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ABSTRACT

Nowadays, source camera identification, which aims to identify the source camera of images, is 
quite important in the field of forensics. There is a problem that cannot be ignored that the existing 
methods are unreliable and even out of work in the case of the small training sample. To solve this 
problem, a virtual sample generation-based method is proposed in this paper, combined with the 
ensemble learning. In this paper, after constructing sub-sets of LBP features, the authors generate 
a virtual sample-based on the mega-trend-diffusion (MTD) method, which calculates the diffusion 
range of samples according to the trend diffusion theory, and then randomly generates virtual sample 
according to uniform distribution within this range. In the aspect of the classifier, an ensemble learning 
scheme is proposed to train multiple SVM-based classifiers to improve the accuracy of image source 
identification. The experimental results demonstrate that the proposed method achieves higher average 
accuracy than the state-of-the-art, which uses a small number of samples as the training sample set.
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INTRODUCTION

Nowadays, the digital images generation is popular and easier, which makes it possible for some 
individuals to upload unsuitable images for their interests or to steal images of others for commercial 
purposes. Therefore, image source identification is very important in the judicial field, which can 
offer help to bring evil men to justice. The issue of image source identification is usually modeled 
as a classification problem, which means decent results are expectant with enough training samples. 
However, it is well known that obtaining a large number of sufficient training samples may be very 
difficult, and the classifiers perform very poorly in this scenario of small training samples. Therefore, 
it is always a big challenge when there are only a small set of labeled images used as references in 
the practical forensic application.

In recent years, many methods are proposed for the small training sample problem, which 
are mainly divided into three categories. The first category is active learning and semi-supervised 
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learning based methods, but they usually require a large number of unlabeled samples as auxiliary 
information, and it is sometimes unrealistic in practical forensic applications; the second category 
is the methods based on gray prediction model, such as BGM(Chang, Li, Huang, & Chen, 2015), 
GBM (Wang, Wang, Sun, & Zhang, 2014), ANGM (Chang, Li, & Chen, 2014), which is used to 
deal with raw samples. However, these methods usually ignore the internal mechanism, and then 
make the generated virtual samples unsuitable; the third category is consist of the methods based on 
virtual samples generation, which is proposed by Poggio and Vetter in 1992 (Poggio & Vetter, 1992). 
Considering the insufficient training samples, the appropriate virtual samples are generated under 
the condition of the training samples’ prior information to increase the number of training samples. 
By obtaining the virtual samples, the training set is supposed to be expanded to effectively improve 
the generalization ability of the classifier.

In recent years, there are many kinds of researches respect to virtual samples generation. In 
order to improve the energy prediction accuracy of small training samples problem, He et al. (He, 
Wang, Zhang, Zhu, & Xu, 2018) propose nonlinear interpolation virtual samples generation method 
based on the highly nonlinear characteristics of input data and output data. After the virtual samples 
generation, the images are classified by the extreme learning machine (ELM) (Huang, Zhu, &Siew, 
2004) and the experimental results are promising. Li et al. (Li & Fang, 2009) propose a nonlinear 
virtual sample generation technique (NVSG) and receive an average classification accuracy of 76% 
for camera models in the Iris data set. The methods of virtual sample generation based on the original 
samples’ distribution are also widely used. Yang et al. (Yang, Yu, Xie, & Zhang, 2011) assume that 
the samples obey the Gaussian distribution and calculates the mean and variance of the Gaussian 
distribution from the original training set. Experiments on the Iris data set show that the classification 
accuracy increases 18%.

In this paper, a MTD based virtual sample generation method is introduced to identify the image 
source when the training samples are small. By box plot based MTD and sample attributes correlation 
based method, a reasonable virtual samples generation range is obtained and the virtual samples are 
generated based on average distribution. Considering the randomness of virtual sample generation, 
multiple groups of samples are obtained and combined with the original training samples. Multiple 
weak classifiers based on SVM are trained and integrated to obtain the classifier.

The rest of this paper is organized as follows: Section 2 describes the related work: LBP features 
and virtual sample generation method; the virtual sample generation and ensemble learning based 
method are proposed in Section 3; Section 4 demonstrates the experimental design and the discussion 
of the results and finally, the paper is concluded in Section 5.

RELATED WORK

LBP
LBP is a local operator describing the texture features of an image. The uniform gray-scale invariant 
LBP (Tan, Wang, Li, Guo, Kong, & Shi, 2015) operator is donated by LBP

P R,
 and defined as follows:
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where P  represents the number of pixels in the neighborhood and R  represents its radius. g
c
 is the 

center pixel value, and the values of the neighborhood pixels in a circle with a radius R  is g
p

. We 
setP = 8 , R = 1 . The threshold function s x( )  is defined as:
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Refer to (1), (2), the difference between the gray-level value of the center pixel and its 
neighborhood pixels can be calculated, and there are 256 different patterns of combination. As what 
is defined in (Tan, Wang, Li, Guo, Kong, & Shi, 2015), ‘’uniform’’ local binary patterns are more 
likely to appear than other patterns which are called ‘’non-uniform’’ local binary pattern, and the 
authors integrate all ‘’non-uniform’’ local binary patterns into one pattern. Thus the dimension of 
features is reduced from 256 to 59.

The whole procedure of LBP feature extraction is shown in Figure 1. The original image is 
estimated by the prediction function to obtain the predicted image, and the prediction-error image is 
obtained by subtracting a predicted image from the original one. We finally extract LBP features 
from the red and green channels of the original image, the 1st-level diagonal wavelet sub-band, and 
prediction-error 2D array mentioned in (gardenfors, 2004). Thus a total dimension of 59 3 2 354× × =  
improved LBP features are obtained.

MTD BASED VIRTUAL SAMPLE GENERATION

MTD
The MTD method proposed by Li et al. (Li, Wu, Tsai, & Lina, 2007) is based on the technique of 
global fuzzification and information diffusion, which is used to fill the blank caused by incomplete 
samples. It can augment the training set by generating virtual samples based on the distribution of 
the existing small training samples. Regarding the training samples as a whole, the upper and lower 
limits of the specific boundary for virtual samples generation are determined as:

L u s N a
set x L

= − − × ×2 2ˆ / ln( ( ))ϕ 	 (3)

U u s N a
set x U

= + − × ×2 2ˆ / ln( ( ))ϕ 	 (4)

Figure 1. LBP feature extraction framework for one color channel
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where L  and U  are the lower and upper bounds of the virtual samples diffusion, 

ˆ ( ) / ( )s x x n
x i

i

n
2 2

1

1= − −
=
∑  represents the variance of the real samples, N

L
 and N

U
 represent the 

actual number of real samples whose value are less than and greater than the center value, respectively. 
x
i
 and x  represent the real samples and their mean, ˆ /s N

x L
2  represents the real samples’ diffusion 

coefficient, n  represents the number of the real samples, u min max
set
= +( ) / 2  represents the 

real samples’ center value, min  and max  are the real samples’ minimum and maximum value, 
respectively.

In order to estimate the trend of the real samples while extending the real samples’ range, they 
asymmetrically spread the real samples and consider the skewness of the real samples, the equations 
are:
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Where Skew
L

 and Skew
U

 are the left and right skewness of the real samples point relative to 
the center of the real samples. Set ϕ ϕ( ) ( )a b= = −10 20  in Equation (1) and (2), the upper and lower 
boundaries after diffusing the final sample set are:
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then the virtual samples are generated on the uniform distribution within this range.

Box Plot Based MTD
Box plot, also known as boxer map, is widely used to describe the sporadic degree of the data by 
five statistics: minimum, first quartile, median, third quartile and maximum. It can be unaffected by 
the outliers when measuring the characteristics of the given data, which is the biggest advantage of 
the box plot.

The core of the box plot based MTD virtual samples generation method (Li, Chen, & Chang, 
2012) is to reasonably spread the real samples’ range. It is quite essential to accurately estimate the 
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boundary and the skewness of the data set and box plot is proficient at that. The box plot is established 
as shown in Figure 2, and the data situation can be judged according to its position in the box plot.

After establishing the box plot, we can get the upper and lower limits of the extended data based 
on the real samples. Different from the MTD method, the diffused upper and lower limits of the 
training samples are obtained according to the real samples’ box plot (Lin, Li, & Pan, 2016), as shown 
in the following Equation (7) and (8). Therefore, the final determined virtual samples’ range is [
L ,U ].

L
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Considering that the randomness of generating virtual samples based on the uniform distribution 
within the range [L ,U ], a triangular membership function is utilized to estimate can the occurrence 
possibility of the generated virtual samples. According to the fuzzy theory, they draw an asymmetric 
triangle membership function (MF ) (Li, Lin, Chen, Chen, & Lin, 2018), as shown in Figure 3.

Figure 2. A right-skewed distribution drawn in a box-and-whisker plot
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In Figure 4, MF represents the distribution of the training samples, and tv  is the virtual samples’ 
value which is randomly generated in the uniform distribution within [L ,U ]. Based on the generated 
tv  value, the corresponding MF  value is calculated according to the following Equation (9), and 
the MF  value is used as the occurrence probability to evaluate whether the randomly generated 
virtual sample tv  is the most suitable.

Figure 3. An asymmetric triangle MF

Figure 4. the MF value of a temporary number (tv)
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The class label for the generated virtual sample is the same as the original sample. Through the 
above steps, we can generate sufficient virtual samples to expand our training set for images source 
identification when the number of training samples are small.

Sample Attributes Correlation Based MTD
Compared with the box plot based MTD method in Section 2.2.3, sample attributes correlation based 
MTD method considers the correlation between sample attributes when determining the diffusion 
range of the real samples. Li et al. consider the correlation of sample attributes when calculating the 
range of generated virtual samples (Gole & Bhme, 2010). Taking the correlation of sample attributes 
into account, the real samples’ data center is calculated by Equation (10), which is used to estimate 
the samples’ distribution.
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As shown in the Equation (10), x
nth

represents the real sample. Considering the mean is susceptible 
to outliers, Li et al. decide to use the real samples’ median instead of the mean to calculate the 
correlation of sample attributes, because the median can better reflect the deviation of the data center 
than the mean. The correlation is replaced with the TSA (trend similarity between attributes):
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where g h
i j

( )
,

 represents degree of similarity between the two attributes’ dimensions of real samples 
in the same class. Ifg h

i j
( )

,
= 1 , the similarity trend between the two attributes’ dimensions of m and 

n is extremely high, that is, both are on the same side of the center point CL. S
i j,

 represents the 
similarity between different attributes’ dimensions of the real samples, and k  represents the number 
of samples in the same class. In order to avoid using mean which is susceptible to outliers, we use 
Euclidean distance instead of sample standard deviation to measure the dispersion as shown in (12).
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Incorporating the correlation of sample attributes, the ultimate boundary for virtual sample 
generation after diffusion is calculated as:
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where d
i
L  and d

i
U  represent the average Euclidean distance of the real samples which are less and 

greater than the data center value respectively. ϕ( )
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determining the virtual samples generation range [ , ]B B
i
L

i
U , the virtual samples’ values are generated 

based on the uniform distribution within [ , ]B B
i
L

i
U , and the feasibility of the virtual samples is judged 

by the triangular membership function value MF  and a random number uniformly distributed on 
[0, 1].

PROPOSED METHOD

According to the above analysis, virtual samples generation is a random procedure and the virtual 
samples generated by MTDBOX and MTDRELATION are not stable enough to obtain a promising 
identification classifier, which will drag down the identification accuracy. But on the other hand, 
instability also means diversity and that is quite suitable for ensemble learning. So in this paper, we 
incorporate virtual samples generation with ensemble learning to identify the image source when 
the training samples are small, the framework is shown in Figure 5.

In our proposed method, we follow the basic idea of the Bagging in ensemble learning rather than 
use a specific ensemble learning method. Different from the previous ensemble learning methods, we 
don’t directly operate on the training samples or the features of training samples, instead we generate 
virtual samples by MTDBOX and MTDRELATION and add these virtual samples to the image set 
of real samples in order to increase the number of training samples. And then train the base classifier 
by SVM on the expanded training set.

Ensemble learning is a form of “expanding others” by constructing multiple weak classifiers and 
combining them into a powerful classifier to effectively accomplish their tasks, it comprehensively 
determines the learning results by combine multiple learners obtained through training. A weak 
classifier has a slightly better classification effect than a random guess. Throughout the experiment, 
the weak classifiers obtained through the initial training are assembled, because the classification 
results of a single base classifier usually can’t reach the ideal standard. By learning and complementing 
each other, the classifiers can ultimately improve the accuracy of the classification and achieve the 
desired experimental results.

There are many strategies for integrating classifiers, such as averaging, voting, and learning. For 
the prediction of classification problems, the voting method is popular, so we use it in this paper. The 
voting method is also “Majority rule”, which means if there are n classifiers, the class obtained by a 
large number of classifiers is the final class of the image.

In this paper, we firstly extract small training samples’ LBP features, and then use the MTD 
based method to generate virtual samples. The generated virtual samples share a class label with the 
corresponding original samples. Because the virtual samples generated by the MTD based method 
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are random and the number of generated virtual samples is variable, the MTD based method can be 
used to train multiple base classifiers. Finally, the results of multiple base classifiers are operated 
by ensemble learning - the relative majority voting method, and the final sample’s label is obtained.

EXPERIMENTS

Experiments Set Up
In order to evaluate the proposed algorithm in this paper, the well-known “Dresden Image 
Database”(Gole & Bhme, 2010) is used. The 16 different camera models from 11 camera brands in 
the experiments are listed in Table 1. The training samples range from 5 to 20 and there are 180 test 
samples for each camera.

In our experiments, the box plot based and sample attributes correlation based MTD methods 
are used to generate virtual samples respectively. Combining the two virtual sample generation 
methods with SVM classifier directly, we get two baseline algorithms named as MTDBOX and 
MTDRELATION for comparison. The proposed method using ensemble learning is called MTDEM 
in the following. In our experiment, we randomly extract 5, 10, 15, and 20 samples from each camera 
(a total of 16 cameras) as training samples. For each set of samples, 10 virtual samples are supposed 
to be generated. In order to reduce the randomness of sampling and generating virtual samples, we 
repeat the experiment 10 times for each class of samples and take the average accuracy as the results 
of the image source identification.

RESULTS AND DISCUSSION

The experimental results are all shown in Table 2.
Without the virtual samples, the accuracy of 39.64%, 63.19%, 70.94%, and 76.32% is achieved 

based on the image source identification model trained with the raw database of 5, 10, 15, and 20 
training samples, respectively. Combing the 10 virtual samples generated by box plot based MTD, the 
accuracy of image source identification comes to 47.51%, 64.25%, 71.86%, and 77.03%. And also, 
the virtual samples from sample attributes relation based MTD help the SVM classifier to improve 
2.32%, 0.76%, 0.87% and 1.25% in the case of 5, 10, 15 and 20 raw training samples. From the 
results without virtual sample, MTDBOX and MTDRELATION based virtual sample, an important 
observation is that the high quality virtual samples do help the classification model improve the 

Figure 5. Framework of the proposed method
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performance, while the improvement seems limited. In another word, the virtual samples provide 
benefits for constructing weak classifiers.

For the proposed method, we obtain a decent accuracy of 53.93% in the case of 5 raw training 
samples, and high accuracy of 83.28% when the number of training images increases to 20. The highest 
identification accuracy identify the effectiveness of the ensemble learning used in the proposed method.

CONCLUSION

In this paper, virtual sample generation based algorithms combined with ensemble learning is proposed 
to identify the image source in the scenario of limited training samples. Two different virtual sample 
generation methods, MTDBOX and MTDRELATION are used to obtain virtual samples as the 
training sample. Considering the weak classifiers based on the two virtual sample generation methods, 
the MTDEM algorithm, which introduces the ensemble learning to improve the performance of the 
classifier, is proposed in this paper. The experimental results demonstrate that the effectiveness of the 

Table 1. Database in experiments

camera module Abbr. Size

Canon_Ixus70 C1 3072×2304

Casio_EX-Z150 C2 3264×2448

FujiFilm_FinePixJ50 F1 3264×2448

Kodak_M1063 K1 3664×2748

Nikon_CoolPixS710 N1 4352×3264

Nikon_D70 N2 3008×2000

Nikon_D200 N3 3872×2592

Olympus_mju_1050SW O1 3648×2736

Panasonic_DMC-FZ50 P1 3648×2736

Praktica_DCZ5.9 P2 2560×1920

Rollei_RCP-7325XS R1 3072×2304

Samsung_L74wide S1 3072×2304

Samsung_NV15 S2 3648×2736

Sony_DSC-H50 SD1 3456×2592

Sony_DSC-T77 SD2 3648×2736

Sony_DSC-W170 SD3 3648×2736

Table 2. Comparison of the proposed method and baselines

Method 5 10 15 20

NONE 39.64% 63.19% 70.94% 76.32%

MTDBOX 47.51% 64.25% 71.86% 77.03%

MTDRELATION 49.83% 65.01% 72.73% 78.28%

MTDEM 53.93% 73.03% 80.58% 83.28%
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proposed method and show that the performance of MTDEM is superior to existing methods when 
identifying the image source with small training samples.
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