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ABSTRACT

The main objective of this study is to estimate the future COVID-19 mortality rate for India using 
COVID-19 mortality rate models from different countries. Here, the regression method with the 
optimal hyperparameter is used to build these models. In the literature, numerous mortality models 
for infectious diseases have been proposed, most of which predict future mortality by extending 
one or more disease-related attributes or parameters. But most of these models predict mortality 
rates from historical data. In this paper, the Gaussian process regression model with the optimal 
hyperparameter is used to develop the COVID-19 mortality rate prediction (MRP) model. Five 
different MRP models have been built for the U.S., Italy, Germany, Japan, and India. The results 
show that Germany has the lowest death rate in 2000 plus COVID-19 confirmed cases. Therefore, if 
India follows the strategy pursued by Germany, India will control the COVID-19 mortality rate even 
in the increase of confirmed cases.
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1. INTRODUCTION

Currently, more than one million people around the world face the severe consequences of the outbreak 
of the novel Coronavirus 2019 (nCov). The first case of human infection by a nCov or Wuhan virus 
or 2019- nCov was reported in Wuhan, China1. The greatest challenge of this infectious disease is 
the human-to-human transition of nCov that would rise up the infected cases exponentially. On 30 
January 2020, World Health Organization (WHO) issued a worldwide health emergency warning 
notice2, designating that 2019-nCoV is of urgent global concern. The morbidity and mortality rates 
for the infection of 2019-nCoV are uncertain at the early stage (Sparrow 2020) especially for young 
ones and aged people. WHO has estimated the reproduction factor (R0) of nCov is 2.7. In order 
to control the wide and quick spread of the nCov, public health sectors took reliable preventative 
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measures and imposed curfew or lockdown infested cities in China, United States, India, and other 
countries also. This is to limit the social distance among people and to avoid the transmission of this 
novel virus via humans to humans.

Over the past decade, machine learning techniques have gained momentum and have played 
an important role in many domains of research. Machine Learning (ML) is a subset of artificial 
intelligence that optimizes data through a series of mechanisms and provides novel insights or form 
of data to take timely active or preventive measures. In particular, it has a tremendous impact on 
data analysis and data science. It better understands the data and its processes, makes predictions 
about the future based on historical data / empirical data, and automatically classifies a group of data 
called classification. There are two types of learning techniques in ML techniques: unsupervised and 
unsupervised learning techniques.

Supervised learning techniques (regression, classification, and regression trees (CART) and 
nave Bayes) use labeled data to train input and output known mechanisms. Unsupervised learning 
techniques (Association Rules and Clustering.) use unlabeled data, inputting raw data directly to 
these methods without knowing the output of that data.

Machine learning techniques also can be used to develop standard mortality models. Deprez et 
al. (2017), used machine learning algorithms to fit and assess the mortality model. The regression 
approach used to detect the weaknesses of different mortality models by the authors. In Hainaut 
(2018), artificial neural networks (ANNs) used to find the latent factors of mortality and forecast 
them. Richman and Wüthrich (2018) extended the Lee-Carter model to multiple populations using 
neural networks.

Generally, Gaussian process models have been widely used in engineering based optimization 
applications (Razavi et al. 2012). In Raghavendra and Deka Raghavendra and Deka (2016), a 
combination of GPR and adaptive neuro-fuzzy inference system (ANFIS) used to forecast the ground- 
water level. In Roy and Datta (2018), an extensive comparative study was carried out between several 
surrogate models, comprising GPR, using simulation-optimization methodology with uncertainty 
pa- rameters. At the end, they had concluded that the GPR models and their ensemble were efficient 
methods with respect to prediction accuracy.

In this work, the Gaussian process regression model with the optimal hyperparameter is used to 
develop COVID-19 mortality models for five different countries (USA, Italy, Japan, Germany, and 
India). Also, evaluate the effectiveness of these models in the model evaluation and prediction of 
COVID-19 mortality rates for India. The purpose of this study is mortality prediction, which uses 
machine learning techniques, to clearly identify patterns that cannot be identified with the standard 
mortality model. The rest of this paper is plotted as follows. Section 2 describes the proposed method 
for predicting COVID-19 mortality for India with an early-stage time-series dataset. The results and 
discussion of the empirical study are presented in Section 3. Section 4 concludes this work with an 
extension of possible future work.

2. PROPOSED METHODOLOGY

Gaussian Process Regression (GPR) is a nonparametric kernel-based probabilistic model that has 
the ability to handle complex non-linear relations between response and predictor variables Ebden 
(2008). Gaussian process (GP) is a random process and is characterized as a set of random variables 
with a Gaussian joint multivariate distribution Hong and Zhou (2012); Rasmussen (2004); Ažman 
and Koci- jan (2011a); Huber (2014). A mean function and covariance function are used in GP. 
GP can achieve non-parametric regression function learning from noisy data and it have Gaussian 
distributions over the data Hong and Zhou (2012); Rasmussen and Williams (2006). The projected 
mean value is a linear combination by GP computation of the covariance function Hong and Zhou 
(2012); Saha et al. (2010). One of the applications of GPs is Gaussian process regression (GPR). 
GPR is deterministic and robust non-parametric Bayesian model that defines a priori distribution of 
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the likelihood over function space Rasmussen (2004); Ažman and Kocijan (2011a). It is the one of 
the most significant Bayesian machine learning methods that estimates the subsequent deterioration 
of non-linear regression by restricting the previous distribution to match the available training data 
Hong and Zhou (2012).

Usually, a GPR model is provided with training data and its performance is calculated by 
weighting targets in terms of error between training and test input Ažman and Kocijan (2011b). The 
output of the prediction is a Gaussian distribution of probability and is represented by its mean and 
variance. Vari- ance is the confidence factor for the output’s expected mean value Hong and Zhou 
(2012); Ažman and Kocijan (2011a); Saha et al. (2010). Covariance function chosen by the user, but 
the hyperparameters can be learned from the training data using a gradient-based optimizer Hong 
and Zhou (2012).

2.1 Gaussian Process
Gaussian Process is a machine learning technique used to make predictions with uncertainty. It is 
defined as a finite collection of jointly Gaussian distributed random variables Hong and Zhou (2012). 
In regression problems, these random variables represent the values of a function f(x) at input x. It 
is represented as {f(x): x ∈ X} which is defined by its mean function μ(x) and a covariance function 
k(x, x′) so that it can be written as:

f(·)∼GP(µ(·),k(·,·))	 (1)

Usually, the prior distribution over functions f(·) is a zero-mean Gaussian Process prior. The 
detailed explanation of the same found in Ebden (2008). In literature, this model is called a surrogate 
for the objective function. The surrogate is easier to optimize than the objective function. GP methods 
finds the next set of hyperparameters to evaluate on the actual objective function by selecting best 
hyperparameters that perform on this surrogate function.

2.1.1 Covariance Functions
This function is used to represents the covariance between pairs of random variables in GPR. It can 
be written as in equation (2):
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Here, hyperparameters are:

σ1 = Characteristic lengthscale	
α = Signal variance	

2.1.2 Merits of GPR

•	 It has high adaptability and accurate prediction for processing small data set and also for high- 
dimensional data Hong and Zhou (2012); Ažman and Kocijan (2011a); Wang et al. (2008).

•	 It can learn noisy data using non-parametric regression function and, avoiding simple parametric 
assumptions Huber (2013).

•	 It can handle small dataset as well as data with uncertainty very effectively and efficiently.
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2.2 Hyperparameter Optimization
In regression models, the objective of hyperparameter optimization is to find the parameters of a 
given algorithm that return the best performance on a validation set while training and testing the 
model, Hong and Zhou (2012). It is represented as (equation 3):

H* = arg mino∈O f(o)	 (3)

•	 f(x) represents an objective score to minimize root mean squared error (RMSE) evaluated on 
the validation set;

•	 x* is the set of hyperparameters which yields the lowest score of RMSE; and
•	 x is any value in the problem domain X.

Even though hyperparameter optimization is extremely expensive in terms of the computational 
time, it yields good prediction accuracy than traditional regression models.

GPR model-based hyperparameter optimization has following steps:

Step 1: Initialize hyperparameters for GPR model based on the problem.
Step 2: An objective function of GPR model which takes in these hyperparameters and outputs a 

RMSE score that has minimal value.
Step 3: Define surrogate model of the objective function.
Step 4: Specify the selection criteria for evaluating hyperparameters which have to choose next from 

the surrogate model.
Step 5: Maintain the history of (score, hyperparameter) pairs used by the GPR algorithm to update 

the surrogate model.
Step 6: Repeat steps 2–5 until maximum iterations or time is reached.

2.3 Polynomial Regression Model
Polynomial regression is a type of regression model in which the maximum degree of the predictor 
variable is more than 1. In this technique, the best fit line is in the curve shape. It can be used to 
approximate a complex nonlinear relationship Seyedzadeh et al. (2018).

The k th order polynomial model in one variable is given by equation (4):

y = β0 + β1x + β2x
2 + · + βkx

k + ε	 (4)

where:

xj = xj, j = 1,2,..,k	

then the model in k explanatory variables x1, x2, , . . ., xk is multiple linear regression.
If a polynomial regression model is of y = Xβ+ є then the techniques for fitting linear regression 

model can be used for fitting the polynomial regression model.

2.4 RMSE
RMSE is a polynomial scoring rule which also measures the error average size Hong and Zhou 
(2012), Dhamodharavadhani and Rathipriya (2020a), Dhamodharavadhani and Rathipriya (2020b) 
This is the square root of the square differences measured between prediction and actual observation:
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It represents as:

n= number of samples P=Predicted values A=Actual values	

In this study, the GPR method is explored as a potential regression model for dealing with 
non-linear variability in predicting COVID-19 mortality for India. For comparison purposes, a 
polynomial regression method is employed. The final results demonstrated that the GPR method, 
although time consuming, is the most efficient in terms of the Root Mean Square Error (RMSE), 
which is the main performance measurement of regression models. Figure 1 clearly depicts the 
flow of the proposed method.

The best and worst-case scenarios for COVID-19 spread across the globe are taken for study to 
model the COVID-19 mortality rate for India. For that purpose, data on confirmed cases and death 
cases of five countries (such as the United States, Italy, Japan, Germany, and India) are used to create 
a model. This information is taken from the website www.kaggle.com.Japan and Germany are being 
cited as the best-case scenario for the COVID-19 outbreak and its deaths, while the US and Italy are 
the worst-case scenarios for the COVID-19 outbreak and its death. China was not considered in this 
study because their COVID-19 outbreak was restricted. Models for the mortality rate of COVID-19 
developed using the Polynomial Regression Model and the GPR Regression Model for these countries. 
RMSE is used as a key quality performance indicator to select the best model. Finally, predict the 
mortality rate for India using the best mortality rate model.

3. RESULTS AND DISCUSSIONS

An experiment is carried out to evaluate the efficiency of the proposed methodology for Morality Rate 
Prediction of the COVID-19 pandemic in India. Empirical data is used, which is extracted from the 
Kaggle Website. Since 21 Jan2020, the data is updated daily basis, of the increment of the number 
of infested people in COVID-19 infected countries across the world (Table 1). The experimentation 
platform is an i7-CPU running 64-bits OS of MS Windows 10. In Figure 2, X-axis represents the 
date and Y-axis represents the number of COVID-19 cases. It clearly shows the number of active 
cases, the number of death cases, and the number of recovered cases against the date. List of top 10 
countries having higher rate of COVID-19 confirmed cases shown in Figure 3. Figure 4 represents 
number of COVID-19 death cases for countries such as US, Italy, Japan, Germany, and India. Here, 
X-axis indicates the date and Y-axis shows the number of COVID-19 cases (Table 2).

Table 3 shows the Kernel Parameters such as sigmaM, sigmaF, and sigma of the best objective 
function for GPR models of various countries. Squared Exponential used as kernel function for 
this GPR model. Each country has different hyperparameter tuning value which reflects that each 
country has a different trend in the COVID-19 spread and have the rate of increased confirmed 
cases also different. The regression loss for predicted value using GPR model for five countries are 
also given in Table 4. RMSE for the same are also tabulated. Table 5 shows the RMSE value for 
Polynomial Regression (PR) model of five countries. Figure 5 shows the comparison of RMSE value 
for Polynomial Regression and GPR model. In this figure, X-axis represents the countries and Y-axis 
shows the RMSE value.

It indicates that GPR model have very low RMSE than Polynomial Regression model for five 
countries. Hence therefore, GPR model is used to predict COVID-19 morality rate for India.
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Table 6 represents the number of predicted COVID-19 death cases for countries like US, Italy, 
Japan, Germany, and India using GPR and PR model respectively. Figure 6 illustrates the ranking of 
COVID- 19 mortality rate model of five countries. Here, X-axis indicates RMSE value and Y-axis 
shows the country’s name. It is clearly known that India has very low RMSE value because the 
magnitude of the confirmed cases is low. At the same time, mean mortality rate for India is the second 

Figure 1. Proposed Methodology for COVID-19 MRP for India

Table 1. Hyperparamters of GPR Model for different countries

Kernel Parameters US Japan Germany Italy India

SigmaM 256876.3 589.8239 22374.43 79290.37 2667.455

SigmaF 7008.68 20.46376 332.0723 10241.42 50.8837

Sigma 37.07613 1.110905 4.428102 87.57416 1.654951
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Table 2. Loss and Error Value for GPR Model

US Japan Germany Italy India

Regression Loss 179.1848 1.878231 3.009694 1811.484 0.634793

RMSE 13.38599 1.370486 1.734847 42.56153 0.796739

Table 3. RMSE value for Polynomial Regression Model

US Japan Germany Italy India

137.567 3.227635 57.21517 439.4404 1.445828

Table 4. Predicted COVID-19 Death cases using GPR model

Number of Confirmed 
Cases

US Japan Germany Italy India

1500 29 56 3 91 57

2000 35 53 4 119 73

2500 35 53 4 119 73

3000 41 37 5 147 86

3500 47 29 6 175 96

4000 53 28 7 204 101

4500 59 28 8 234 102

5000 65 28 10 264 99

Figure 2. Breakdown of COVID-19 Confirmed Cases
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highest among the five countries taken for study. Therefore, Japan is the second top RMSE value for 
the MRP model, which is selected as the best model. While the number of COVID-19 confirmed 
cases increases, number of death cases for Germany is very low when compared to other countries 
in those tables. But, at the same time, it shows the increase pattern of death cases. For Japan, the 
number of death cases is not increased after 4000 confirmed cases. Moreover, RMSE value for Japan’s 
COVID-19 Mortality model also low than Germany. In Figure 7, X-axis show day of COVID-19 
since first day and Y-axis indicates the number of predicted COVID-19 death case. Figure 7 shows 
the number of predicted death cases for five countries. Table 6 shows the mortality rate prediction for 
US, Japan, Germany, Italy, and India respectively. Figure 8 represents the ranking of five countries 
based on mean mortality rate. Here, X-axis indicates mean mortality rate value and Y-axis shows 
the country’s name. Based on the mean mortality rate, Germany’s model is the best model for MRP.

Table 5. Predicted COVID-19 Death cases using PR model

Number of Confirmed Cases US Japan Germany Italy India

2000 20 76 5 46 65

2500 20 76 5 46 65

3000 30 92 9 101 78

3500 39 108 14 155 91

4000 49 123 18 209 104

4500 58 139 22 264 117

5000 68 154 27 318 131

Figure 3. Top 10 Countries-COVID Confirmed Cases
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3.1 Suggestions Based on This Study
The social distancing; COVID-19 awareness and best self-hygienic practices are very important 
factors to constraint COVID-19 deaths in that country. Therefore, Japan’s Mortality model is selected 
as the best model for predicting COVID-19 death cases. If India also adopts Japan’s and Germany’s 
strategies along with national lockdown, India’s COVID-19 death cases can be reduced in the future.

Figure 4. Number of COVID-19 Death cases for five countries

Figure 5. Comparison of RMSE value



Journal of Cases on Information Technology
Volume 23 • Issue 4 • October-December 2021

10

4. CONCLUSION

The present study has examined the performance of Gaussian process regression with hyperparameter 
optimization and Polynomial Regression for COVID-19 Confirmed cases dataset. It contains a number 
of confirmed cases and death cases for the period 22, January 2020 to 01, April 2020. COVID-19 
Mortality model for US, Italy, Japan, Germany, and India had been build using GPR and PR model. 
Their performance had been analyzed using RMSE value. The evaluation results indicate that the GPR 

Figure 6. RMSE Value for Five Countries Mortality Rate Model

Figure 7. Predicted COVID-19 Death Cases using GPR model
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method based Mortality model for India has low RMSE but it has higher mortality rate. Therefore, 
morality rate based MRP model was selected to contained COVID-19 death rate in India. Hence, it is 
found that the COVID-19 MRP model of Germany is the best model for controlling the COVID-19 
mortality rate in India.
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Table 6. COVID-19 Mortality Rate Prediction for Five Countries

No. of Confirmed Cases US Japan Germany Italy India

2000 1.5 2.8 0.2 4.6 2.9

2500 1.4 2.1 0.2 4.8 2.9

2500 1.4 2.1 0.2 4.8 2.9

3000 1.4 1.2 0.2 4.9 2.9

3500 1.3 0.8 0.2 5.0 2.7

4000 1.3 0.7 0.2 5.1 2.5

4500 1.3 0.6 0.2 5.2 2.3

5000 1.3 0.6 0.2 5.3 2.0

10000 1.3 0.3 0.3 6.0 0.5

20000 1.3 0.1 0.3 7.0 0.2

30000 1.3 0.1 0.5 7.7 0.2

40000 1.3 0.1 0.6 8.4 0.1

50000 1.3 0.1 0.7 8.9 0.1

100000 1.5 0.0 0.9 11.3 0.0

Figure 8. Ranking of Countries based on Mean Mortality Rate
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