification 
methodologies that promise good results and are capable of handling complex systems in near real-time.

In actual practice the attack or anomalous instances will always be less than the normal instances 
thus creating unbalanced datasets. This can create problems for supervised learning techniques 
that require labelled datasets from each type for training. This can be overcome by using either 
data augmentation of the attack instances or by assigning class weights to the classes with less 
representation.

However, progress in developing new unsupervised algorithms that can provide better detections 
with a low false alarm rate, is required. Timely detection of an anomaly is an important characteristic 
of IDS. Therefore, in this study, we used autoencoders to propose a threshold based scheme that 
can quickly discern an attack instance. The autoencoder reconstruction loss can help segregate an 
anomalous input from the normal traffic pattern. This segregation would be based on a threshold of 
reconstruction error. Autoencoders provide better results compared to other techniques. An added 
advantage is that these require only normal traffic for training, and thereafter the deviation of an 
attack pattern can be determined easily. Thus the choice of threshold will determine the number of 
inputs that get flagged as an anomaly and therefore thresholds have to be carefully chosen.

As seen in Figure 5, threshold is not a very rigid or fixed value but rather it comprises of a range 
of values that will give optimum results. The threshold can be kept low enough so that no attack data 
(even if it is very similar to normal traffic) can pass through. A threshold below 0.3 will have some 
FP values, and similarly a threshold higher than around 1.0 will have some FN values. For SCADA 
applications a false alarm for a FP value would be deemed better than a real attack being passed 
undetected as a FN.

The model and the threshold can also be tailored with the passage of time. The autoencoder model 
can continuously learn and improve after encountering more traffic patterns and the threshold can 
also change based on the desired outcomes and constraints. We contend that for timely and accurate 
unsupervised anomaly detection in critical SCADA networks, it is sufficient to identify an attack 
instance based on binary classification only.

The availability of public SCADA datasets has been addressed only to a limited extent. However, 
there is still a need to validate research results for network traces from the real-world SCADA systems. 
This can be helped by the fact that some SCADA vendors have started to provide the machine learning 
and data analytics packages within their SCADA products (WinCC OA SmartSCADA).

CONCLUSION

The integration of SCADA network and devices with the Internet has many business benefits. However, 
it has also made these otherwise highly secure and critical systems, vulnerable to attackers, who can 
potentially access and exploit the intrinsic weaknesses in many of the access protocols.

This paper investigated the application of autoencoder neural networks on a realistic SCADA 
laboratory dataset for anomaly detection system for SCADA system. The results show that the proposed 
autoencoder based techniques can uncover anomalies in the data with a high degree of probability. 
Thus in an autoencoder based unsupervised technique, the normal traffic features are learned and 
an attack pattern can be detected as an anomaly based only on its reconstruction loss or distance 
from the normal dataset. The use of autoencoders is especially promising for anomaly detection as 
they can be trained using only the normal SCADA data (which is available in abundance and easily 
acquired), thereafter detecting an unseen attack instance based on its reconstruction loss or distance 
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from the normal data. We also used KNN and SVM to the gas pipeline SCADA dataset for multiclass 
classification to compare with other results in research literature.

The provision of an integrated data analysis package within the SCADA application is becoming 
important with some vendors starting to provide such facility. For future work, we will consider the 
data analysis packages integrated within SCADA software in order to develop a fully integrated 
anomaly detection system.
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