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ABSTRACT

Crowdsourcing platforms have gained importance in recent times, and their success is dependent 
mainly on the participation of the crowd. Participation is a function of both intrinsic and extrinsic 
motivation. Moreover, with the growing scale of information, the participants would need to focus 
on the quality of information to achieve sustainable participation. The study uses game elements and 
information quality grounded in motivational affordance perspective (MAP) to study the intrinsic 
and extrinsic participation on a crowdsourcing platform. The authors collected responses from 337 
participants who are actively contributing to any crowdsourcing platform. Warp PLS uses partial least 
square structured equation modeling. The results confirm that the use of game elements positively 
promotes the participant’s intrinsic and extrinsic participation. This research also confirmed that 
motivation is also positively moderated by the quality of information that the crowdsourcing platform 
shares with the participants. The results help in extending the theoretical arguments of MAP and 
self-determination theory.
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1. INTRODUCTION

The consistently growing online population has generated volumes of knowledge and transformed the 
scope of “big data analytics” (BDA). Companies worldwide invariably seek quality and quantity of 
data to better understand the behavior of existing and potential customers. Studies assert that the role of 
crowdsourcing platforms includes understanding mass sentiment (Xintong et al., 2014). Crowdsourcing 
platforms are interactive portals that enable like-minded people to contribute knowledge, thoughts, 
views, and ideas towards a common goal. This, in turn, helps in tapping the wisdom of the crowd 
(Ye and Kankanhalli, 2017; Goh et al., 2017; Deng et al., 2016) across disciplines like healthcare, 
entertainment, societal development, elections, digital marketing, etc. Geiger and Schader (2014) 
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discussed four archetypes of crowdsourcing platforms (crowd rating, crowd creating, crowd solving, 
and crowd processing) based on a 2x2 matrix on differentiating value between contributions and 
deriving value from contributors. Out of the four types, crowd creation is often used to develop or 
derive comprehensive artifacts based on various heterogeneous contributions from the crowd. Some 
common examples include user-generated content on channels like YouTube, videos posted on 
Facebook, or knowledge drawn from platforms like Wikipedia (Morschheuser et al., 2017).

Businesses use task-based crowdsourcing activities to engage the crowd and aim to derive 
solutions or ideas related to a defined problem (Deng et al., 2016). Howe (2008) defines organizational 
task crowdsourcing as an act of hiring/recruiting/engaging large groups of undefined random 
individuals often addressed as solvers. These individuals undertake an organizational task through 
an internet-based platform either maintained by the firm or a third party. The objective of such tasks 
is essentially linked to the profit of the firm. Moreover, organizations employ crowdsourcing to gain 
insights from a random crowd about a product that has either been launched or is about to be launched 
in a market. Examples include contests like “Doritos- Crash the Super Bowl”, “Starbucks- White 
Cup Contest,” “Lay’s -Do Us a Favour,” and “Airbnb Shorts.” Firms use platforms like Mechanical 
Turk, TopCoder, ZbJ, etc., for crowdsourcing tasks, gaining popularity, attracting advertisements, 
and earning commission to engage the crowd.

These platforms’ common concern is the lack of crowd’s continued engagement (Hossain, 2012; 
Kaufmann et al., 2011). Reasons include lower incentives for the crowd; irrelevant and irregular 
nudges to participate in activities; complex crowdsourcing platforms; vernacular and language issues; 
etc. (Morschheuser and Hamari, 2019; Zhu et al., 2014; Durward et al., 2016). The crowd and its 
continued participation determine the success of any crowdsourcing platform. Studies have claimed 
that crowd engagement through interactive crowdsourcing platforms has helped firms achieve better 
and efficient information sources (Morschheuser and Hamari, 2019; Lee et al., 2013). Sustained and 
meaningful crowd engagement is ensured through appropriate portal design and game mechanics 
application; this helps better understand crowd behavior. Lately, crowdsourcing platforms have also 
started using game elements to capture and prolong crowd attention. Tomnod’s digital initiative 
employs individual core drives of Octalysis gamification, such as core drive 1# Epic Meaning and 
Calling, core drive 5#, social influence, and relatedness to promote innovation and creativity. Other 
examples of gamified crowdsourcing include Google Image labeler and Foldit. Google image labeler 
is one of the earliest examples that integrated game elements to encourage participation. Different 
crowdsourcing applications use a range of gamification principles depending upon their objectives 
and the quality of experience they seek to provide. Enhancing user experience by making it more 
immersive through gamification can benefit the crowdsourcing endeavour.

The process of gamification adds to the degree of enjoyment by offering intangible yet significant 
rewards in the process of knowledge development. Morschheuser et al. (2016) and Goh et al. (2017) 
postulated that gamifying a platform fosters sustainability on crowdsourcing platforms through the 
intrinsic motivation triggered by game mechanics. Earlier studies have also discussed the use of gaming 
elements like points/scores, leaderboards/rankings, badges/achievements, levels, processes, virtual 
teams, etc. (Morschheuser et al., 2016) to engage people on crowdsourcing platforms (Morschheuser 
et al., 2017). While studies have explored the intrinsically motivated behavior of participants on 
crowdsourcing platforms and examined how various game mechanics may contribute, the role 
of knowledge and information in the process has been largely overlooked (Kosonen et al., 2014). 
With every contribution, an additional dimension of knowledge is created or upgraded. A dense 
crowdsourcing platform results in the development of big data often used to understand the pattern 
of the crowd’s contribution. Many companies add a layer of information quality (IQ) to understand 
the existing nature and characteristics of data and draw meaningful inferences. Recent studies also 
confirm that IQ plays a crucial role in helping firms decide how to operate and upgrade performance, 
thereby making them more competitive (Behl, 2020).
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IQ is also used in psychology; it is used to understand how people behave, and if the existing 
information is sufficient to generalize their behaviour. Unlike firms that deal with a customer database, 
a crowdsourcing platform does not support one stable, defined database as the number of contributors 
may vary with factors like availability, interest, and work nature. In a dynamic work environment, 
IQ can be instrumental in understanding the intrinsic motivation of such diversified contributors.

The complexity of gamified crowdsourcing platforms makes it all the more pertinent to understand 
the motivation of contributors (Martinez, 2017; Fieseler et al., 2019). While studies have tested how 
game artifacts lead to intrinsic motivation, it would be worthwhile to explore this association in the 
context of a crowdsourcing platform that is bound by different types of crowd work. Earlier studies 
have examined intrinsic motivation concerning crowdsourcing participation from the theoretical lens 
of social exchange theory, resource dependence theory, self-determination theory, etc. (Morschheuser 
et al., 2017; Morschheuser et al., 2019; Xi and Hamari, 2019). Also, intrinsic motivation has often 
been used as a mediating variable. However, its importance is greater when considered a dependent 
variable (Xi and Hamari, 2019; Hamari and Koivisto, 2015; Zeng et al., 2017). In this vein, to the 
best of the authors’ knowledge, no prior study has proposed to examine the role of IQ with respect to 
intrinsic motivation on a gamified platform. In light of the growing complexity of data with increased 
user participation, IQ may enable a better understanding of how game artifacts induce and promote 
intrinsic motivation levels and thereby increase people’s participation in crowdsourcing platforms.

The study also controls for crowdsourcee’s past experience and type of crowdsourcing activity to 
understand how the crowdsourcing platform’s information quality may be used with game mechanics to 
determine the intrinsic motivation of contributors leading to their participation. We draw our arguments 
from a motivational affordance perspective (MAP) to answer the following research questions:

RQ 1: What is the role of big data analytics culture in influencing the intrinsic motivation of participants 
on game artifacts driven crowdsourcing platforms?

RQ 2: How does past experience and type of crowdsourcing activity control intrinsic motivation and 
participation in gamified crowdsourcing platforms?

We aim to answer these questions by referring to the motivational affordance perspective (MAP) 
as an underlying theory; MAP is likely to offer deeper insights into contributors’ psyche on the 
crowdsourcing platform. The rest of the paper is structured as follows:

We have performed a systematic review of the literature and proposed hypotheses based on 
theoretical arguments in Section 2 and Section 3. Section 4 discusses in detail the research design 
and steps involved therein. Results are presented in Section 5, followed by a discussion in Section 6. 
The study concludes in Section 7; the section also presents the future scope of work and highlights 
the shortcomings of the study.

2. THEORETICAL UNDERPINNING

2.1 Motivational Affordance Perspective (MAP)
The Motivational Affordance Perspective (MAP) is grounded in psychology literature. It has been 
primarily used to understand individuals’ intrinsic motivations through proper and efficient systems 
(Jung et al., 2010). Zhang (2008) posits that an information system can support and enhance a person’s 
intrinsic needs with the help of appropriate system properties. MAP offers a theoretical framework for 
designing information system artifacts to understand users’ intrinsic motivation and behavior. While 
intrinsic motivation and behavior are also studied using self-determination theory, it (self-determination 
theory) fails to explain user behavior through information-driven system artifacts that have lately gained 
momentum due to internet-driven systems. Therefore, MAP has gained recent scholarly attention in the 
context of an information-driven system such as virtual reality e-learning environment (Shin, 2017), 
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group collaborative environment (Wang et al., 2015), social media channels (Zhao et al., 2013), and 
digital communities (Wang and Clay, 2012). MAP assumes greater significance with increasing global 
digitization, especially in an environment that supports the creation and dissemination of knowledge 
through users’ active participation (such as on crowdsourcing platforms).

The use of MAP in a crowdsourcing platform has also been studied in the past (Kavaliova et al., 
2016; Zeng et al., 2017; Zheng et al., 2011). Goh et al. (2017) reported that gamification artifacts were 
effective (in the context of a crowdsourcing platform) in attracting and engaging users by controlling 
intrinsic and extrinsic motivation, which in turn controlled behavior. However, limited attention has 
been paid to identifying the right set of game artifacts and their effect on users’ intrinsic motivation. 
One of the possible reasons for this gap could be that crowd work is often managed by people from 
different geographies, age groups, and cultural backgrounds. Therefore, pre-defined game mechanics 
might not be useful in standardizing how intrinsic behaviour is studied (Mitchell et al., 2018; Smith 
et al., 2014). Moreover, crowd work generates a large pool of information and knowledge, which 
resembles big data in terms of nature and properties (velocity, veracity, volume, value, and variety). 
Studies have previously emphasized the importance of big data culture in studying firm performance 
(using data and its properties to understand business better).

Motivation explains user commitment and interest in a concept. However, as individuals differ 
in nature, working style, and understanding, the use of classical motivational theory or a single 
theoretical perspective to understand behaviour might not be appropriate (Frey, 1994). Following 
the same line of argument, MAP integrates multiple motivational theories and classifies individual 
motivation under three categories - emotional need, psychological need, and social and psychological 
need (Zhang, 2008). The selection of game artifacts is moderated by the crowdsourcing platform’s 
capabilities to decide which game artifact should be used to induce and improve on the participation 
process by intrinsic motivation.

We now discuss each of the significant needs proposed by Zhang (2008) in the context of 
gamification and its application in crowdsourcing. Psychological needs can be met by specific system 
features that help users decide how they wish to express themselves and perform in distinctive ways 
(e.g., supporting and promoting creation and representation of self-identity); such features enable users 
to complete tasks on a given system (Zhang, 2008). On a crowdsourcing platform, there is a mix of 
tasks linked to earning monetary or non-monetary awards, and it is essential to understand the psyche 
of participants (Rogstadius et al., 2011). Studies show that crowd workers mostly participate because 
of their capabilities to perform a task; doing so resembles an act of showing their self-identities (Deng 
et al., 2016; Boons et al., 2015). Therefore, the choice/selection of game artifacts would help explore 
users’ psychological self, which corresponds to “self-presentation,” thereby contributing to higher 
engagement on the platform (Deng et al., 2016). Studies have proposed that “self-presentation” leads 
to motivational activities in tasks in a digital context (Aparicio et al., 2012; Mitchell et al., 2017).

MAP postulates that social and psychological needs largely explain how and which components 
support users in interacting with one another and contribute towards building social bonds (Xi and 
Hamari, 2019; Feng et al., 2018). The clubbed effect of social and psychological needs can be 
experienced better on a crowdsourcing platform because of the nature of participation and involvement 
of contributors (Hanus and Fox, 2015). Communication plays a vital role, and the quality of information 
between contributors is driven by both the social and psychological behaviors of people engaged 
with the platform (Deng et al., 2016). The use of game mechanics induces better connectivity due 
to better engagement practices between contributors, thereby helping in finishing the task relatively 
quickly. Social and psychological aspects contribute to “social bonds” or vice versa; thus, users remain 
engaged for more extended periods (Hamari and Koivisto, 2013). Each of the categories of crowd 
work differs from the other, so there cannot be a unifying game artifact to control contributors’ social 
and psychological behaviors (Bittner and Shipper, 2014).

Lastly, MAP helps explain human emotions by designing systems and characters that propel and 
magnify people’s emotional self (Bittner and Shipper, 2014; Sigala, 2015; Dergousoff and Mandryk, 



Journal of Global Information Management
Volume 29 • Issue 6 • November-December 2021

5

2015). The context seems more relevant, especially with a crowdsourcing platform where a greater 
understanding of behavior is required as contributors are mostly strangers working towards a shared 
goal and often do not interact with one another. In other words, they work together in a shared yet 
unfamiliar environment (Choi et al., 2014). The use of game elements through a simulated algorithm 
on a crowdsourcing platform may help examine which game elements, to what extent, might generate 
different emotions like joy, anxiety, and competitive spirit within contributors (Ye and Kankanhalli, 
2017). The crowdsourcing platform’s design and the placement of “playfulness” driven game artifacts 
seem important for sustainable engagement.

Some studies in the past have proposed intrinsic motivation as a function of other intrinsic 
motivation factors like cognitive behavior, which results in self-efficacy through game mechanics 
(Choi et al., 2014; Kosonen et al., 2014). This holds true for a given type of crowdsourcing platform 
which engages users for a specific task. We have briefly discussed the scope and operational definition 
of crowdsourcing, gamification, and big data analytics capability, which form the primary pivots for 
this study.

2.2 Crowdsourcing
The scope and boundary of crowdsourcing have expanded recently in the information science space. 
It started with crowdsourcing being considered as a problem-solving phenomenon using an online 
platform, and it has now turned into a source of big data for firms and organizations (Kittur et al., 
2013). The traditional and core essence of crowdsourcing is still grounded in the idea of using large 
masses of people to work towards a common or shared goal, finish tasks and solve problems using 
tangible and intangible resources (Estellés-Arolas et al., 2015). With time, the only thing that has 
transformed crowdsourcing is the advent of Web 2.0; it brought a broad audience on the internet and 
gave them the power to contribute in various ways. The speed and extensive outreach of the internet 
allow crowdsourcing platforms to achieve desired results faster than their predecessors. There are 
several crowdsourcing applications; thus, the phenomenon has gained popularity in the recent past 
(Estellés-Arolas et al., 2015; Zhang et al., 2017). Major beneficiaries of such an activity are business 
ventures, especially startup firms that have leveraged the power of crowdsourcing to develop their 
business. Lately, crowdsourcing has received significant attention from established businesses 
investing in both internal and external crowdsourcing. Therefore, the success of crowdsourcing 
channels is driven by antecedents like trust, coordination, nature of work, human capital enrolled 
with the crowdsourcing platform, and engagement of the crowdsourcees (crowdsourcees are people 
engaged with a crowdsourcing platform for performing crowd tasks) (Kauffmann and Schulze, 2011). 
Despite increasing contributions in the area, there remains a significant gap in terms of theoretical 
explanations describing the interlinkages between these antecedents. A theoretical model would thus 
help in establishing the degree and magnitude of relationships between different factors.

Geiger and Schader (2014) conceptualized and classified crowdsourcing systems into four 
categories - crowd processing, crowd solving, crowd rating, and crowd creating. Crowd processing 
is driven by the principle of channelizing large crowds to perform a homogenous task. The essence 
thereof lies in the idea of unity in diversity (Estellés-Arolas et al., 2015). The contributions of 
each individual are seen to be qualitatively identical, therefore, valued equally. However, despite 
diversity, the value of the contributions is derived from individual contributions (e.g., Galaxy Zoo 
and Mechanical Turk). The second classification is crowd solving, which uses the crowd’s diversity to 
extract multiple heterogeneous solutions to a challenge. The core strength and value of this approach 
lies in isolated contributions (non-emergent). However, the approach is more suited to times of risks 
and uncertainty as such situations demand varied yet focused solutions to problems (Zheng et al., 
2011; Pederson et al., 2013). Cooper et al. (2010) suggest that an activity such as crowd solving 
would be more effective where ideas are scarce or a lack of robust solutions to a problem. Therefore, 
the approach is best suited to situations with limited knowledge and understanding of a topic. The 
third approach is crowd creating. The objective is to develop comprehensive (emergent) and defined 
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solutions based on various heterogeneous contributions. An example could be Wikipedia pages, which 
are created by collaborative learning and knowledge of multiple people. The fourth approach - crowd 
rating - works on the principle of collective assessments and predictions (the wisdom of crowds to 
predict or assess). The new value, in this case, is derived from a large number of homogeneous votes.

2.3 Gamification
Recently, there has been a lot of enthusiasm around studying the application and impact of gamification 
in varied contexts, such as virtual and e-learning (Liu, Yang, and Chan, 2013; Hamari et al., 2016; 
Toda et al., 2019), workplace engagement (Landers et al., 2017; Landers & Armstrong, 2017), and 
shared or gig economy (Hamari, 2017; Köse et al., 2019), fitness and m-health (Hassan et al., 2019). 
Extant work has focussed on the motivational impact of gamification.

The success of crowdsourcing depends on various psychological factors like engagement 
(Altmeyer et al., 2016; Bowser et al., 2013; Liu et al., 2011a, 2011b; Snijders et al., 2015); attitude 
(Bowser et al., 2013; Dergousoff and Mandryk, 2015; Itoko et al., 2014; Kobayashi et al., 2015; 
Tinati et al., 2016) and motivation (Altmeyer et al., 2016; Bowser et al., 2013; Eickhoff et al., 2012; 
Itoko et al., 2014; Kawajiri et al., 2014). Although crowdsourcing is an area explored extensively in 
various disciplines, a handful of studies have measured and tested the role of participant motivation 
(Zheng et al., 2011; Zhao and Zhu, 2014; Brabham, 2012, Chang and Lu, 2019). Earlier studies have 
primarily classified motivation as either intrinsic or extrinsic, which directly or indirectly leads to 
participants’ crowdsourcing behavior. The motivation also fosters a sense of coordination between 
actors and stakeholders, which helps boost crowdsourcing participation. Thus, while motivation as a 
construct is more individually driven, literature supports that it can also be organization or task-focused 
(Banerjee, Isa, & Zainuddin, 2017). Individual motivation is further driven by perceived motivational 
affordance (Zhao and Zhu, 2014), nature and characteristics of tasks (Zheng et al., 2011; Kaufmann 
et al., 2011), and granularity of tasks (Zhao and Zhu, 2014; Nakatsu et al., 2014).

2.4 Information Quality (IQ)
Data have proved to be one of the most useful resources for any organization. The power of data is 
limited to tools and their capacity to transform raw information; data also support firms’ decision-
making. As firms and their businesses go digital, large volumes of data are generated, which may 
better understand the functioning of the business. Large data often yield useful information, and 
while studies have discussed the importance of large data, recent literature has emphasized how 
“information quality” (with significant data growth) may be useful for business (Mulder et al., 2016; 
Guo et al., 2017). It is common knowledge that firms today invest in state of the art technologies 
like machine learning tools, cloud computing, blockchain technologies, artificial intelligence, etc. to 
churn different dimensions of information quality. Management scholars have also postulated, and 
to a great extent proved, that IQ has helped organizations reduce cost (Dubey et al., 2019; Choi et 
al., 2018), increase production (Dubey et al., 2018; Giannakis and Louis, 2016), and offer new and 
innovative products to meet future demands (Ghasemaghaei and Calic, 2019; Choi et al., 2018). 
Technology scholars have proposed that the success of IQ depends on key factors like technological 
advancements (Andre et al., 2018; Guo et al., 2017), data generation tools (Duan et al., 2019), and 
data processing machines/systems (Guo et al., 2017; Lakhani et al., 2015). Recent advancements in 
technology indicate an important trend of enhancing IQ for better business understanding (Tortorella 
et al., 2020; Dwivedi et al., 2019, Delen and Zolbanin, 2018; Sivarajah et al., 2017). IQ applications 
include gaining competitive advantages (Dubey et al., 2019; Dalenogare et al., 2018) and understanding 
the drivers of business (that are mostly customers) (Satish and Yosuf, 2017).

Crowdsourcing platforms, on the contrary, use customers as knowledge partners. Thus, there lies 
a gap in understanding these non-conventional business models like crowdsourcing through the lens 
of IQ as a lot of it doesn’t apply them. Hence, we argue that IQ generated through crowdsourcing 
platforms enables a better understanding of workforce behavior and motivation.
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It can be argued that IQ would help crowdsourcing firms design and customize game artifacts, 
which in turn would help understand the intrinsic motivation of contributors on a crowdsourcing 
platform (Feng et al., 2018). Therefore, the current study proposes a theoretical model using MAP to 
explain intrinsic motivation effectively. MAP helps explain how the intrinsic motivation of gig workers/
contributors on crowdsourcing platforms would translate effectively into their continuous participation. 
While MAP usually explains the behaviour preceding intrinsic motivation to participate, we propose 
to use game elements that can be moderated by psychological inputs shared by behavioural analysis 
enabled by IQ. The next section discusses the proposed conceptual model and presents hypotheses.

2.5 Control Variables
The study proposes two control variables in the study: type of crowdwork and past experience. Crowd 
work has been classified into four categories by Geiger and Schader (2014). As the four categories 
are based on the type of work performed by the users, Geiger and Schader (2014) and more recently 
Howcraft and Kareborn (2018) postulated that it is essential to understand that the type of work 
positively affects the motivation of the worker and their productivity at the workplace. These studies 
also confirm that the type and nature of the job also make the task difficult or easy to perform, 
which then moulds the participatory behaviour of the participant. We use this as a control variable 
in our study to understand if the same holds true when the platform is gamified as gamification also 
contributes to the participant’s motivation on any platform. We also used the past experience as the 
second control variable. In the crowdsourcing literature, it is also suggested that past experience of 
crowd work positively impacts the performance of future work. Crowd workers tend to pick up similar 
work when allowed to work on the crowd working platform as they find the work to be relatively 
more uncomplicated (Hata et al., 2017). Additionally, recent studies on gig work, having the highest 
similarity with crowd work, further confirm that gig employees tend not to switch their line of work 
as they feel more empowered with the freedom to pick work timings and work depending upon their 
experience (Hong et al., 2020). This, in turn, affects their choice to reperform the same or similar 
work and also impacts their motivation. We propose to test the same on a gamified platform and see if 
past experience matters when an external cue of a gamified artifact is introduced on a crowdsourcing 
platform.

3. HYPOTHESES DEVELOPMENT

This section draws arguments from gamification and crowdsourcing literature to understand the 
relationship thereof. We also propose the intrinsic motivation of a contributor on any crowdsourcing 
platform as a joint function of self-presentation, social bonds, and playfulness, as discussed in 
Section 2. In contrast, gamification is discussed from the lens of various game mechanics, mostly 
points, badges, and leader boards, as cited by gamification literature. This section discusses both the 
main hypotheses and the hypotheses related to the moderating effect of big data analytics controlled 
artificial intelligence in the proposed framework.

The degree of interaction between people on any digital platform confirms the platform’s 
popularity and dictates an individual’s self-presentation skills on an open forum. The interaction 
amongst these digital natives explains their reactions to other natives (Lee et al., 2013). Human-
computer interaction allows digital natives to experience different moods depending on their interests 
and reactions to their thoughts. Studies have confirmed that most crowdsourcing and social media 
websites have designs that promote and celebrate positive feelings in an individual. Recent studies 
and trends also indicate that these websites have expanded their horizons by allowing the expression 
of emotions like sadness, anger, remorse, glory, etc. (Kusuma et al., 2018; Heeks, 2017).

Further, studies have confirmed that social media websites like Facebook and Linkedin encourage 
participation but rarely use game mechanics to control and measure online users’ behaviour (Hamari 
et al., 2014; Xi and Hamri, 2019). Like social networking platforms, crowdsourcing platforms attract 
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large volumes of people by offering different and structured solutions to a defined problem. Thus, 
it becomes more critical to understand the intrinsic motivation of contributors on these platforms 
as not everyone’s contribution is used to complete the submission. These websites usually have 
a mismatch between demand and supply in terms of projects and ideas to complete the projects. 
Studies have confirmed that capturing the attitude of the right people can lead to the success of any 
crowdsourcing platform. Crowdsourcing platforms also offer every contributor gamified channels and 
artifacts; this creates a bond between the contributor and the website. Studies have highlighted how 
well these websites make a bond between different contributors to complete a task (Xi and Hamrari, 
2019). Knowledge and its presentation in silos can engage individuals to an extent, but Dwivedi et 
al. (2019) confirm that practices like one-to-one private feedback, public recommendations, and 
appreciation notes may motivate contributors (Mendez et al., 2020). This, in turn, may reinforce a 
bond of togetherness in a socially disjoint yet close-knit community. According to social exchange 
theory, people would be more likely to engage in a behavior if they believed that such behavior could 
improve relationships (social ties) with their friends (Blau, 1964). Psychology literature argues that 
human beings differ in terms of personality. Hence, using a standardized approach to engage all 
would be inappropriate. Gamification enables the use of multiple and diverse game mechanics found 
to affect intrinsic motivation positively. We, therefore, propose:

H1: Use of game elements has a positive significant impact on the intrinsic motivation of contributors 
on a crowdsourcing platform.

A crowdsourcing platform’s success lies predominantly in the participation of the crowd and 
the quality of solutions offered on a timely basis (Zhao and Zhu, 2014). Such platforms provide 
both tangible and intangible benefits to attract crowd workers (most of whom are gig workers) 
and exploit their motivations (Kaufmann et al., 2011; Zhao and Zhu, 2014). Psychologists and 
management scholars have discussed the role of intrinsic and extrinsic motivation in the success of 
any crowdsourcing platform (Kosonen et al., 2014; Mekler et al., 2017). While extrinsic motivation 
in some cases dominates intrinsic motivation (as financial benefits evoke extrinsic motivation), 
not every crowd work guarantees confirmed financial winnings. Therefore, the primary driver to 
consistently contribute to crowd work channels has to be the intrinsic motivation of the contributors 
as it allows the participants to be creative and experience autonomy and a competitive environment 
and gain social recognition (Mekler et al., 2013). Building on the arguments of Zhao and Zhu 
(2014), perceived motivational affordance and task granularity influence an individual’s attention, 
and crowdsourcing platforms consider website design as one of the essential aspects when it comes 
to tracing intrinsic motivation.

Gamification offers an innovative and promising human-computer interactive technique applied 
in various management domains and has helped understand how users behave on a digital platform 
(Hamari et al., 2014; Seaborn and Fels, 2015). Snijders et al. (2015) discussed that the application 
of gamification in any crowdsourcing platform helped crowdsourcees realign their thoughts from 
purely rational to self-purposeful and intrinsically driven. Gamification works on the core principle 
of targeting user attributes like participation, engagement, loyalty, concentration, and consistency 
in any crowdsourced work. Huotari and Hamari (2016) used MAP to discuss how game elements 
acted as motivational affordances for driving intrinsic motivation. The most commonly used game 
artifacts include points, badges, and leader boards, which drive motivational affordance (Hamari et 
al., 2014). Straub et al. (2015), in their experimental study, discussed how a gamified crowdsourcing 
environment attracted and retained users for a longer duration compared to a non-gamified platform. 
While the study chose the most common game elements (points, badges, and leaderboards) and was 
conducted for a specific type of crowd work, there lies an important gap for testing the relationship 
between usage of elements and participation of crowdsourcees. Considering the theoretical arguments 
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of MAP, we test gamification’s effect on crowdsourcee participation on a crowdsourcing platform. 
We therefore propose:

H2: There is a positive relationship between use of game elements and participation of crowdsourcees 
on a crowdsourcing platform.

Crowdsourcing platforms offer different types of tasks often classified using the guidelines of 
Geiger and Schader (2014). Irrespective of the subcategories of the work, the crowdsourcing platform’s 
nature of engagement with the crowdsourcees remains important. The process of participation is a 
double-edged sword that benefits both the crowdsourcee and the platform. Studies claim that the 
benefit lies more for the crowdsourcing platform. However, participants are hooked because of the 
multiple tangible and intangible rewards they draw by performing tasks. Stewart et al. (2010) proposed 
the famous SCOUT model in the context of participation on any crowdsourcing platform; the model 
was based on the level of effort that crowdsourcees offered and the nature of participants’ motivation. 
Earlier studies have discussed how internal and external motivation factors help achieve a higher 
degree of participation on a crowdsourcing platform; the phenomenon is mostly explained by Ryan 
and Deci’s (2000) self-determination theory. While external motivation drives contributors to earn 
tangible rewards after participation, there lies a game theory model wherein there is also a possibility 
of not earning the expected reward. Thus, for crowdsourcing practices contingent on performance 
(Ryan and Deci, 2000), which may or may not offer expected tangible returns, the contributors’ internal 
driving force would ensure the quality of work and timely submission. Brabham (2010) proposed 
that introjected motivation helped contributors perform better, leading to a higher chance of winning 
awards and accolades within the crowdsourcing community. Other intrinsic motivational factors 
include subjective norm and trust, both of which have proved to impact and influence behaviour and 
person (Mitchell et al., 2017). While a crowdsourcing platform clearly defines objectives before a 
participant opts-in, there may be a difference in how the objectives are phrased and the objectives in 
reality. This may discourage the contributor and lead to incomplete tasks and a negative impact on 
motivation to participate. Archak (2010) discusses how internal inspiration to perform a task keeps 
motivation levels high, especially when there are lesser external regulations; crowdsourcing platforms 
are the best examples thereof.

An internally motivated participant enjoys work and is seen to be more socially active and 
vice versa. Unlike a physical crowd work environment where it is easy for coordination to develop 
among players (Greenhill et al., 2014), a digital community lacks a personal connection with one 
another. Thus, a motivating environment helps to perform better. As mentioned earlier, we propose 
to understand the effect of self-presentation, social bonds, and playfulness on the participation of 
crowdsourcees. While earlier studies (Rogstadius et al., 2011; Liang et al., 2018) have discussed the 
mediating effect of these intrinsic factors (mostly on a pre-defined homogeneous variety of crowd 
work), it is important to test the same on any crowd work to extend and generalize existing MAP 
theoretical arguments. We therefore propose:

H3: There is a positive significant relationship between intrinsic motivation and participation on a 
crowdsourcing platform.

3.1 Moderating Effect of Information Quality
The advent of Big Data Analytics (BDA) and Artificial Intelligence (AI) significantly changed 
how most businesses were conducted. The application of BDA in business encompasses customer 
acquisition, customer engagement, predicting and maximizing profits, marketing, sales analytics, 
supply chain operational efficiency improvement, etc. (Dubey et al., 2019). The degree of use of 
BDA capability depends on processes and the involvement of people. Indeed, BDAC offers most 
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of the pre-requisite conditions for any complex data analysis application and quality of information 
(Duan et al., 2019; Chang and Lu, 2019). It may be said that information quality forms the basis 
for BDA. IQ assumes greater significance in businesses and situations where data are unorganized. 
A crowdsourcing platform is a suitable domain for IQ applications. Theories emphasizing the 
importance of IQ include resource-based view theory, dynamic capabilities view theory, resource 
dependence theory, etc.; the significance of IQ has been acknowledged in multiple contexts such as 
supply chain, electronic commerce firms, cloud computing, crowdsourcing, etc. However, IQ as a 
moderating variable has been rarely examined. As IQ delivers scientific solutions to situations that 
often include human intervention, its role in understanding the contributors on any crowdsourcing 
platform is highly important. Moreover, as our study argues that there is no uniform mechanism to 
know how best we could engage the participants on any digital platforms, it becomes necessary to use 
the crowd’s wisdom. Thus, it becomes essential to understand the use of IQ concerning two primary 
functions on any crowdsourcing platform: 1) determining which game mechanics should be used 
to understand the intrinsic motivation of participants; and 2) ensuring the appropriate use of game 
elements to achieve higher participation on any crowdsourcing platform. It is, therefore postulated:

H4a: IQ positively impacts the relationship between the use of game artifacts and intrinsic motivation 
of contributors on crowdsourcing channels.

H4b: IQ positively impacts the relationship between the use of game artifacts and participation of 
crowd workers on crowdsourcing channels.

Figure 1 represents the theoretical model along with all the proposed hypotheses.

Figure 1. Theoretical Framework
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4. RESEARCH DESIGN

4.1 Instrument Development
We have used cross-sectional data to test proposed hypotheses (Refer to Figure 1); data were collected 
using a survey-based instrument. Each of the constructs used in the theoretical model is adapted from 
existing scales in literature. Each dimension was measured using a 5 point Likert scale (1 corresponds 
to strongly disagree, and five denotes strongly agree) (Refer to Aydiner et al., 2019; Feng et al., 2018).

The research instrument was pre-tested with 30 experts, including those from industry and 
academia with an average experience of 5 years handling or researching crowdsourcing platforms 
worldwide. The final questionnaire was shared with experts to review structure, readability, and 
concerns related to ambiguity and completeness (Dubey et al., 2018; 2019). Suggested changes were 
incorporated with the unanimous consent of experts; the questionnaire was thus finalized.

4.2 Data Collection
We collected data using Dillman’s (2011) tailored design method guidelines. This method is well 
accepted and used commonly by management scholars following the empirical data collection approach 
(Dubey et al., 2019; Eckstein et al., 2015). Data collection was done over four months (September 
2019- December 2019) using a structured and systematically designed questionnaire. The questionnaire 
was posted on multiple crowdsourcing channels based in India. We used a leading market research 
firm to contact people who had participated in one or numerous crowdsourcing activities in the past 
two years. We reached a total of 2348 respondents via email with an invitation letter and invited 
them to participate in the survey; specific details of the study were shared, and confidentiality and 
anonymity assured. We sent four reminders to those who did not participate in the first contact list 
and found 337 usable responses. The response rate of 14.35% is relatively low but was found to be 
slightly higher than similar studies (in the context of other countries) conducted in the recent past 
(e.g., Sun and Hsieh, 2018; Mulder et al., 2016). The sample size is adequate to perform analysis 
to test the hypotheses. A widely used minimum sample size estimation method in PLS-SEM is the 
“10-times rule” method (Hair, Ringle, & Sarstedt, 2011; Kock, 2018). The average time spent on the 
crowdsourcing platform was 167 minutes a week, out of which 86 minutes were spent finishing a 
crowding task every week. A detailed profile of the respondents is presented in Table 1. Respondents 
were classified into four categories based on significant time spent and crowdwork performed (see 
Geiger and Schader, 2014). Our respondents were involved in 29% crowd processing works, 28% 
crowdsolving tasks, 32% crowdrating tasks, and 11% crowdcreating works. The contributors belonged 
to the age group of 15- 45 years overall; maximum representation was from 25 to 35.

We tested our data using the guidelines laid down by Armstrong and Overton (1977) for non-
response bias by comparing the responses of the measurement items of early and late respondents. 
We used the response of the first and the last 25% respondents and compared them as directed by 
Armstrong and Overton (1977) and found that there was no significant difference between each of 
the measured items (observed p value >0.20). We also found that there was significant difference 
between the profiles and the response pattern of both the categories (early and late respondents). 
Therefore, it was concluded that the data did not suffer from non-response bias.

5. DATA ANALYSIS AND RESULTS

The collected data were tested for outliers and no significant outliers were found when drawing box 
plots. We also tested for normality using Anderson Darling test and found that the data could be 
treated as normal (p >0.025). Data were also checked for the assumption of constant variance. We 
then checked the data for multi collinearity and results reported that in our data, multi collinearity 
was not a major issue of concern. For all cases, results reported a value of VIF <4.5 which was 
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significantly lesser than the recommended threshold of 10.0 as suggested by Hair et al. (2006). The 
data therefore, are free from the issue of multicollinearity.

5.1 Measurement Model
We calculated the value of reliability coefficient of each of the items using Cronbach’s alpha and 
split half method, scale composite reliabilities (SCR) and average variance extracted (AVE) for each 
of the first order constructs with multiple items. Table 2 reports each of the mentioned values for all 
the constructs and their respective items wherever necessary; results confirm reliability and validity 
of measured constructs.

All individual factor loadings were found to be greater than 0.5 (Refer to Appendix A), and the 
overall scale composite reliability was greater than 0.7 with average variance explained (AVE) scores 
greater than 0.5 (Refer Table 2). Therefore, we can safely assume that convergent validity exists in 
our theoretical model (Fornell and Larcker, 1981). Referring to Table 3, we tested for discriminant 
validity and obtained satisfactory results. Results from Table 3 confirm that correlation between latent 
constructs was not greater than the square root of AVE for each of the individual constructs, which 
confirms discriminant validity in our model. Based on the results, we confirm construct validity for 
the data. We then calculated the measurement model fit indices and quality indices and found all 
values satisfying the required respective criterion [APC (average path coefficient) = 0.302, p<0.001; 
ARS (average R-squared) = 0.832, p <0.001; AFVIF (average full collinearity VIF) = 2.473, ideally 

Table 1. Demographic Profile of the Respondents

Demographic Variable Classifications Percentage

Time Spent of Crowdsourcing Platform (per week) < 50 hours 4%

50-100 hours 14%

100- 150 hours 7%

150-200 hours 58%

>200 hours 17%

Experience as a crowd workers 0 – 12 months 6%

12-24 months 36%

24-36 months 43%

36-48 months 12%

48 + months 3%

Type of Crowd Work Crowd Processing 29%

Crowd Solving 28%

Crowd Rating 32%

Crowd Creating 11%

Age Range 15-20 years 11%

20-25 years 13%

25-30 years 37%

30-35 years 33%

35-40 years 4%

40-45 years 2%
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< 3.3 and acceptable if <0.5; TenenhausGoF = 0.596, large 30.36]. Therefore, we can conclude that 
the model fit is good for our data (Sarstedt et al., 2014).

5.2 Common Method Bias (CMB) Test Results
Our data are empirical in nature and it is well documented that data involving human beings can be 
contaminated with common method bias (Wamba et al., 2019; Srinivasan and Swink, 2018). It is 
therefore important to assess the data with CMB test as suggested by Podsakoff et al., (2003) and 
Ketokivi and Schroeder (2004). We employed a split survey method and gathered data separately 
using two different surveys. While the respondents of both the surveys were of similar profiles and 

Table 2. Loadings of the indicator variables (Cronbach’s alpha, SCR and AVE)

Construct Item Factor 
Loadings

Variance Error 
(Ei)

SCR AVE

Information Quality 
(IQ) 
(α = 0.85)

IQ 1 0.69 0.47 0.53 0.87 0.553

IQ 2 0.79 0.62 0.38

IQ 3 0.74 0.55 0.45

IQ 4 0.76 0.58 0.42

IQ 5 0.67 0.44 0.56

IQ 6 0.75 0.57 0.43

IQ 7 0.77 0.59 0.31

IQ 8 0.75 0.56 0.44

Use of Game Artefacts (GM) 
(α = 0.93)

GM1 0.78 0.61 0.39 0.82 0.495

GM 2 0.73 0.53 0.47

GM 3 0.68 0.46 0.54

GM 4 0.71 0.50 0.50

GM 5 0.69 0.48 0.52

GM 6 0.70 0.49 0.51

GM 7 0.63 0.40 0.60

Intrinsic Motivation (IM) 
(α =0.81)

IM 1 0.68 0.46 0.54 0.93 0.481

IM 2 0.72 0.52 0.48

IM 3 0.66 0.44 0.56

IM 4 0.57 0.33 0.67

IM 5 0.65 0.42 0.58

IM 6 0.69 0.48 0.52

IM 7 0.76 0.58 0.42

IM 8 0.79 0.62 0.38

Crowdsourcing Participation (CP) 
(α =0.89)

CP 1 0.64 0.41 0.59 0.85 0.506

CP 2 0.69 0.48 0.52

CP 3 0.74 0.55 0.45

CP 4 0.71 0.50 0.50

CP 5 0.77 0.59 0.41
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randomly selected from a defined population and a similar sampling frame, it was important to use 
split survey method in order to reduce the chance of common method bias (Eckstein et al., 2015). 
Additionally, we employed Harman’s one-factor test by loading all the measurement items of our study 
onto one exploratory factor and found that the single factor explained 39.5% of the total variance. 
This confirmed that the data did not suffer from common method bias. In the final stage of the CMB 
test, we performed a marker variable test suggested by Lindell and Whitney (2001) which controlled 
for common method variance. We did this by introducing an external variable in the measurement 
model which was ideally unrelated to the constructs in the proposed theoretical model in Figure 1. 
We aimed at measuring the effect of this variable in the model and found that there was no significant 
effect while measuring the CMV. This confirms that common method bias is not a serious concern 
in our study and can be ignored.

We also explored the pattern of analyses performed by information science and marketing 
scholars in the recent past and found that empirical researchers had considerably discussed concerns 
of endogeneity while working with primary data (see Dubey et al., 2019; Dubey et al., 2018). Hence, 
we performed the endogeneity test to address issues related to primary data collection instead of 
experimental data, of which the most important concern is that of causality. While marketing scholars 
have used experimental data for quite some time, information systems scholars have mostly relied on 
non-experimental data (usually cross-sectional in nature) collected over a period of time. Our analysis 
is inspired by the guidelines laid down by Guide and Ketokivi (2015); we performed a Durbin-Wu-
Hausman test (Davidson and Mackinnon, 1993).

In the last stage of the series of tests performed before testing the hypotheses, we checked if 
our data suffered from the issues of causality (Guide and Ketokivi, 2015; Abdallah et al., 2015; 
Kock, 2015b). We calculated the value of nonlinear bivariate causality direction ratio (NLBCDR) 
following the guidelines of Kock (2015) and found its value to be 0.74 which is in the acceptable 
range (‚â• 0.70). We, therefore, concluded that causality was not a major concern in our study. Next, 
we performed hypotheses tests detailed in the following section.

5.3 Results of Hypotheses Testing
We have shown the results obtained from PLS-SEM analysis in Figure 2. PLS does not assume the 
data to be normally distributed, but to test the parametricity of the data, we ran an Anderson Darling 
Test the results of which are discussed in earlier sections. Following the guidelines of Peng and Lai 
(2012) and Dubey et al. (2019), we calculated the values of standard errors (SE’s). Table 4 presents 
the PLS path coefficients and their corresponding p-values for all the hypotheses (H1, H2, H3, H4a 
and H4b). We found that the paths GM ® IM (β £ =0.86; p<0.001), GM ® CP (β =0.43; p<0.001) 
and IM ® CP (β £ 0.57, p<0.001) were positively linked at 0.001 level of significance. Thus, HI, H2 
and H3 are supported. We then tested for the moderation effect of IQ in our model and found that 
H4a (β£ =0.38; p<0.001) was supported while H4b (β £ =0.04, p=0.26) was not supported. Lastly, 
we tested the effect of control variables (Past Experience and Type of Crowd work) on the model. 
We can see from Table 4 that while “type of crowd work” holds a positive and significant effect, 
“past experience” of the crowd worker does not have a significant effect. We also tested the proposed 

Table 3. Inter Construct Correlation

IQ GM IM CP

IQ 0.894

GM 0.002 0.881

IM -0.01 0.63 0.985

CP 0.03 0.59 0.61 0.899
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hypotheses without the presence of control variables and found that the results of H1, H2, H3 and 
H4a as well as H4b remain the same, however the overall value of β is relatively lower. We also 
calculated the value of R2 without the control variable and found that there is a significant difference 
between the value of R2 when control variables are not used v/s when they are used. We also tested for 
the effect of the control variables both one by one and collectively and found that the value of R2 is 
maximum when it comes to the use of both the control variables rather than using them individually 
or not using them in the proposed hypothetical model.

Table 4. Structural Estimates of the hypothesized relationships

Hypothesis Effect Of Effect On β p-value Result

H1 GM IM 0.86 <0.001 Significant

H2 GM CP 0.43 <0.001 Significant

H3 IM CP 0.57 <0.001 Significant

H4a IQ GM x IM 0.38 <0.001 Significant

H4b IQ GM x CP 0.04 0.26 Non-significant

Control Variables

Type of CW IM 0.125 <0.001 Significant

Type of CW CP 0.263 <0.001 Significant

Past Experience IM 0.007 0.34 Non-significant

Past Experience CP 0.004 0.46 Non-significant

Figure 2. Final SEM Model
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6 DISCUSSION OF RESULTS

There has been a radical shift in the working pattern and engagement of employees in the digital space. 
Both individuals and organizations are gradually moving from a conventional physical space work 
environment to a digital workspace, which offers flexibility and an opportunity to work on multiple 
assignments simultaneously (Selin et al., 2019). The trend of such engagements has been studied 
in the gig economy space, and crowdsourcing platforms have primarily contributed to this shift. Ye 
and Kankanhalli (2017) confirm that any crowdsourcing platform’s success lies largely in what the 
platform offers to the contributors, how well platforms engage contributors, and the benefits crowd 
workers to draw in return. Recent arguments in literature highlight how crowdsourcing platforms 
have used design elements to capture the pulse of the contributors (Selin et al., 2019; Knutas et al., 
2019; Mitchell et al., 2018). Gamification is one such design change that has been well accepted 
and adopted by practitioners. The gamified design offers a higher degree of engagement and has 
contributed significantly in motivating crowd workers (Morschheuser et al., 2016). A parallel school 
of thought also focuses on harnessing the power of IQ to enhance the business’s efficiency. Firms 
today implement tools to handle big data and AI-powered by BDA to draw deeper business insights. 
Crowdsourcing literature confirms that IQ can be used for various activities like profiling, work 
prioritization, work allotment, matching the right resource for every task, etc. (Selin et al., 2019; 
Chang and Lu, 2019). While both fields explain the various aspects of crowdsourcing platforms, it 
becomes difficult to comprehend understanding using a theoretical lens. We, therefore, proposed 
hypotheses and collected empirical data to test them.

Our study reveals a significant and positive impact of gamification on intrinsic motivation and 
participation on a crowdsourcing platform. As our study uses self-presentation, playfulness, and social 
bonds as crucial drivers to intrinsic motivation, we confirm that all three traits are essential to any 
crowdsourcing platform’s success, irrespective of the type of work (crowd processing, crowd solving, 
crowd creating, crowd rating). While rewards are substantial and form a key output parameter that 
the contributors look forward to, it becomes equally important to understand what makes the reward 
achievable. Results (test results of H3) also confirm that contributors high on intrinsic motivation 
tend to contribute continuously on the crowdsourcing platform. Our study confirms the moderating 
effect of IQ on the relationship between gamification and crowdsourcing platform and gamification 
and intrinsic motivation. We found that while IQ positively impacted the use of game elements in 
explaining the intrinsic motivation of contributors, the effect of the use of such tools did not gear up 
participation on such platforms. While the availability of data and processing capabilities are key to 
success for any business (Sirinivasan and Swink, 2018), it becomes important to use these resources at 
the right places to gain maximum advantage. Our study attempted to use IQ as a moderator to determine 
how different game elements could be used to understand intrinsic motivation. As crowdsourcing 
platforms work with diverse and large individuals, it becomes important to explore how to engage 
them differently, rather than using standard practice. Most of the previous studies in the gamification 
space have used pre-defined game elements (Mekler et al., 2013) to use and understand the target 
population’s behavioural traits. Our study attempts to address a critical research gap by discussing the 
role of IQ in selecting the combination and sequence of game artifacts to better understand contributors’ 
intrinsic motivation. Despite significant attention being given to identifying specific game mechanics 
and their role in driving success or boosting motivation, none of the extant work has addressed the 
aforementioned from the lens of IQ. We confirm from our results (Table 4) that there is a positive 
moderating impact of IQ on the relationship between gamification and intrinsic motivation. Hence, 
we have attempted to answer an important research question: What are the distinct and joint effects of 
gamification and intrinsic motivation on crowdsourcing platforms in an IQ moderated environment?

The results are consistent with well-established literature on intrinsic motivation and crowd 
worker participation in a gamified enabled digital platform (Zeng et al., 2017; Feng et al., 2018). 
While earlier studies have mostly focused on either specific intrinsic motivational factors or selected 
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game elements or, to some extent, been restricted to a particular type of crowd work, our study offers 
a holistic view by addressing these concerns. Consistent with the results of Dissanayake et al. (2019) 
and Feng et al. (2018), we also confirm that gamification enhances intrinsic motivation among crowd 
workers, which in turn translates into higher participation (Mekler et al., 2017; Mekler et al., 2013). 
As our study is based on MAP, our results also overlap largely, with theoretical arguments proposing 
the use of self-determination theory to understand participants’ behaviour (Seaborn and Fels, 2015; 
Frey and Jegre, 2001). Further, we tested our theoretical model with two control variables and found 
that the “past experience” of the crowdworker on the portal had no significant impact on intrinsic 
motivation and present participation.

Interestingly, our study posts result not in line with KÖ¶se et al. (2019), who tested for a negative 
impact of past experience on intrinsic motivation. On the other hand, we observe that the theoretical 
model holds true for people performing any type of crowd work as per the guidelines of Micheletti 
(2016) and Viana and Pinto (2017). One of the prime reasons for such a mixed control effect could be 
a lesser understanding of the participants’ bifurcations and lesser/no discrimination towards the reward 
attached to each of them. Secondly, crowdsourcing platforms don’t offer extra or higher incentives 
to people because of their loyalty; every crowd work is time-bound and targets bound work. These 
results post an interesting case for managers of crowdsourcing platforms for testing the effect of 
loyalty in the context of crowdsourcing channels. Our study explains the complex phenomenon and 
offers advancements in theory and practice. Implications are given in the following section.

6.1 Theoretical Implications
We offer several theoretical contributions, most of which are drawn from Feng et al. (2018)’s study 
on intrinsic motivation and gamification artifacts. While most of the earlier literature has used 
gamification either in the form of experiments or conceptualized it for crowdsourcing firms, our 
study offers a novel perspective to unwrap similar relationships from a theoretical viewpoint. We 
also extended the theoretical argument of using MAP to understand intrinsic motivation by adding a 
new view of big data analytics-driven artificial intelligence (Feng et al., 2018). The moderating effect 
of IQ proposed in the study helps harness the power of data and its ability to explain the existing 
phenomenon. Crowdsourcing platforms generate data at multiple stages, but earlier theoretical 
arguments have not used data as a resource; our study has done so in detail.

Past gamification literature has mostly focused on the most common game elements like points, 
badges, and leader boards to understand how they drive participant motivation on a digitally connected 
platform. The current research proposes a machine and data-driven system to determine which game 
element would be best suited to understand crowd workers’ various intrinsic motivations. The study 
also helps reduce existing ambiguity in research concerning pre-defined game elements. It extends 
existing arguments of motivational affordance perspective (MAP) and applies them to any type of 
crowd work when treated in a machine learning-driven environment. We also extend the existing 
application of MAP to explain how crowd worker participation may contribute to any crowdsourcing 
platform and be controlled by adding a layer of game elements in existing platforms. Therefore, 
when selected by IQ-powered systems, game elements would help the crowdsourcing channel be 
more customized according to the contributor’s nature (Liang et al., 2018; Durward et al., 2016). 
This would further help in explaining the intrinsic motivation and participation of contributors in 
an efficient manner. The study introduces IQ as a catalyst offering better predictability in a dynamic 
crowdsourcing environment if linked with gamification.

6.2 Managerial and Practical Implications
Our study offers a pragmatic view for crowdsourcing firms to consistently attract crowd workers 
(primarily gig workers) to perform tasks. Gig work is becoming increasingly popular; most of the firms 
today, including large corporates, seek to get their tasks done through gig workers and crowdsourcing 
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platforms. Our study offers a threefold solution for three different stakeholders (demand-side, supply-
side, and intermediaries) in this process of delivering crowd work.

First, we suggest that crowdsourcing channels implement BDA enabled AI tools to collect as 
much information as possible on crowd workers. This will also help understand the crowd’s intrinsic 
behaviour and the flow of knowledge between crowd workers. Our study offers critical insights based 
on which channels may incorporate appropriate game mechanics to understand and capture crowd 
workers’ emotions and subsequently convert negative emotions into positive ones.

Second, our study offers a better understanding of how intrinsic motivation is important to crowd 
workers’ participation. While earlier studies separate intrinsic behaviour into various subparts, like 
emotional, cognitive, and psychological aspects, our study stresses that the theoretical arguments 
proposed by MAP may be used to understand how using different game elements could help capture 
crowd workers’ attention. It is also known that because of the high degree of competition, not every 
crowd worker is rewarded. Thus, to understand, attract and maintain crowd psyche, attention and 
enthusiasm to contribute consistently, other behavioural theories must be employed; then, single or 
multiple game elements may be used to increase crowd workers’ intrinsic motivation to participate 
in different crowdsourcing activities.

7. CONCLUSION, LIMITATIONS AND FUTURE RESEARCH DIRECTIONS

We have observed applied gamification in firms for quite some time; such gamification is usually 
used to attract crowdsources/customers/users/crowdworkers and keep them engaged. We propose to 
apply gamification principles to a crowdsourcing platform. Our study presents a novel moderating 
effect of IQ to determine which game artifact would best offer an understanding of the intrinsic 
motivation of crowd workers. We provide a fresh perspective on crowdsourcing studies by measuring 
the effect of IQ on a gamified crowdsourcing website. We borrowed arguments from MAP and 
integrated them with logical IQ applications under controlled environments of different types of 
crowdsourcing activities to generalize results; this is a unique contribution of the study. The results 
have helped extend the current theoretical debate and assist crowdsourcing firms in harnessing the 
best use of IQ to understand crowd workers’ intrinsic motivation. We believe that other firms can 
further adapt the extended MAP model in the light of IQ to draw better insights related to customers 
and offer them a customized gamified platform to suit their behavioural self and help them become 
more involved and engaged.

7.1 Limitations of the Study and Future Scope of Research
Our study reports several limitations. First, unlike most studies related to gamification, which are 
experimental and done in a simulated environment, our study followed an empirical approach; 
this may have resulted in lesser accuracy in understanding causality between variables. Our study 
also collected data over a specific time frame with a limited amount of crowd work hosted on the 
crowdsourcing platform. Time-series data from the crowdsourcing website could have led to better 
explanatory power in the model. Future studies could consider an experimental design with time-
series data to gain deeper insights into the intrinsic motivation and participation of crowd workers.

Our study relied on MAP and used IQ as a moderator. Our study does not distinguish between 
and classifies crowd work based on duration and technical requirements. Such differentiation could 
be useful in understanding how intrinsic motivation and crowd participation interact with each other. 
In the future, experimental studies may be carried out to understand how the intrinsic motivation of 
the same crowd workers may be measured for different types of crowd works.

Lastly, our study collected data from only one crowdsourcing platform in India, while most crowd 
workers are of Indian origin. Thus, generalizing results to other crowdsourcing platforms may not be 
appropriate. Therefore, we propose to collect and compare data and results of similar hypotheses across 
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multiple crowdsourcing platforms. It would be interesting to understand how IQ and choosing the 
right game element could help understand crowd workers’ motivation across crowdsourcing channels.
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APPENDIX A. OUTPUT OF EXPLORATORY FACTOR ANALYSIS (EFA)

Item IQ GM IM CP S.E. P-value

IQ 1 0.75 0.056 <0.001

IQ 2 0.78 0.052 <0.001

IQ 3 0.71 0.051 <0.001

IQ 4 0.69 0.054 <0.001

IQ 5 0.79 0.054 <0.001

IQ 6 0.75 0.052 <0.001

IQ 7 0.77 0.056 <0.001

IQ 8 0.68 0.057 <0.001

GM1 0.79 0.051 <0.001

GM 2 0.73 0.053 <0.001

GM 3 0.65 0.055 <0.001

GM 4 0.70 0.055 <0.001

GM 5 0.79 0.056 <0.001

GM 6 0.74 0/053 <0.001

GM 7 0.67 0.054 <0.001

IM 1 0.82 0.057 <0.001

IM 2 0.73 0.053 <0.001

IM 3 0.75 0.053 <0.001

IM 4 0.68 0.054 <0.001

IM 5 0.70 0.055 <0.001

IM 6 0.76 0.052 <0.001

IM 7 0.72 0.056 <0.001

IM 8 0.69 0.052 <0.001

CP 1 0.73 0.056 <0.001

CP 2 0.71 0.055 <0.001

CP 3 0.79 0.056 <0.001

CP 4 0.68 0.053 <0.001

CP 5 0.72 0.052 <0.001
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