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ABSTRACT

Knowledge discovery data (KDD) is a research theme evolving to exploit a large data set collected every 
day from various fields of computing applications. The underlying idea is to extract hidden knowledge 
from a data set. It includes several tasks that form a process, such as data mining. Classification and 
clustering are data mining techniques. Several approaches were proposed in classification such as 
induction of decision trees, Bayes net, support vector machine, and formal concept analysis (FCA). 
The choice of FCA could be explained by its ability to extract hidden knowledge. Recently, researchers 
have been interested in the ensemble methods (sequential/parallel) to combine a set of classifiers. 
The combination of classifiers is made by a vote technique. There has been little focus on FCA in 
the context of ensemble learning. This paper presents a new approach to building a single part of the 
lattice with best possible concepts. This approach is based on parallel ensemble learning. It improves 
the state-of-the-art methods based on FCA since it handles more voluminous data.

Keywords
Classification Rule, Dagging, Data Mining, Ensemble Method, Formal Concept, Knowledge Discovery Data, 
Machine Learning

INTRODUCTION

In this paper, we are interested in classification. Classification is a two-phase process: a learning 
phase which organizes the information extracted from a set of objects (or data) and a classification 
phase which determines the label/class of new objects. Many supervised classification techniques 
are proposed such as Classification by Formal Concept Analysis, Decision Tree, Bayes Net, SVM, 
Neural Networks…

The Formal Concept Analysis is a formalization of the philosophical notion of concept, defined 
as a pair of extension and intention of the concept. The intention of a concept refers to necessary 
and sufficient attributes of the concept in question. The extension of a concept is the set of instances 
that have been learned this concept. Several classification methods are proposed since the semantic 
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richness is guaranteed by the Formal Concept Analysis (Poelmans et al., 2013). Unfortunately, this 
classification methods encountered some problems such as an exponential complexity (in the worth 
case), a high error rate and overfitting (Meddouri & Maddouri, 2009; Meddouri & Maddouri, 2010).

Several ensemble methods are used to improve the error rate of any single learner (Freund, 1995) 
(Freund & Shapire, 1996). These proposed methods are based on sequential learning (Boosting). 
All the data are considered in each learning step and the weights are assigned to learning instances. 
However, Kuncheva reported that sequential learning (Boosting) is not enough for efficient classifier 
such as Decision Tree (Kuncheva et al., 2002). In the area of supervised learning, other ensembles 
exist, and they are based on parallel learning. The difference between these two ensemble methods 
derives from how to select data for learning. They are distinguished by the data sampling techniques 
as Bootstrapping used to learn the classifiers from subsets. The particularity of learning from a 
Bootstrap is to combine hard learning instances to misleading instances in the training set (unlike 
the sequential approach) (Breiman, 1996; Breiman, 1996b; Kuncheva, 2004).

There has been little research that focused on the classification based on Formal Concepts Analysis 
as part of the parallel learning. We propose to use and study the Formal Concepts Analysis in this 
context and compare it with respect to the sequential approach. The best-known method, which is 
based parallel learning is Dagging (Disjoint samples aggregating) creates a number of disjoint groups 
and stratified data from the original learning data set (Ting & Witten, 1997), each considered as a 
subset of learning. The weak learner is built on this learning sets. The predictions are then obtained 
by combining the classifiers outputs by majority vote (Ting & Witten, 1997; Davison & Sardy, 2006). 
This method has shown its importance in recent work. Then, we propose to use this technique in this 
work to study the classifier ensembles based on formal concepts, since a limited number of studies 
have focused on the formal concepts in the context of parallel learning.

First, we present the basics of Formal Concept Analysis and several classification methods based 
on lattice concept or sub-lattice of concepts. Second, we present ensemble methods based on sequential 
and parallel learning and we propose a new method exploiting the advantages of the Dagging to 
generate and combine in a parallel way a weak concept learner. Then, we present classifiers based 
on FCA and an amelioration of this classifier. A comparative and experimental study is presented to 
evaluate the performance of concept ensembles based on certain criteria such as the number, variety, 
and type of classifiers. Finally, the comparative study shows the importance of parallel learning 
compared to sequential learning.

FORMAL CONCEPT ANALYSIS AND CLASSIFICATION

The classification approach based on Formal Concept Analysis (FCA) is a symbolic approach allowing 
the extraction of connections, reasons, and rules according to the concepts discovered from data 
(Carpineto & Romano, 1996). A concept is a form of modeling an object with its attributes. One of 
the main strengths of the FCA is its visualization properties. FCA produces concept lattices that can 
be represented by a graph (mathematical structure) and it is seen as an area of research in which we 
evolve from one level to another, validating the characteristics associated with concepts. The semantic 
richness is guaranteed, and so, FCA facilitates the task of the classifier in knowledge discovery. Many 
learning methods based on Formal Concept Analysis are proposed, such as GRAND (Oosthuizen, 
1988), LEGAL (Liquiere & Nguifo, 1990), GALOIS (Carpineto & Romano, 1993), RULEARNER 
(Sahami, 1995), CIBLe (Njiwoua & Nguifo, 1999), CLNN&CLNB (Xie & al., 2002), IPR (Maddouri, 
2004), NAVIGALA (Visani & al., 2011), CITREC (Douar & al., 2008), CBALattice (Gupta & al., 
2005), HMCS-FCA-SC (Ferrandin & al., 2013), SPFC (Ikeda & Yamamotol., 2013), CLANN (Nguifo 
et al.., 2008), FCA-BRG (Cintra et al., 2015) and RMCS (Kashnitsky & Ignatov, 2015).
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Definition

A formal context is a triplet O P R, , , where  = …{ }o o o
n1 2

, , ,  is a finite set of n instances, 
 = …{ }p p p

m1 2
, , ,  a finite set of m properties (binary attributes) and   is a binary relation defined 

between   and  .  o p
i j
,( )  = 1 means that i instanceoth

i
 verifies the j th  property p

j
. In relation 

  (Ganter & Wille, 2005). The context is habitually represented by a cross-table or a binary table 
as shown in Table 11.

Let A⊆  and B ⊆   be two finite sets. For both sets A and B, operators ϕ A( )  and δ B( )  
are defined as (Ganter & Wille, 2005):

•	 ϕ A( )  = { p o and o p ∀ ∈ ( ) ∈, ,  }
•	 δ B( )  = {o p and o p ∀ ∈ ( ) ∈, ,  }

Operator ϕ  defines the properties shared by all elements of A. Operator δ  defines instances 
which share the same properties included in set B. Operators ϕ  and δ  define a Galois connection 
between sets   and   (Ganter & Wille, 2005). The closure operators are A A" = ( )ϕ δ�  and 
B B" = ( )δ ϕ� . Finally, the closed sets A and B are defined by B B= ( )δ ϕ�  and A A= ( )ϕ δ� .

A formal concept of the context O P R, ,  is a pair (A, B) where A⊆ , B ⊆  , ϕ A B( ) =  
and δ B A( ) = . Sets A and B are called, respectively, the extent (domain) and intent (co-domain) of 
the formal concept (Table 2).

From the formal context O P R, , , we can extract all possible concepts organized as a complete 
lattice (called Galois lattice) (Ganter & Wille, 2005). We needed the following partial order relation 
‘� ’ is defined between two concepts, A B A B

1 1 2 2
, ,( ) ( )�  if and only if A A

1 2
⊆( )  and B B

2 1
⊆( ) . 

Table 1. Illustration of the formal context (Weather data under binary format)

O\P p1 p2 p3 p4 p5 p6 p7 p8 Play

o1 1 0 0 1 0 0 0 1 No

o2 1 0 0 1 0 0 0 0 No

o3 0 1 0 1 0 0 0 1 Yes

o4 0 0 1 0 1 0 0 1 Yes

o5 0 0 1 0 0 1 1 1 Yes

o6 0 0 1 0 0 1 1 0 No

o7 0 1 0 0 0 1 1 0 Yes

o8 1 0 0 0 1 0 0 1 No

o9 1 0 0 0 0 1 1 1 Yes

o10 0 0 1 0 1 0 1 1 Yes

o11 1 0 0 0 1 0 1 0 Yes

o12 0 1 0 0 1 0 0 0 Yes

o13 0 1 0 1 0 0 1 1 Yes

o14 0 0 1 0 1 0 0 0 No
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The concepts A B
1 1
,( )  and A B

2 2
,( )  are called nodes in the lattice. Hass diagram is the chart of Galois 

lattice (Ganter & Wille, 2005). Figure 1 represents the concept lattice (Galois lattice) of the context 
presented in Table 1.

Classification
The Galois lattice is a search space in which we evolve from a level to another, by validating the 
characteristics associated with the concepts (Meddouri & Maddouri, 2009). Classification based 
on FCA must determine the class of new objects by navigating on a lattice of formal concepts. 
Many classification systems exist in the literature using complete lattice or sub-lattice of concept 
(Fu et al., 2004).

Complete Lattice-Based Methods
Many classification systems use lattice concepts such as RULEARNER (Sahami, 1995), GALOIS 
(Carpineto & Romano, 1993) and NAVIGALA (Visani & al., 2011). The most common used 

Figure 1. The Galois lattice trained from the context of Table 1

Table 2. Specification of binary attributes

Attributes Signification

p1 Outlook=sunny

p2 Outlook=overcast

p3 Outlook=rainy

p4 Temperature=hot

p5 Temperature=mild

p6 Temperature=cool

p7 Humidity

p8 Windy
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method is GRAND (Oosthuizen, 1988). From a pseudo-lattice, the classes of which contributes to 
the construction of this lattice as attributes, GRAND induces the most general rules. To do this, it 
selects the intermediate nodes of the immediate attribute node representing the class. To illustrate 
the classification approach based on a complete lattice of formal concepts, we apply GRAND on the 
initial formal context of Table 1. We obtained the concepts of Figure 2.

From Figure 2, generating the classification rules are starting an attribute node that 
materializes ‘Play=Yes’ 2. For example, GRAND select the concept number 12 (Figure 2). It 
looks for attribute nodes deriving this concept and gets attributes{ p p

6 7
, }. The following 

classification rule will be generated:

IF Temperature=Cool AND Humidity THEN Play=Yes	

The instances labeled by the attribute-node ‘Play=No’ do not form a concept. According 
to (Oosthuizen, 1988) (Nguifo & Njiwoua, 2005), negatively labeled instances cannot induce a 
classification rule, only the positively labeled instances induce classification rule. The instances labeled 
by the attribute-node ‘Play=No’ do not induce a concept. Therefore, instances labeled negatively 
are considered instances associated to attribute-node ‘Play=No’. The classification rules generated 
by GRAND from the formal context of Table 1 concern only the ‘Play=Yes’:

1. 	 IF Outlook=Sunny AND Temperature=mild AND Humidity THEN Play=Yes
2. 	 IF Outlook=Rainy AND Humidity AND Windy THEN Play=Yes
3. 	 IF Outlook=Overcast AND Temperature=Cool AND Humidity THEN Play=Yes
4. 	 IF Temperature=Cool AND Humidity THEN Play=Yes

Figure 2. Concepts generated by GRAND from the Table 1
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5. 	 IF Outlook=Overcast AND Temperature=Hot AND Windy THEN Play=Yes
6. 	 IF Outlook=Sunny AND Temperature=Cool AND Humidity AND Windy THEN Play=Yes
7. 	 IF Outlook=Rainy AND Temperature=Cool AND Humidity AND Windy THEN Play=Yes

A critical overview of algorithms based on the extraction of formal concepts shows that existing 
algorithms in literature failed in their objectives. Indeed, almost all these algorithms have been 
focused on the extraction of all concepts of concept lattice, which increases the costs of extraction 
of classification rules and makes their use almost impossible for large databases. There are three 
common limits for systems based on the concept lattice. The complexity (temporally and spatially) of 
lattice generation is exponential. The navigation in huge search space is hard (Fu et al., 2004). And the 
used data is binary. For these reasons, many researchers focused on sub-lattice-based classification.

Sub-Lattice-Based Methods
The major difference between lattice and sub-lattice based classification is the number of concepts 
generated. However, their limit is the possible loss of information in a condensed data representation 
or a partial reproduction of the complete lattice. Systems like LEGAL (Liquiere & Nguifo, 1990), 
CIBLe (Njiwoua & Nguifo, 1999), CLNN&CLNB (Xie & al., 2002) and IPR (Maddouri, 2004) are 
characterized by their ability to build a part of the concept lattice and inducing classification rules.

In IPR for example, the construction of a concept cover is based on heuristic algorithms which 
reduces the complexity of learning. The concepts are extracted one by one. Each pertinent concept 
is given by a local optimization of Shannon entropy function. Each pertinent concept with associated 
majority class, constructs a rule. As an illustrative example, we applied IPR on the preceding formal 
context (Table 1), we obtained the concepts of Figure 3.

From the context of Table 1, IPR induces the rules by calculating for each pertinent concept the 
majority class:

1. 	 IF Humidity THEN Play=Yes.
2. 	 IF Outlook=Rainy AND Humidity THEN Play=Yes.
3. 	 IF Windy THEN Play=Yes.
4. 	 IF Temperature=Cool AND Humidity THEN Play=Yes.
5. 	 IF Outlook=Overcast AND Temperature=Mild THEN Play=Yes.
6. 	 IF Outlook=Rainy AND Temperature=Mild THEN Play=Yes.

Figure 3. Concepts generated by IPR from the Table 1
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7. 	 IF Outlook=Sunny AND Temperature=Hot THEN Play=No.
8. 	 IF Outlook=Sunny AND Temperature=Mild AND Humidity THEN Play=Yes.
9. 	 IF Outlook=Overcast AND Temperature=Cool AND Humidity THEN Play=Yes.
10. 	IF Outlook=Sunny AND Temperature=Mild AND Windy THE NPlay=No.
11. 	IF Outlook=Rainy AND Temperature=Mild AND Windy THEN Play=Yes.
12. 	IF Outlook=Overcast AND Temperature=Hot AND Windy THEN Play=Yes.
13. 	IF Outlook=Sunny AND Temperature=Hot AND Windy THEN Play=No.
14. 	IF Outlook=Sunny AND Temperature=Cool AND Humidity AND Windy THEN Play=Yes.
15. 	IF Outlook=Rainy AND Temperature=Cool AND Humidity AND Windy THEN Play=Yes.
16. 	IF Outlook=Rainy AND Temperature=Mild AND Humidity AND Windy THEN Play=Yes.

One limit of IPR is the induction of redundant concepts (including same instances) 
(Maddouri, 2004) to cover all the formal context. For example, o

5
 is covered by the concepts 

( p o o o o o o o
7 5 6 7 9 10 11 13{ } { }, , , , , , , ), ( p p o o o o

6 7 5 6 7 9
, , , , ,{ } { } ) and ( p p p p o

3 6 7 8 5
, , , ,{ } { } ).

Several methods offer a partial reproduction of the concept lattice i.e., a generation of text 
classification rules, but unfortunately this leads to inefficient methods. These methods, which deal 
only with binary attributes, also incur some difficulties as the exponential complexity (in the worst 
case) and the generation of redundant concepts. We notice that with those methods based on sub-
lattice classification, the constructed concepts are chosen based on inappropriate criteria (i.e., the 
depth of the lattice, the covering of the context, etc.) (Meddouri & Maddouri, 2009).

ENSEMBLE METHODS

In machine learning, several researchers have focused on ensemble methods of classifiers.
These methods can improve the performance of individual and perceived ‘weak’ classifiers. 

Empirical studies have shown that the classifiers sets are often much more accurate than the individual 
classifiers (Bauer & Kohavi, 1999). Different theoretical explanations have been proposed showing 
the effectiveness of ensemble methods (Kleinberg, 2000).

Currently, there are two types of ensemble methods. The first type uses sequential learning 
to generate iteratively a set of classifiers, the same model from the same learning data which are 
weighted at each iteration. The second applies parallel learning of classifiers processing learning 
data independently. The predictions of the classifiers are then combined in an aggregation/vote or a 
stacking algorithm (Kleinberg, 2000).

In this paper, we present these two types of learning because of their importance in the literature 
and the lack of work that apply to the formal concepts, we propose two approaches. The first is based 
on the sequential learning i.e., that each classifier is built according to the performance of the previous 
classifier constructed. The second is based on the parallel learning.

Boosting
Boosting is an adaptive approach, which makes it possible to correctly classify an object that 
can be inappropriately classified by an ordinary classifier. The main idea of Boosting is to build 
many classifiers which complement each other, to build a more powerful classifier. At first, it 
selects a subset of instances from the learning data set (different subsets from the training data 
set in each iteration). Then, it builds a classifier using the selected instances. Next, it evaluates 
the classifier on the learning data set, and it starts again T times (T is the number of generated 
classifiers). Adaboost (Adaptive Boosting) is the most well-known method of Boosting for 
classifiers generation and combination.
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For   class problem, let Y = { }1,...,  be the class labels, with y Y
i
∈  is the class label 

associated for each instance o
i
 (i = 1 to n). To generate T classifiers in AdaBoost, the distribution of 

the weight of o
i
 is initially determined as:

D i n
0

1( ) = ( )/ 	

The weight of o
i
 is:

w D i for each y Y y
i y i,

/1
0

1= ( ) −( ) ∈ −{ }   	

On each iteration t} from 1 to T, we define:

W w
i
t

y y i y
t

i

=
≠∑ ,

	

and we set:

q i y
w

W
foreachy y

t

i y
t

i
t i

, ,( ) = ≠ 	

The distribution of weights is calculated by:

D i
W

W
t

i
t

i

N

i
t

( ) =
=∑ 1

	

Each generated nominal classifier h
t
 provides an estimated probability p o y

t i i
,( )  to the class 

y
i
 from the entry o

i
.

Three cases are presented:

•	 If p o y
t i i

,( ) = 1  and p o y y y h
t i i t

, , ,( ) = ∀ ≠0  has correctly predicted the class of o
i
.

•	 If p o y
t i i

,( ) = 0  and p o y y y h
t i i t

, , ,( ) = ∀ ≠1  has an opposed prediction of the class of o
i
.

•	 If p o y p o y y y
t i i t i i
, , ,( ) = ( ) ∀ ≠ , the class of o

i
 is selected randomly (y or y

i
).

The error rate of h
t
 is calculated on the weighted training set. If an instance o

i
 is correctly 

classified by h
t
, then the weight of this instance is reduced, otherwise, is increased. The pseudo-loss 

of the classifier h
t
 is defined as:


t i

N

t t i i y y t t i
D i p o y q i y p o y

i

= × ( ) − ( )+ ( ) ( )





= ≠∑ ∑0 5 1

1
. , , , 	
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The weights are then updated according to β
t

:

β ε ε
t t t
= −( )/ 1 	

The procedure is repeated T times and the result of AdaBoost is determined by the combination 
of the generated classifier outputs:

h o p o y
fin i y t

T

t t i i( ) = ( )× ( )
∈ =∑argmax log / ,
 1

1 β 	

The first variant of the AdaBoost algorithm is called Adaboost.M1 (Freund, 1995; Freundet al., 
1998) that uses the previous process and stops it when the error rate of a classifier becomes over 0.5. 
The second variant is called AdaBoost.M2 (Freund & Shapire, 1996) which has the particularity of 
handling multi-class data and operating whatever the error rate is. In this study, we use AdaBoost.M2 
since Adaboost.M1 has the limit to stop Boosting if the learning error exceeds 0.5.

According to (Warmuth et al., 2007), adaptive update of learning data in sequential learning 
(Boosting), increases the weight of those misclassified by the previous classifier and improves the 
performance of any learning algorithm (weak learner). However, the capacity of sequential learning 
has been challenged once highly noisy data are used. Noisy data will be ignored in parallel learning 
and possibly will spread equiprobable between Bootstraps or other subsets of training data resampled. 
Therefore, researchers have proposed techniques such as Bootstrapping (Breiman, 1996) and Disjoints 
Stratified (Ting & Witten, 1997) which consist of ignoring these noisy data or distributing on different 
sets of learning (Skurichina & Duin, 1998).

Additive Regression is an ensemble method that enhances the performance of a regression base 
classifier. Each iteration fits a model to the residuals left by the classifier on the previous iteration. 
Prediction is an accomplished by adding the predictions of each classifier. Reducing the shrinkage 
(learning rate) parameter helps prevent overfitting and has a smoothing effect but increases the 
learning time (Friedman, 1999).

DECORATE is an ensemble method for building diverse ensembles of classifiers by using 
specially constructed artificial training instances. Comprehensive experiments have demonstrated 
that this technique is consistently more accurate than the base classifier, Bagging and Random 
Forests. DECORATE also obtains higher accuracy than Boosting on small training sets and achieves 
comparable performance on larger training sets (Melville & Mooney, 2003).

MultiBoosting is an extension to the highly successful AdaBoost technique for forming decision 
committees. MultiBoosting can be viewed as combining AdaBoost with Wagging. It is able to harness 
both AdaBoost’s high bias and variance reduction with Wagging’s superior variance reduction. Using 
C4.5 as the base learning algorithm, MultiBoosting is demonstrated to produce decision committees 
with lower error than either AdaBoost or Wagging significantly more often than the reverse over a 
large representative cross-section of UCI data sets. It offers the further advantage over AdaBoost of 
suiting parallel execution (Webb, 1999).

Bagging
In parallel approach, Bagging is based on Bootstraps. The particularity of these training sets is to 
reduce the impact of hard instances to learn (called outliers and misleaders) (Skurichina & Duin, 
1998). Each classifier is trained on a set of ′n  training instances ( ′ <n n ), drawn randomly with 
replacement from the original training set of size n. Such a training set is called a Bootstrap replicate 
of the original set. Each Bootstrap replicate contains, on average, 63.2% of the original training set, 
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with many instances appearing several times. Predictions on the new instances are made by taking 
the majority vote of the ensemble.

(Breiman, 1996) reports that majority vote can turn good classifiers into almost optimal classifiers. 
Bagging is typically applied to learning algorithms that are unstable i.e. a small change in the training 
set leads to a noticeable change in the model produced (Melville & Mooney, 2005). Since each 
ensemble member is not exposed to the same set of instances, they are different from each other. By 
voting the predictions of each of these classifiers, Bagging seeks to reduce the error due to variance 
of the base classifier. Bagging of stable learners, such as Naive Bayes, does not reduce error (Melville 
& Mooney, 2005). (Kuncheva et al., 2002) report that parallel learning improves the performance of 
unstable classifier as neural networks and decision trees. They report that Bagging is not beneficial 
to improve the performance of a linear classifier on large data. It will be then advantageous to use 
these methods with unstable classifier (such as CNC).

In the literature of data sampling methods, stratified sampling has proved efficiency (Ting & 
Witten, 1997). Disjoint and stratified data sets are more representative of the original training database. 
Learning from stratified data samples allows to generate more efficient classifier than those generated 
from the weighted data in the case of sequential learning classifiers. Dagging has the particularity 
to learn parallel from stratified data sets. We also propose to exploit this variant of parallel learning 
from stratified data to generate classifiers based on nominal concepts.

Algorithm 1. Algorithm of Dagging

Input: 
   • T: the number of classifiers to generate.  

   • Learning data   of n instances:  = ( ) … ( ){ }o y o y
n n1 1

, , , ,  labeled 

     y C
i
∈ …{ }1, , . 

Output: h
vote

 generated classifier.
Begin 
     Divide the population into t strates;  
     Establish the most complete list of each t constituting strates;  
     For t from 1 to T 
     {  
     Calculate the percentage P

t
 instances of tth  strate with 

     respect to  . 
     Choose simply and randomly instances from tth  strate to form 

     O tΘ  respecting P
t
. 

     Learn weak classifier on O tΘ  to generate h
t
. 

     } 

     h argmax h o y
vote y t

T

t
= ( )∈ =∑ 1

, ;

End

Dagging (Kotsianti & Kanellopoulos, 2007; Anyfantis et al., 2007) is described with more details 
in Algorithm 1. The learning algorithm is executed T times on various disjoint and stratified sets of 
learning instances. For each set, we do not obtain new instances, but we are satisfied to have a similar 
distribution to the initial sample of learning instances. The samples are obtained by randomly drawing 
′n  instances without replacement in the training sample  , with ′ <n n . These samples respected 

the distribution of learning instances as classes.
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PROPOSED METHOD BASED ON FORMAL CONCEPT ANALYSIS

We have recently proposed a classifier based on FCA, which has the particularity to reduce training 
time and complexity. The principle is to find the most relevant concept for inducing a classification rule.

Classifier Based on Formal Concepts Analysis: CNC
The learning algorithm considers the whole of training instances and use nominal attributes (not only 
binary attributes). We note L, the number of nominal attributes AN  with:

AN AN
l

� �{�= l L� � �,�..�,� �={ }1 , ∃ ∈o O
i

, ∃ ∈ ( ) =p P AN o p
l i

, } 	

The pertinent nominal concept within the data set is extracted by selecting the nominal attribute 
which minimizes the measure of Informational Gain (IG) calculated from the learning context:

IG AN E
S v

N
E v

j

Val Att j

j
, ( ) = ( )−

( ) ( )
=

⋅

∑ 1
	

IG of the nominal attribute AN (represented by Val.Att different values) is calculated from the 
entropy function: E(). S() calculates the relevance of a value v

j
 of the attribute AN overall  . The 

variation of IG depends on S v
j( ) , if we neglect the variation of E ( ) . A data set that contains 

redundant/duplicate instances (as simple random samples), maximizes the value of S v
j( )  (if an 

instance containing v
j
 is redundant) and minimize IG of the corresponding attribute. This paralyzed 

effect does not bring a lot of diversity in the values of IG for the same attribute. In a diverse set of 
data, value of S v

j( )  is minimized and IG the corresponding attribute is more important. This 
phenomenon helps to better enhance the attributes of a diverse set. The stratified random sampling 
ensures the proportional presence of all the various subgroups within the data set. Clearly, finding 
the best attribute that maximizes the IG in a stratified set is more interesting than in another set. So, 
we are recommending learning CNC from stratified sets since it is based on the calculation of IG.

Once the nominal attribute is selected (AN * ), we extract associated instances to each value v
j
 

from this attribute.

Proposition 1: From a nominal context (multi-valued), the $\delta$ operator is set by:

δ AN v o O AN o v
j j

* *{ | }=( ) = ∈ ( ) = 	

Then, we look for the other attributes describing all the extracted instances (using the closure 
operator δ ϕ� AN v

j
* =( ) ). For this, we give the following proposition:

Proposition 2: From a nominal context (multi-valued), the ϕ  operator is set by:

ϕ B v o o B and AN AN AN o v
j l l j( ) = ∀ ∈ ∃ ∈ ( ) ={ },   	
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So we construct our pertinent concept associated with each value v
j
 of the best attribute AN *  

δ δ ϕAN v AN v
j j

* *,=( ) =( )( )� . A weak classifier is obtained by seeking the majority class 

associated with the extent of the pertinent concept ( δ AN v
j

* =( ) ). It induces a classification rule. 
The condition part of the rule is made up by the conjunction of the attributes included in the intent: 
δ ϕ� AN v

j
* =( ) . The conclusion part of the rule is made up by the majority class. After that, it 

uses the discovered rule to classify the learning data set   and so our proposed learning algorithm 
of pertinent concept stops at this iteration.

Algorithm 2. Algorithm of Classifier Nominal Concept (CNC)

Input: Sequence of ′′n  instances O o y o y
n n

= ( ) … ( ){ }′′ ′′1 1
, , , ,  with labels y

i
∈ .

Output: h
CNC

 a classifier rule. 
Begin
     From O, find the attribute having the best IG value AN * . 
     From AN *, find the nominal value having the important efficient v .

     Calculate the closure associated to v  { )} ,* *δ δ ϕAN v AN v=( ) =( )( )� ;

     Determine the majority class y*  associated with δ AN v* =( ).
     Induce the classification rule h

CNC
; 

     Return h
CNC

.
End

Parallel Ensemble of CNC
The sequential learning builds sequentially a set of classifiers from the same model and from adaptively 
weighted data. Each classifier is generated based on the reweighting of training data which is dependent 
upon the performance of the previous classifier. It was found that the addition of classifiers could 
affect paralyzing in the sense that it does not lead to an implicit improving in the performance of 
sequential learning, but rather to its degradation because of overfitting (Kuncheva, 2005; Buhlmann 
& Hothorn, 2010). This is due to the repetitive sampling of the training data from similar distributions 
learning data. Looking for the best attribute for CNC is from similar training data will be the same 
closing of this attribute and the same as the previous classifier. It will not improve performance for 
this type of classifier in the case of sequential learning.

In parallel learning, data is first divided into random and independent subsets called Bootstraps.
The same classification algorithm is then applied to each of these Bootstraps. Finally, the 

aggregation of generated classifiers is made by a simple majority vote or a weighted vote to predict 
the final class.

The best-known method, which is based on this type of learning is called Bagging (Bootstrap 
Aggregating) (Breiman, 1996; Breiman, 1996b). Methods using parallel learning are distinguished by 
the data sampling techniques they use to learn the classifiers from specific subsets. The peculiarity of 
learning from a Bootstrap is to combine the hard instances to the misleading instances in the training 
set (unlike the sequential approach).

(Kuncheva et al., 2002) and (Breiman, 1996) report that parallel learning improves the 
performance of an unstable classifier such as Networks Neural or Decision Trees. However, this type 
of learning does not improve the performance of stable linear classifiers that generates. Kuncheva 
reported that learning parallel (Bagging) will not be beneficial to improve the performance of a 
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linear classifier on large data. So, it will be advantageous to use learning parallel with a formal and 
unstable classifier (such as CNC).

To study the performance CNC, we selected 24 samples of different data (Presented with more 
details in next section. The performance of CNC is obtained according to the principle of 10 cross-
validation. In Table 3, we report the variance of the error rate for each data set.

These results show that CNC is an unstable classifier, considering that ensemble methods, which 
are based on the combination of several classifiers, are known to improve the performance of an 
individual week and unstable learner like CNC.

CNC From Disjoint and Stratified Learning Data
Recently, a great number of studies in machine learning has been concerned with parallel learning 
of classifiers that allow the improvement of single learner performances (Breiman, 1996). Parallel 
learning is known to improve the performance of any learning algorithm and discovering weak 
classifiers (weak learner). We propose to exploit the advantages of parallel ensembles methods to 
improve the performance of CNC.

Table 3. Performance of CNC on different data sets

Data Sets Error Rate Variance

1. Contact lenses 5% 15.81

2. Weather 5% 15.81

3. Lymphograohy 8.29% 9.82

4. Sonar 15.38% 9.82

5. Segment 7.01% 1.07

6. Heart statlog 13.70% 3.05

7. Glass 31.77% 15.12

8. Diabetes 10.17% 3.87

9. Iris 4.67% 3.22

10. Balance scale 28.65% 4.59

11. Car 7.47% 8.01

12. Kr vs. kp 33.95% 1.8

13. Waveform 13.18% 1.3

14. Optdigits 28,36% 1,55

15. Nursery 12.67% 4.47

16. Pendigits 9.68% 0.84

17. Credit German 4.60% 1.51

18. Japanese Vowels 18.45% 1.56

19. Splice 33.10% 2.24

20. Spambase 6.56% 0.69

21. CMC 34.49% 2.58

22. Solar flare 0.19% 0.39

23. Page-blocks 1.17% 0.45

24. Yeast 40.84% 3.08



International Journal of Artificial Intelligence and Machine Learning
Volume 11 • Issue 2 • July-December 2021

51

Wagging (Weight aggregating) is another ensemble method considered as a variant of Bagging 
(Bauer & Kohavi, 1999; Webb, 2000). Instead of applying resampling to obtain random Bootstraps 
(case of Bagging), Wagging uses random weights for learning instances. In (Bauer & Kohavi, 1999), 
gaussian noise is used to vary the weight. However, this can produce near zero weight, which leads 
to ignorance or disposal of instances to which these weights are associated.

We also report DECORATE (Diverse Ensemble Creation by Oppositional Relabeling of Artificial 
Training Examples) (Melville & Mooney, 2005; Melville & Mooney, 2004). This method generates 
a set of different classifiers with better performance. This set is generated iteratively. Each classifier 
is built individually and then added to the set. The first classifier is generated from the learning 
instances. Following classifiers are generated from this learning instances combined to others 
artificially generated. Labels of artificial instances are chosen such that they are different from the 
predictions of the initial learning instances. This provides more diversity in the learning data set. 
To maintain good performance of this ensemble, the error of each generated classifier is calculated. 
If this error is greater than the ensemble, generated classifier is rejected. An improvement is made 
to DECORATE to enable it learning from data whose attributes are multivalued (Kotsiantis, 2008). 
DECORATE is dedicated to numeric data rather than the nominal data. Therefore, it cannot be used 
for classifiers based on Formal Concept Analysis.

Dagging (Disjoint samples aggregating) is a variant of Bagging that creates a few disjoint groups 
with stratified data (Davison & Sardy, 2006; Ting & Witten, 1997), each considered as a learning 
subset. The predictions are obtained from a majority vote for supervised classification problems (Ting 
& Witten, 1997). This method has shown its importance in recent works. We propose to use it and 
to study the behavior of our CNC classifier based on stratified sampling and analysis the difference 
compared to random sampling.

The principle of DNC (Dagging Nominal Classifier) is to take several disjoint and stratified 
samples O O DΘ Θ1 , ,…{ } . Our learning algorithm CNC is then built on each of them to get a collection 

of classifiers h h
D1

, ,…{ }  that will be combined by majority voting (Ting & Witten, 1997). In the 
case of learning from stratified samples, the characteristic of this type of sample is that it allows the 
learning algorithm to generate classifiers from representative samples having the same composition 
as the initial training set.

COMPARATIVE STUDY

In this section, we compare the proposed method DNC (Dagging Nominal Concept) with existing 
ones based on Formal Concept Analysis: GRAND, IPR, CITREC and BNC. To compare the presented 
approaches, we consider their complexities. We also compare the DNC method with existing ones in 
literature: Bayes Net, Naive Bayes, SVM, 1-NN, Decision Stump, C4.5, Random Forest and Random 
Tree and we focus on their classification rates.

Comparison of Complexities
Concerning the complexities, the variable n means the number of instances and the variable m 
means the number of attributes. To calculate the complexity of DNC method, T is a variable which 
means the number of stratified data set. We examine the learning algorithm of pertinent concept and 
we estimate its complexity to O(nlog(n)+nm). The complexity of stratified sampling from a set is 
estimated to O(2n) (The complexity of listing all instances is O(n) and the complexity of the simple 
random sampling without replacement is estimated to O(n)). The complexity of closure operator is 
O(nm). Also, we examine the algorithm of Dagging and we estimate its complexity. The complexity 
of the Dagging iterations is O(T). The complexity of applying our weak classifier is O(2n+ nm). 
To conclude, the complexity of the DNC method is estimated to O(T(2n + nm))=O(2n+ nm). 
Compared to the complexities of other methods (Meddouri & Maddouri, 2009; Meddouri et Madduri, 
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2009;Meddouri & Maddouri, 2010), we remark that the DNC method has the least theoretical 
complexity (Table 4).

Experimental Study
To compare the presented approaches, we implement them under Waikato Environment for Knowledge 
Analysis (WEKA)3 (Hall et al., 2009) and we use the well-known data sets from UCI Machine Learning 
Repository (Asuncion & Newman, 2007). The chosen data sets were discretized with 2 discretional 
filters under WEKA. The first filter4 used is an instance filter that converts a range of numeric and string 
attributes into nominal attributes. The second filter5 used is an instance filter that converts a range of 
nominal attributes into binary attributes (to evaluate methods based on Formal Concept Analysis). 
These data sets are presented in Table 8 in 2 groups and depending on the data diversity to see if it 
affects the performance of Dagging. The 10 first data sets we will evaluate GRAND, RULEARNER, 
CITREC and IPR (the small data sets are reserved to these methods based on Formal Concept Analysis 
due to excessive consumption of memory resources). All other 24 data sets are used to evaluate some 
methods known in the literature as DNC. For each data set, we present respectively the number of 
instances, the number of numeric attributes (before discretization), the number of nominal attributes 
(after discretization), the number of classes and data diversity. The last column presents the ratio 
between the number of different vectors of instances (attributes) and the total number of vectors in 
each database (Table 5).

The performance of classifiers generated is evaluated in terms of error rates. To calculate these 
rates, the 10 Cross-validation method is used in WEKA the principle of which is to divide each base 
into 10 subsets. In turn, one subset is used for testing and the other ones for learning (Kohavi 1995).

In the next section, we will try to provide answers to the following questions: Does the classifier 
number influence the performance of Dagging of CNC? Is the Dagging of CNC more interesting 
than other classifiers? What is the best adaptive learning for CNC: sequential or parallel? What are 
the conditions under which CNC behaves better than other classifiers?

Influence of the Number of Classifiers on DNC
To study the performance of Dagging using CNC, we generated sets of 2 to 13 classifiers, and we 
reported their error rates in Table 9. Signs ‘-’ indicates that the method cannot process the Weather 
data set (14 instances), due to the small number of instances not enough to construct sufficient disjoint 
and stratified subset of data. From this table, we report that the performance of odd sets of classifiers 

Table 4. Theoretical comparison of the methods: GRAND, RULEARNER, IPR, CITREC and DNC

Systems GRAND ULEARNER IPR CITREC DNC

Kind of lattice Lattice Lattice Cover Sub-lattice Sub-lattice

Data Binary Binary Binary Binary Nominal

Number of classes Multi-class Multi-class Multi-class Multi-class Multi-class

Selection of concepts Consistency Support Entropy No-
Inclusion+Supp Infor. Gain

Combination of methods No No No Bayes/K-PPV Dagging

Knowledge learned Rules Rules Rules Rules Rules

Classification Vote More weighted More Weighted Vote Vote

Complexity
O kk2 4( ),  
k=min(n,m)

O kk2 4( ),  
k=min(n,m)

O n m m n2 2 +( )( ) O nm2( ) O mn( )
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is better than the pair sets. This is due to the voting rule of the combination that works best with an 
odd number of classifiers (Kunchevaet al. 2003). Dagging with more than 8 classifiers behaves better. 
The performance of these classifier ensembles is not correlated with the diversity of training data. 
We note that with 10, 11 and 13 classifiers, Dagging using CNC produces the best performance on 7 
data sets from 24. The average error (for all the bases) occurred with 11 classifiers (14.45%) which 
is lower than that obtained with 10 classifiers (14.72%) or 13 classifiers (14.59%). That is why in the 
next experiments, we will retain this value for the number of classifiers (Table 6).

Comparison With ACF Based Classifiers Classification Methods
Table 7 presents the performance of different methods based on Formal Concept Analysis including 
DNC. Signs ‘-’ indicate that the method cannot process the sample data, due to excessive consumption 
of memory resources. As shown in Table 7, DNC has the specific ability to reduce the error rates 
compared to methods based on Formal Concept Analysis (GRAND, RULERNER, IPR and CITREC).

Table 5. Characteristics of data sets used

Data Sets Instances
Attributes

Classes Data Diversity
Numeric Nominal Binary

1. Contact lenses 25 - 4 6 3 100%

2. Weather 14 4 4 8 2 100%

3. Lymphography 148 18 18 38 4 99.52%

4. Sonar 208 60 60 60 2 95.38%

5. Segment 2310 19 19 169 7 84.97%

6. Heart statlog 270 13 13 13 2 55.67%

7. Glass 214 9 9 19 6 34.65%

8. Diabets 768 8 8 13 2 22.83%

9. Iris 150 4 4 12 3 16.03%

10. Balance scale 625 4 4 4 3 6.41%

11. Car 1728 6 6 21 4 100%

12. Kr vs. kp 3196 36 36 40 2 100%

13. Waveform 5000 40 40 130 3 100%

14. Optdigits 5620 64 64 269 10 100%

15. Nursery 12,960 8 8 26 5 100%

16. Pendigits 10,992 16 16 165 10 99.18%

17. German credit 1000 20 20 61 2 98.59%

18. Japanese Vowels 5687 12 14 109 9 97.06%

19. Splice 3190 61 60 287 3 94.42%

20. Spambase 4601 57 57 133 2 78.26%

21. CMC 1473 9 9 25 3 64.96%

22. Solar flare 1066 10 12 41 6 34.30%

23. Page blocks 5473 10 10 71 5 23.14%

24. Yeast 1484 8 8 19 10 22.34%
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Table 6. DNC performance with different numbers of classifiers

Data Sets 2 3 4 5 6 7 8 9 10 11 12 13

1. Contact lenses 16.67 6.67 3.33 3.33 3.33 0 0 0 0 0 0 0

2. Weather 0 10 5 0 0 0 0 0 0 0 - -

3. Lymphography 10.29 7.62 12.19 10.19 11.52 7.62 8.05 6.05 6.1 4.76 2.76 6

4. Sonar 14.95 15.83 21.64 18.71 12.55 20.69 16.83 12.55 13.98 10.07 11.52 10.14

5. Segment 7.01 6.97 7.01 6.36 6.23 6.32 5.93 5.5 4.37 6.54 7.1 5.58

6. Heart statlog 11.48 12.22 12.59 13.7 13.33 14.44 18.89 16.67 12.59 17.78 14.07 10.37

7. Glass 32.32 28.57 32.29 28.92 26.67 30.8 28.07 24.37 26.17 25.19 19.48 23.83

8. Pima 10.17 10.17 10.17 10.17 12.64 9.54 11.06 9 11.21 15.66 12.25 12.25

9. Iris 2.67 3.33 2 2.67 1.33 1.33 1.33 1.33 0.67 1.33 2.67 0.67

10. Balance-scale 24.96 23.22 25.93 23.53 22.55 23.68 21.28 22.73 23.21 24.17 20.96 23.7

11. Car 9.04 7.41 14.35 8.9 12.67 10.3 8.1 6.3 11.11 6.31 11.34 7.69

12. Kr vs. kp 33.95 33.95 33.95 33.95 33.85 33.85 33.92 33.92 33.95 33.95 32.89 32.88

13. Waveform 13.18 12.7 12.58 12.56 12.74 12.3 12.14 12.86 13.32 11.44 12.02 11.52

14. Optdigits 28.35 28.29 28.26 28.31 28.35 28.22 33.08 28.42 28.86 27.38 28.26 28.47

15. Nursery 13.06 14.35 14.46 12.89 14.73 14.41 14.58 14.21 14.79 11.85 14.47 14.77

16. Pendigits 9.66 9.68 9.86 11.33 11.69 11.71 9.55 11.57 16.74 9.66 13.18 11.83

17. German credit 4.6 6.4 7.3 7.4 8.3 8.8 7.3 9.7 11 10.4 8.7 9.2

18. Japanese vowels 18.45 16.72 17.55 16.6 15.4 15.53 14.24 13.84 17.71 17.44 17.5 12.76

19. Splice 33.1 33.1 32.82 32.13 33.1 31.32 28.4 31.57 29.5 33.1 29.97 28.53

20. Spambase 7.35 7.3 7.28 8.26 8.46 11.13 8.22 8.85 7.28 9.37 6.52 11.13

21. Cmc 34.02 33.34 32.65 29.53 31.44 30.62 32.12 30.01 29.33 29.6 31.44 31.77

22. Solar flare 0.37 0.09 0.09 0.09 0.19 0.19 0 0.09 0 0.09 0 0

23. Page blocks 1.17 1.17 1.17 1.17 1.17 1.3 1.13 1.17 1.13 1.17 1.15 1.13

24. Yeast 40.84 40.84 40.84 40.77 40.97 40.64 40.44 40.57 40.37 39.69 40.84 41.38

Table 7. Error rates of classification methods based on Formal Concept Analysis

Data sets GRAND RULERANER IPR CITREC DNC

1. Contact lenses 31.67 36.67 44 53.33 0

2. Weather 25 35 35 60 0

3. Lymphography - - - 34.57 4.76

4. Sonar - - - 53.38 10.07

5. Segment - - - 16.62 6.54

6. Heart statlog - 45.56 - 31.48 17.78

7. Glass 56.99 66.45 66.32 - 25.19

8. Diabets - - - 29.83 15.66

9. Iris 66.67 39.33 50 4 1.33

10. Balance scale 65.08 32.76 35.83 37.44 24.17
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It is very important to determine the number of concepts obtained by each method based on Formal 
Concept Analysis. To determine the number of concepts in the Galois lattice, we use the GALICIA6 
software based on Godin algorithm which constructs the complete lattice of concepts (Godin et al. 
1995; Valtchev et al. 2003). To determine the number of concepts generated by GRAND, RULERANER, 
CITREC, IPR and DNC, we have used the WEKA platform. We note that GRAND, RULERANER and 
IPR incur failures during their execution on Diabets, Segments and Sonar. GALICIA also reported a 
failure when run on the Sonar data.

As shown in Table 8, the concept lattice contains a great number of concepts. CITREC and 
DNC induces a small part of the lattice. DNC reached the best error rates with a small number of 
concepts. This shows that the concepts generated by DNC are more pertinent than those generated 
by IPR and CITREC. DNC gives a small number of concepts in the least possible time compared to 
the other approaches.

Comparison With State-of-the-Art Classification Methods
Table 9 presents the performance of different classification methods from the literature (Bayes Net, 
Naive Bayes, SVM7, IB18, Decision Stump, C4.59, Random Forest and Random Tree) on numeric data. 
We note that all this classification methods incur failures during their execution Japanese vowels 
since it cannot handle nominal class attribute.

Table 10 presents the performance of different classification methods cited previously, compared 
to our proposed method DNC on discretized data. We report that the used discretization filter data 
reduce the error rates of Naive Bayes and SVM. As shown in this table, DNC has the specific ability to 
reduce the error rates together with the best performance for 14 discretized data sets (Contact lenses, 
Weather, Lymphography, Sonar, Diabets, Iris, Balance scale, Waveform, German credit, Japanese 
vowels, CMC, Solar flare, Page blocks and Yeast). DNC has the best performance for all the data sets 
(average of 14.45%), then SVM (average of 16.29%) compared to Random Forest (average of 17.37%).

Influence of the Classifier Type in Dagging
(Meddouri & Maddouri, 2010) found that the sequential learning is beneficial for classifiers having 
decision tree structure such as C4.5 and Id3. However, the CNC is among the worst classifiers. Our 
objective here is to study the behavior of the classifiers in parallel learning. The error rates of the 
ensembles of generated classifiers are reported in Table 11. These results show that CNC holds 
the best performance for 17 data sets from the 24 (average of 14.46%). SVM is better than Random 

Table 8. Numbers of concepts generated by methods based on Formal Concept Analysis

Data sets Galois Lattice GRAND RULERANER CITREC IPR DNC

1. Contact lenses 33 58 31 8 14 11

2. Weather 36 46 34 4 16 11

3. Lymphography 6019 - - 16 180 11

4. Sonar - - - 4 - 11

5. Segment 3037 - - 38 - 5

6. Heart statlog 3237 - - 4 82 6

7. Glass 232 611 367 - 49 8

8. Diabets 256 - - 4 - 5

9. Iris 11 161 151 7 8 5

10. Balance scale 16 640 625 7 4 5
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Forest, Bayes Net and Random Tree. Decision Stump produced higher error rates than the rest of the 
classifiers (average of 34.84%).

For correlated data sets such as Pages blocks and Solar Flare (with diversity of 23.14% and 
34.3%, respectively) the error rates of CNC are lower. Since the data diversity of Yeast is 22.34%, the 
error rates are quite higher. In general, the diversity of data is not correlated with the performance 
of nominal classifiers.

In conclusion, we can note from these experiments that parallel learning is interesting for CNC.
The other classifiers are rather used in sequential learning as shown in (Meddouri & Maddouri, 

2010).

Comparison of Ensemble Methods
According to the literature, the relationship between classifiers and the ensemble methods is not clear: 
for example, we do not know whether it is better to use Boosting, Bagging or Dagging for a given 

Table 9. Error rates of classification methods on numeric data

Data sets Bayes 
Net

Naive 
Bayes SVM 1-NN Decision 

Stump J48 Random 
Forest

Random 
Tree DNC

1. Contact lenses 28.33 28.33 28.33 36.67 28.33 18.33 28.33 28.33 0

2. Weather 40 40 30 50 70 45 30 40 0

3. Lymphography 14.29 16.95 13.57 19.1 24.52 23.05 19 25.05 4.76

4. Sonar 19.71 32.12 24.05 13.43 26.95 28.83 19.26 26.5 10.07

5. Segment 8.57 19.78 6.93 2.86 71.43 3.07 2.34 4.2 6.54

6. Heart statlog 18.89 16.3 15.93 24.81 27.41 23.33 21.85 23.7 17.78

7. Glass 29.39 51.41 43.87 29.5 55.09 33.25 27.14 29.96 25.19

8. Diabetes 25.64 23.69 22.66 29.83 28.13 26.17 26.16 31.89 15.66

9. Iris 7.33 4 4 4.67 33.33 4 4.67 8 1.33

10. Balance scale 27.7 9.61 12.32 20.97 44.94 23.35 19.52 22.71 24.17

11. Car 14.29 14.47 6.25 22.74 29.98 7.64 7.35 16.84 6.31

12. Kr vs. kp 12.08 12.11 4.57 10.04 33.95 0.56 1.19 3.72 33.95

13. Waveform 20.16 20 13.32 26.38 43.24 24.92 18.2 27.56 11.44

14. Optdigits 7,76 8,67 1,67 1,39 80,25 9,31 3,31 14,06 27,38

15. Nursery 9.67 9.68 6.92 21.28 33.75 2.95 1.77 5.37 11.85

16. Pendigits 12.1 14.25 2.04 0.64 79.62 3.44 1.18 4.28 9.66

17. German credit 24.5 24.6 24.9 28 30 29.5 27.5 32.9 10.4

18. Japanese vowels - - - - - - - - 17.44

19. Splice 4.58 4.64 6.58 24.08 37.62 5.64 10.56 27.87 33.1

20. Spambase 10.19 20.71 9.59 9.22 21.95 7.02 5.17 9.06 9.37

21. CMC 48.95 49.21 51.8 55.74 57.3 47.87 49.15 53.36 29.6

22. Solar flare 2.91 2.34 0.56 0.75 0.47 0.47 0.56 0.65 0.09

23. Page blocks 6.49 9.15 7.07 4.13 6.87 3.12 2.78 3.82 1.17

24. Yeast 43.26 42.39 42.86 47.71 59.3 43.87 40.23 49.12 39.69

Average 18.99 20.62 16.51 21.04 40.19 18.03 15.96 21.25 14.45
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classification problem. Further work using the Bagging without a priori knowledge on diversity in 
ensembles of classifiers that generates (Breiman, 1996). In (Ting & Witten, 1997), the authors have 
shown, theoretically and experimentally, the importance and the reliability of Dagging.

(Meddouri et al. 2012) noticed that CNC is not good enough with sequential learning on data 
sets of different sizes. For this, we used 24 samples of data to generate 11 sets of nominal classifiers 
such as CNC in Boosting, Bagging and Dagging. Table 12 presents the results of all these methods, 
in terms of error rate and training time. We can see that Dagging is the best method producing low 
error rates for all generated ensembles.

All the error rates of Boosting are higher than those of Dagging. In addition, Boosting is 6 times 
slower than Dagging. We also report that Dagging is 2 times faster than Bagging.

In our experiments, the use of 11 sets of nominal classifiers based on Formal Concept Analysis, 
in Dagging, is more interesting than by Bagging and Boosting. The parallel learning of such classifiers 
is far better than the sequential learning.

Table 10. Error rates of classification methods on discretized data

Data sets Bayes 
Net

Naive 
Bayes SVM 1-NN Decision 

Stump C4.5 Random 
Forest

Random 
Tree DNC

1. Contact lenses 28.33 28.33 28.33 36.67 28.33 18.33 28.33 28.33 0

2. Weather 40 40 30 50 70 45 30 40 0

3. lymphography 15.67 16.33 12.9 20.38 24.52 21.67 18.33 24.33 4.76

4. sonar 14.38 14.38 14.33 20.14 26 20.19 20.62 24.52 10.07

5. Segment 8.05 8.48 4.2 6.02 71.43 4.68 3.64 7.66 6.54

6. Heart statlog 16.67 16.67 15.93 18.89 27.41 18.15 17.41 19.26 17.78

7. Glass 25.17 25.63 23.77 32.34 55.09 26.06 22.45 24.76 25.19

8. Diabetes 22.13 22.13 22.53 29.41 25.26 21.74 23.3 22.65 15.66

9. Iris 6 6 6 6.67 33.33 6 5.33 6 1.33

10. Balance-scale 29.29 29.29 28 29.77 43.67 30.41 29.44 30.89 24.17

11. Car 14.29 14.47 6.25 22.74 29.98 7.64 7.35 16.84 6.31

12. kr vs kp 12,08 12,11 4,57 10,04 33,95 0,56 1,19 3,72 33,95

13. Waveform 19.22 19.26 14.04 27.42 49.26 23.52 19.78 32.36 11.44

14. Optdigits 7,62 7,69 2,76 6,23 80,53 22,06 8,49 31,14 27,38

15. Nursery 9.67 9.68 6.92 21.28 33.75 2.95 1.77 5.37 11.85

16. Pendigits 11.99 12.1 1.63 3.48 79.26 11.44 3.92 12.16 9.66

17. German credit 24.4 24.2 24 30 30 27.9 27.9 31.7 10.4

18. Japanese vowels 50.61 50.71 42.22 39.02 59.13 42.04 38.12 45.77 17.44

19. Splice 4.58 4.64 6.58 24.08 37.62 5.64 10.56 27.87 33.1

20. Spambase 9.72 9.8 5.67 8.02 22.67 7.24 5.96 10.52 9.37

21. CMC 47.18 47.18 46.98 52.69 57.3 45.76 47.79 49.01 29.6

22. Solar flare 2.91 2.34 0.56 0.75 0.47 0.47 0.56 0.65 0.09

23. Page block 6.21 6.43 2.91 3.45 6.8 3.18 2.8 3.47 1.17

24. Yeast 40.84 40.91 39.9 51.28 59.3 40.91 42.06 41.65 39.69

Average 19.45 19.53 16.29 22.94 41.04 18.89 17.37 22.52 14.45
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CONCLUSION

Formal Concept Analysis is an interesting formalism to study machine learning and classification 
methods. It allows a full construction of the concepts and the dependence relationships between 
concepts to build a lattice of Formal Concepts. We report common limits among all the supervised 
learning methods based on Formal Concept Analysis: absence of the adaptive aspect and the generation 
of concepts is either exhaustive or non-contextual.

In this paper, we propose a new classifier based on nominal concept and we showed that it is 
better than the other methods based Formal Concept Analysis. We select the nominal attribute which 
maximizes the Informational Gain from the nominal data. Pertinent concepts are calculated from 
closure operators associated to this nominal attribute. A classification rule is obtained by associating 
a majority class to the extension of the pertinent concept.

Since it is a weak classifier, we propose to improve its performance by using ensemble methods.

Table 11. Dagging error rate using different types of classifiers

Data Sets Bayes 
Net

Naive 
Bayes SVM 1-NN Decision 

Stumps C4.5 Random 
Forest

Random 
Tree CNC

1. Contact lenses 21.67 28.33 31.67 31.67 36.67 31.67 56.67 31.67 0

2. Weather 45 45 30 30 30 30 30 30 0

3. Lymphography 17 17.71 19 23.05 23.05 18.95 19.71 22.29 4.76

4. Sonar 14.88 13.93 16.31 18.69 22.12 20.26 15.86 19.67 10.07

5. Segment 10.48 11.99 5.97 8.18 70.22 9.35 7.92 8.96 6.54

6. Heart statlog 16.3 17.04 15.93 16.67 17.04 16.3 18.15 15.93 17.78

7. Glass 29.78 30.3 32.64 30.84 40.15 35 29.37 30.35 25.19

8. Diabetes 22.26 22.13 22.26 27.21 26.69 24.61 22.65 22.79 15.66

9. Iris 6 5.33 5.33 4.67 15.33 4.67 4.67 5.33 1.33

10. Balance scale 27.36 27.52 27.37 26.24 24.18 26.4 27.37 27.36 24.17

11. Car 17.13 17.71 9.95 22.86 29.98 18.69 11.4 14.12 6.31

12. Kr vs. kp 12.52 12.86 5.66 9.42 33.95 3.1 2.66 3.75 33.95

13. Waveform 19.32 19.6 14.58 24.38 48.5 22.12 15.72 22.3 11.44

14. Optdigits 7,92 8,22 4,66 5,84 56,44 17,62 7,26 16,3 27,38

15. Nursery 9.82 9.8 7.28 15.38 33.75 8.56 5.69 5.47 11.85

16. Pendigits 12.85 13.5 3.61 5.21 74.75 16.48 7.6 9.2 9.66

17. German credit 23.6 25.2 25.1 27.4 30 28.6 28.2 27.8 10.4

18. Japanese vowels 48.51 48.51 43.2 43.19 59.13 45.44 42.96 45.51 17.44

19. Splice 5.11 5.45 4.39 18.15 27.21 11.5 8.03 16.87 33.1

20. Spambase 9.87 10.08 5.72 7.43 15.54 10.3 7.02 8.59 9.37

21. CMC 47.66 47.45 45.42 53.97 54.79 46.23 46.72 48.2 29.6

22. Solar flare 1.88 1.88 0.47 0.47 0.47 0.47 0.47 0.47 0.09

23. Page blocks 6.47 6.5 3.62 4.18 6.8 5.32 3.62 3.8 1.17

24. Yeast 41.18 42.05 40.64 53.17 59.3 42.32 41.85 42.93 39.69

Average 19.77 20.34 17.53 21.18 34.84 20.58 19.23 19.98 14.46
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We have recently proposed a variant of Dagging to generate classifiers based on Formal Concept. 
Recent work has encouraged its use for linear classifiers. No studies have focused on the generation 
of classifiers by formal concept type Dagging. We recommend a parallel learning by Dagging for 
classifiers such Formal Concept and the sequential learning for the other classifier types. In parallel 
learning, a few classifiers are sufficient for obtaining better performance than the use of individual 
one. Data diversity can affect the whole.

More experiments are possible on larger data sets and with other ensemble methods such as 
Random Forests. Many improvements on the ensemble methods can be brought. DNC methods used 
majority vote for classifier combination. A variety of voting rules already exist. A study of these rules 
can be beneficial to improve the performance of CNC ensembles.

Table 12. Performance of ensemble methods using CNC

Data Sets
AdaBoost.M1 Bagging Grading MultiBoostAB Dagging

Error Time Error Time Error Time Error Time Error Time

1. Contact lenses 18.33 0 18.33 0 31.67 0 28.33 0 0 0

2. Weather 30 0 5 0 30 0 40 0 0 0

3. Lymphography 82.48 0.01 8.29 0.01 45.24 0 77.76 0.01 4.76 0.01

4. Sonar 46.57 0.04 15.86 0.02 46.62 0 52.9 0.03 10.07 0.01

5. Segment 71.06 17 7.01 0.07 85.71 0.01 75.28 0.14 6.54 0.04

6. Heart statlog 46.23 0.01 12.59 0.01 44.44 0 30 0.01 17.78 0.01

7. Glass 66.67 0.01 34.85 0.01 64.48 0 74.33 0.01 25.19 0.01

8. Diabetes 46.23 0.03 10.17 0.01 34.89 0 35.54 0.02 15.66 0

9. Iris 66.67 0 3.33 0.01 66.67 0 66.67 0 1.33 0.01

10. Balance scale 60.76 0.02 27.22 0.01 54.24 0 48.01 0.02 24.17 0.03

11. Car 29.98 0.04 11.52 0.03 29.98 0.01 29.98 0.04 6.31 0.09

12. Kr-vs.-kp 47.78 0.22 33.95 0.15 47.78 0.01 47.78 0.26 33.95 0.14

13. Waveform 61.3 0.38 13.18 0.24 66.16 0.02 59.86 0.4 11.44 0.25

14. Optdigits 82,97 0,85 28,4 0,47 89,86 0,03 81,94 0,81 27,38 0,26

15. Nursery 66.67 0.37 11.47 0.31 66.67 0.03 66.67 0.37 11.85 0.26

16. Pendigits 86.67 0.67 9.45 0.39 89.63 0.03 83.36 0.66 9.66 0.26

17. German credit 36.9 0.04 4.6 0.02 30 0 37.4 0.04 10.4 0.02

18. Japanese vowels 92.83 0.25 18.45 0.16 59.13 0.01 88.83 0.26 17.44 0.11

19. Splice 78.09 0.35 33.1 0.2 48.12 0.02 75.96 0.35 33.1 0.11

20. Spambase 42.88 0.6 6.56 0.32 39.4 0.02 40.27 0.57 9.37 0.18

21. Cmc 56.48 0.05 34.02 0.03 57.3 0 56.69 0.05 29.6 0.02

22. Solar flare 0.47 0.04 0.19 0.03 0.47 0 0.47 0.05 0.09 0.02

23. Page-blocks 10.23 0.18 1.17 0.15 10.23 0.01 10.23 0.19 1.17 0.11

24. Yeast 67.99 0.06 40.84 0.03 68.8 0 71.76 0.06 39.69 0.03

Average 54.25 0.18 16.23 0.11 50.31 0.01 53.33 0.18 14.46 0.07
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ENDNOTES

1	  The data sets are selected from UCI Machine Learning Repository.
2	  In the example of the formal context, the values of Play (or Class) are Yes (1 or ‘+’ in other contexts) 

for positive instances, and ‘No’ (2 or ‘-’ in other contexts) for negative instances. For example, in the 
context (Table 1), o o o o o o o o o

3 4 5 7 9 10 11 12 13
, , , , , , , ,{ }  are the instances of the Class ‘1’ or Play ‘Yes’ 

(positive), and o o o o o
1 2 6 8 14
, , , ,{ }  are the instances of the Class ‘2’ or Play ‘No’ (negative).

3	  Available at https://www.cs.waikato.ac.nz/ml/Weka
4	  weka. filters. supervised. attribute. Discretize-Rfirst-last
5	  weka. filters. supervised. attribute. NominalToBinary
6	  GALICIA is available at: http://www.iro.umontreal.ca/~galicia/
7	  In this work, the SMO module of WEKA with a default parameter setting is used to perform classification 

via the SVM
8	  In this work, the IB1 module of WEKA with default parameter settings is used to perform classification 

via the Nearst-neighbor classifier
9	  In this work, the J48 module of WEKA with a default parameter setting is used to perform classification 

via the C4.5
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