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ABSTRACT

In the internet of things (IoT), various devices (things) including sensors generate data and publish 
them via the internet. The authors define continuous sensor data with difference cycles as a sensor 
data stream and have proposed methods to collect distributed sensor data streams. In this paper, the 
authors describe a skip graph-based collection scheme for sensor data streams considering phase 
differences. In the proposed scheme considering phase differences, the collection time is balanced 
within each collection cycle by the phase differences, and the probability of load concentration to 
the specific time or node is decreased. The simulation results show that the proposed scheme can 
equalize the loads of nodes even if the distribution of collection cycles is not uniform.
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INTRODUCTION

The Internet of Things (IoT) (Hodges et al., 2013) has attracted greater interest and attention 
with the spread of network-connected small devices such as sensors, smartphones, and wearable 
devices. In the data science field, stream data generated from IoT devices are analyzed to get 
various information. A larger amount of data can lead to higher-quality information such a 
faster stream data collection is one of the main techniques in the data science field and various 
schemes have been proposed. To enable IoT applications for data collection, pub/sub messaging 
(Eugster et al., 2003) is considered to be a promising event delivery method that can achieve 
the asynchronous dissemination and collection of information in real-time in a loosely-coupled 
environment. For example, the sensor devices correspond to publishers, and the IoT application 
corresponds to a subscriber. Topic-Based Pub/Sub (TBPS) protocols are already widely utilized 
by many IoT applications (Teranishi et al., 2015; Teranishi et al., 2017). These systems have a 
broker server for managing topics. The broker gathers all the published messages and forwards 
them to the corresponding subscribers.
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In IoT and Big Data applications, collecting all of the raw (unfiltered) sensor data is important 
for conducting various forms of analysis (Bessis et al., 2014). In this case, the larger the number of 
sensors treated on the application for analysis, the larger the number of messages that need to be 
received per time unit on the broker and subscribers in TBPS. For example, when the publishers 
correspond to a certain kind of sensor which publishes sensor data every 10 seconds and the number 
of target sensors in an application is 10,000, the broker must receive 1,000 messages per second on 
average. Thus, the number of messages tends to explode on the broker and the subscribers in IoT and 
Big Data applications. In general, the number of sent/received messages per unit of time affects the 
network process load because tasks such as adding/removing headers and serializing/deserializing 
payloads are required for each message. Therefore, even though the size of each sensor data is small, 
the increase in the number of publishers can cause network process overloads on the broker and 
subscribers. This leads to the loss of data or unusual increases in delivery latency, problems which 
have harm on IoT and Big Data applications.

Many existing studies tackle the problem of scalability in TBPS systems. The approach of these 
studies is based on distributed brokers, in which brokers are run as peers in a peer-to-peer system. 
The brokers construct an overlay network among themselves. For example, there are distributed 
hash table (DHT)-based approaches (Castro et al., 2002; Ratnasamy et al., 2001), hybrid overlay 
approaches (Rahimian et al., 2011), and Skip Graph-based (Aspnes et al., 2007; Shao et al., 2015; 
Banno & Fujio et al., 2015; Banno et al., 2020) approaches (Banno & Takeuchi et al., 2015; Teranishi 
et al., 2015). These approaches can keep the number of connections that each broker needs to accept 
small by multi-hop message forwarding on overlays. However, these existing methods aim to deliver 
messages from one publisher to multiple subscribers in a scalable manner. Thus, they are unable to 
avoid network process overloads caused by the collection, such as when messages are received from 
a large number of publishers. In addition, the existing techniques do not assume the different intervals 
at the same time to periodically collect data from the publishers.

Therefore, we define continuous sensor data with different intervals (cycles) as a sensor 
data stream and have proposed collection methods for distributed sensor data streams as 
a topic-based pub/sub (TBPS) system (Teranishi et al., 2017; Kawakami et al., 2017). 
Especially in Teranishi et al., 2017, we have proposed a message forwarding scheme on 
overlays called “Collective Store and Forwarding.” The scheme can reduce loads of network 
processes dramatically when there are a large number of publishers (nodes), maintaining 
the delivery time constraints given for the messages. In addition, we have also proposed a 
flexible tree construction method called “Adaptive Data Collection Tree” on Chord# (Schütt 
et al., 2008) that can adjust the maximum load of network processes on distributed brokers 
to avoid overloads caused by Collective Store and Forwarding. Moreover, we have proposed 
an expanded method assigning phase differences to balance the collection time among the 
same or specific collection cycle nodes (Kawakami et al., 2018; Kawakami et al., 2019). We 
call this novel approach “phase shifting (PS).” The PS approach enables the SG method to 
decrease the probability of load concentration to the specific time or node. Assigning phase 
differences at random to the nodes, the collection times are distributed even if there are the 
same collection cycle nodes. We have evaluated our proposed methods in simulation. Our 
experiment results show that our proposed method can reduce loads of nodes and realize 
highly scalable systems to periodically collect distributed sensor data. The scalability of the 
data collection systems is significantly important to accommodate a huge number of objects 
and encourage the growth of the data science field.

In the following, the problems addressed are defined in the second section. The data collection 
scheme considering phase differences is described in the third section. We describe the discussion 
and related work in the fourth and fifth sections, respectively. Finally, the conclusion of the chapter 
is presented in the sixth section.
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PROBLEMS ADDRESSED

Assumed Environment
The purpose of this study is to disperse the communication load in the sensor stream collections that 
have different collection cycles. The source nodes have sensors to gain sensor data periodically. The 
source nodes and collection node (sink node) of those sensor data construct P2P networks. The sink 
node searches source nodes and requires a sensor data stream with those collection cycles in the P2P 
network. Upon reception of the query from the sink node, the source node starts to deliver the sensor 
data stream via other nodes in the P2P network. The intermediate nodes relay the sensor data stream 
to the sink node based on their routing tables.

Input Setting
The source nodes are denoted as Ni (i = 1, ..., n), and the sink node of sensor data is denoted as S. In 
addition, the collection cycle of Ni is denoted as Ci.

In Figure 1, each node indicates source nodes or sink node, and the branches indicate collection 
paths for the sensor data streams. Concretely, they indicate communication links in an application 
layer. The branches are indicated by dotted lines because there is a possibility that the branches may 
not collect a sensor data stream depending on the collection method. The sink node S is at the top and 
the four source nodes N1, ..., N4 (n = 4) are at the bottom. The figure in the vicinity of each source 
node indicates the collection cycle, and C1 = 1, C2 = 2, C3 = 2, and C4 = 3. This corresponds to the 
case where a live camera acquires an image once every second, and N1 records the image once every 
second, N2 and N3 record the image once every two seconds, and N4 records the image once every three 
seconds, for example. Table 1 shows the collection cycle of each source node and the sensor data to 
be received in the example in Figure 1. The purpose of this study is to disperse the communication 
load in the sensor stream collections that have different collection cycles. The source nodes have 
sensors to gain sensor data periodically. The source nodes and collection node (sink node) of those 
sensor data construct P2P networks. The sink node searches source nodes and requires a sensor data 
stream with those collection cycles in the P2P network. Upon reception of the query from the sink 
node, the source node starts to deliver the sensor data stream via other nodes in the P2P network. 
The intermediate nodes relay the sensor data stream to the sink node based on their routing tables.

Definition of a Load
The communication load of the source nodes and sink node is given as the total of the load due to the 
reception of the sensor data stream and the load due to the transmission. The communication load 
due to the reception is referred to as the reception load, the reception load of Ni is Ii and the reception 
load of S is I0. The communication load due to the transmission is referred to as the transmission 
load, the transmission load of Ni is Oi and the transmission load of S is O0.

In many cases, the reception load and the transmission load are proportional to the number of 
sensor data pieces per unit hour of the sensor data stream to be sent and received. The number of 
pieces of sensor data per unit hour of the sensor data stream that is to be delivered by Np to Nq (q ≠p; 
p, q = 1, ..., n) is R(p, q), and the number delivered by S to Nq is R(0, q).

SKIP GRAPH-BASED COLLECTION SYSTEM 
CONSIDERING PHASE DIFFERENCES

Skip Graphs
In this paper, we assume the overlay network for the skip graph-based TBPS such as Banno & 
Takeuchi et al., 2015.
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Skip graphs are overlay networks that skip list are applied in the P2P model (Aspnes et al., 
2007). Figure 2 shows the structure of a skip graph. In Figure 2, squares show entries of routing 
tables on peers (nodes), and the number inside each square shows a key of the peer. The peers are 
sorted in ascending order by those keys, and bidirectional links are created among the peers. The 
numbers below entries are called “membership vector.” The membership vector is an integral value 
and assigned to each peer when the peer joins. Each peer creates links to other peers on the multiple 
levels based on the membership vector. In skip graphs, queries are forwarded by the higher-level links 
to other peers when a single key and its assigned peer is searched. This is because of the higher-level 
links can efficiently reach the searched key with fewer hops than the lower level links. In the case of 
range queries that specify the beginning and end of keys to be searched, the queries are forwarded to 
the peer whose key is within the range, or less than the end of the range. The number of hops to key 
search is represented to O(log n) when n is denoted as the number of peers. In addition, the average 
number of links on each peer is represented to log n.

Phase Differences
Currently, we have proposed a large-scale data collection schema for distributed TBPS (Teranishi et 
al., 2017). In Teranishi et al., 2017, we employ “Collective Store and Forwarding,” which stores and 
merges multiple small size messages into one large message along with a multi-hop tree structure 

Figure 1. An example of input settings

Table 1. An example of the sensor data collection

Time N1 (Cycle = 1) N3 (Cycle = 2) N3 (Cycle = 2) N4 (Cycle = 3)

0 * * * *

1 *

2 * * *

3 * *

4 * * *

5 *

6 * * * *

7 *

... ... ... ... ...
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on the structured overlay for TBPS, taking into account the delivery time constraints. This makes 
it possible to reduce the overhead of network processes even when a large number of sensor data 
is published asynchronously. In addition, we have proposed a collection system considering phase 
differences (Kawakami et al., 2017; Kawakami et al., 2018; Kawakami et al., 2019). In the proposed 
method, the phase difference of the source node Ni is denoted as di (0≦di < Ci). In this case, the 
collection time is represented to Ci p + di (p = 0, 1, 2, ...). Table 2 shows the time to collect data 
in the case of Figure 1 where the collection cycle of each source node is 1, 2, or 3. By considering 
phase differences like Table 2, the collection time is balanced within each collection cycle, and the 
probability of load concentration to the specific time or node is decreased. Each node sends sensor 
data at the time base on his collection cycle and phase difference, and other nodes relay the sensor 
data to the sink node. In this paper, we call considering phase differences “phase shifting (PS).” 
Figures 3 and 4 show an example of the data forwarding paths on skip graphs without phase shifting 
(PS) and with PS, respectively.

EVALUATION

In this section, we describe the evaluation of the proposed skip graph-based method with phase 
shifting (PS) by simulation.

Collection Target Nodes
Table 3 shows the simulation environments. We evaluate our proposed system in two environments 
by the combination of collection cycles. The number of the sink node is one, and the collection cycle 

Figure 2. A structure of a skip graph

Table 2. An example of the collection time considering phase differences

Cycle Phase Diff. Collect Time

1 0 0, 1, 2, 3, 4, ...

2
0 0, 2, 4, 6, 8, ...

1 1, 3, 5, 7, 9, ...

3

0 0, 3, 6, 9, 12, ...

1 1, 4, 7, 10, 13, ...

2 2, 5, 8, 11, 14, ...
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Ci and phase difference di of each node is determined at random. In the simulations, we measure the 
number of nodes targeted to collect data from time 0 to 99 and compare the results with the case of 
not considering phase differences.

Figures 5 and 6 show the results of the number of nodes targeted to collect data from time 0 to 
99. The horizontal axis shows the time, and the vertical axis shows the number of the targeted nodes 
at each time. In the simulation environment 1 shown by Figure 5, the case of not considering phase 
differences collects data from all 1000 nodes at time 0, 6, 12, ..., 96. This is because the collection 
cycle is 1, 2, or 3, and the lowest common multiple is 6. At other time in the case of not considering 
phase differences, the number of the nodes is extremely and constantly increase/decrease. On the 
other hand, the collection time is shifted by the phase differences in our proposed system, and the 
number of the nodes is probabilistically equalized for each time if the phase difference of each node 

Figure 3. An example of the skip graph-based method without PS

Figure 4. An example of the skip graph-based method with PS

Table 3. Simulation environments

Env. No. of Nodes Cycles

1 1000 1, 2, 3

2 1000 1, 2, ..., 10
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is determined at random. Therefore, the probability of load concentration is decreased. Also in the 
simulation environment 2 shown by Figure 6, our proposed system achieves high balancing similar 
to the results in the simulation environment 1 while the case of not considering phase differences 
changes the number of the nodes complexly by the combination of cycles from 1 to 10.

Communication Loads and Hops
In the simulation environments of our previous work, the collection cycle of each source node denoted 
as Ci is determined at random between 1 and 10. The selectable cycles are assumed limited by the 
practical systems, however, the distribution of the selected cycles is not uniform in the real world. 
In this paper, therefore, we evaluate our proposed method in the different distributions of collection 
cycles. The employed distributions are the normal (Gaussian) distribution and exponential distribution. 
To determine the integer cycle between 1 and 10, the normal distribution has 5.5 as an average and 

Figure 5. The number of the related nodes in Environment 1

Figure 6. The number of the related nodes in Environment 2
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1.5 as a variance. In addition, the exponential distribution determines the integer cycle for each node 
based on its cumulative distribution function (CDF), 10 (1 - e-x), while x is determined between 0.0 
and 5.0 at random. For other parameters, the simulation time denoted as t is from 0 to 2519, which 
length is the least common multiple of the selectable cycles. In addition, this simulation has no 
communication delays among nodes although there are various communication delays in the real 
world. As comparison methods, we compare the proposed method with the skip graph-based method 
without PS shown in Figure 4, the method in which all source nodes send data to the destination 
node directly (Source Direct, SD), and the method in which all source nodes send data to the next 
node for the destination node (Daisy Chain, DC). Figures 7 and 8 show an example of SD and DC 
with PS, respectively.

Figures 9 and 10 show the results for the maximum instantaneous load and total loads of nodes 
by the number of nodes, respectively. The lateral axis shows the number of nodes, and the allowable 
number of stream aggregation is under 11. In all the distributions from Figure 9, the proposed method, 
skip graphs (SG) with PS, has a lower instantaneous load compared to SD-based methods where the 
destination node receives data directly from the source nodes. Although the larger the allowable number 
of stream aggregation in DC-based methods, the smaller the number of transmission and reception. 

Figure 7. An example of the Server Direct (SD) method

Figure 8. An example of the Daisy Chain (DC) method
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In this simulation environment, however, the proposed method has a lower instantaneous load than 
the results of DC-based methods. In addition, the proposed method has a lower instantaneous load 
compared to SG without PS because each node has different timing of transmission and reception 
by its phase difference even if another node is configured the same collection cycle. In Figure 10, on 
the other hand, SD-based methods have the lowest total loads. However, the proposed method has 
lower total loads compared to DC-based methods in this simulation environment. In addition, the total 
loads are the lowest in the exponential distribution because longer cycles have higher probabilities 
to be selected.

Similar to the results for the maximum instantaneous load and total loads of nodes, Figures 11 
and 12 show the results for the average number and the maximum number of hops by the number of 
nodes under 11 streams aggregation, respectively. In Figures 11 and 12, SD-based methods have only 
one hop as the average number and maximum number although those instantaneous loads described 
in Figure 9 are high. The proposed method has log n as the average number of hops while n is denoted 
as the number of nodes and DC-based methods are affected linearly by n.

Figures 13 and 14 show the results for the maximum instantaneous load and total loads of 
nodes by the allowable number of stream aggregation, respectively. The allowable number of stream 
aggregation is the value on the lateral axis, and the number of nodes is 200. SD-based methods have 
a constant value as the maximum instantaneous load which is not affected by the allowable number of 
stream aggregation because the source nodes send data to the destination node directly. In Figures 13 
and 14, most of the results decrease by the increase of the allowable number of stream aggregation. 
The proposed method, SG with PS, has lower results for both of the maximum instantaneous load 
and total loads even in the realistic situation, 41 streams aggregation, compared to DC-based methods 
that require many streams aggregation to reduce those loads. In addition, the average number and 

Figure 9. The maximum instantaneous load by the number of nodes

Figure 10. The total loads by the number of nodes
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Figure 11. The average hops by the number of nodes

Figure 12. The maximum hops by the number of nodes

Figure 13. The maximum instantaneous load by the allowable number of stream aggregation

Figure 14. The total loads by the allowable number of stream aggregation
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the maximum number of hops are the same as the results of 200 nodes in Figures 11 and 12 because 
they are not affected by the allowable number of stream aggregation.

DISCUSSION

We described the data collection scheme with the approach of phase shifting (PS) in the third section. 
Our experiment results show that our proposed method can reduce loads of nodes and realize highly 
scalable systems to periodically collect distributed sensor data.

As the limitations of our current study, we assume the pieces of data are not so different from 
each other. In the real world, however, various types of data are published at the same time such as 
texts, images, and audio. Those pieces of data have different sizes and loads to be processed. We can 
clear this limitation by considering not only the number of data pieces (or transmission/reception) but 
also the types of them. Similar to the inconsideration of the data types, the inconsideration of nodes’ 
performances is another limitation of our current study. We can clear this limitation by considering the 
nodes’ performance such as processing power, memory size, and network environment. In addition, 
our current study has a limitation in the viewpoint of security or privacy. For example, private data 
are preferred to be sent to the subscriber via fewer nodes. Encryption of the data or communication 
is one of the common approaches, and the arrangement of the data forwarding paths considering 
security/privacy is another solution to clear this limitation, e.g., the forwarding paths are directly 
connected to those valid subscribers for private data.

RELATED WORK

Related to the distributed stream data collection, various techniques have been proposed to disperse 
the communication loads for stream delivery (Shen et al., 2011; Win et al., 2018).

P2P stream delivery techniques have been proposed to use a P2P architecture and disperse the 
communication loads among the processing computers (nodes) (Zhang et al., 2005; Liao et al., 2006; 
Magharei et al., 2009; Yu et al., 2011; Sakashita et al., 2005). The P2P stream delivery techniques are 
divided into a pull type and a push type. In the pull type technique such as PPLive, DONet (Zhang 
et al., 2005), and SopCast, the reception nodes request data to other nodes and receive them. The 
reception nodes find the nodes which have not yet been received the requested data, and redundant 
communications do not occur. In the push type techniques such as AnySee, data are sent from the 
transmission nodes to other nodes (Liao et al., 2006). The transmission nodes find the nodes which 
have not yet received the requested data, and redundant communications do not occur. The techniques 
combining a pull type and a push type also have been proposed such as PRIME (Magharei et al., 2009).

Data delivery path construction techniques have been proposed as a multicast tree to prevent 
the concentration of communication loads to the specific node (Tran et al., 2003; Jin et al., 2007; 
Silawarawet et al., 2011; Le et al., 2012). In the ZIGZAG method, nodes construct clusters, and the 
multicast tree is constructed by the clusters (Tran et al., 2003). The number of clusters included in 
each depth of a multicast tree is made the same, and thus, the loads are dispersed. Multicast trees are 
constructed only of information gained in the application layer, and it is not necessary to understand 
the physical network structure.

In the MSMT/MBST method, the concentration of the communication loads is more prevented 
than the ZIGZAG method by consideration of the physical network structure (Jin et al., 2007). However, 
the MSMT/MBST method is not easy to be implemented because it is necessary to understand all 
the network structures between the nodes. In LAC (locality aware clustering), the loads are more 
dispersed than the ZIGZAG method by considering a part of nodes, though the physical network 
structure cannot be understood (Silawarawet et al., 2011).

In the above-described P2P stream delivery techniques, the same data streams are assumed to be 
sent to many reception nodes. In the delivery of the sensor data streams, however, the same sensor 
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data stream is assumed to have different delivery cycles to be delivered. In this case, those sensor 
data streams are delivered as different data streams for each delivery cycle. Thus, the communication 
loads cannot be efficiently dispersed. On the other hand, our proposed methods consider the different 
frequencies or cycles of each data stream and construct delivery paths to efficiently collect them.

As the distributed stream data collection systems, an existing method to reduce the number of 
messages to receive data from large-scale nodes is to execute a range query on key order-preserving 
overlays (Alaei et al., 2010; Gu et al., 2011; Legtchenko et al., 2012; Ohnishi et al. 2015; Shinomiya 
et al., 2011; Takeuchi et al.. 2010). For example, “split forward broadcasting(SFB)” (Banno & Fujino 
et al., 2015) is an efficient way to construct tree structures for range queries. The data collection from 
publishers on a subscriber in TBPS corresponds to the execution of range query for nodes that have 
keys with a topic. It can reduce the number of messages by merging responses from nodes along the 
reverse path of the query delivery tree structure. However, this method loses the asynchronous real-
time feature of TBPS. The latest sensor data is not delivered until the subscriber executes a range 
query. Once the tree structure is constructed, it can be reused, but the periodic execution of range 
queries is needed to catch up with the joins/leaves of publishers and subscribers.

Some existing works address the “aggregation problem” on structured overlays. DAT (Distributed 
Aggregation Tree) (Cai et al., 2007) constructs a tree to aggregate data from distributed nodes using 
the Chord (Stoica et al., 2003) overlay structure. DAT computes the aggregated value of all the local 
values applying a given aggregation function on the distributed nodes. DAT can be used for data 
collections if the nodes execute the message merging function as an aggregation function. However, 
to merge and collect published messages, the publishers need to publish messages at the same time, 
which is not a realistic assumption. Moreover, the aforementioned methods cause path concentration 
of data being forwarded on the nodes that are located close to the subscriber nodes on the overlay. In 
addition, once the tree structure is decided, it cannot be changed dynamically. As a result, a network 
process overload tends to occur on these nodes. On the other hand, our proposed ADCT method 
(Teranishi et al., 2017) can construct a flexible collection tree and adaptively adjust the maximum 
overhead for the nodes to merge and forward messages.

CONCLUSION

In this paper, we proposed a skip graph-based collection scheme for sensor data streams considering 
phase differences. Our method uses phase shifting to avoid the load concentration to a specific time. 
Our simulation results show that the proposed scheme can equalize the number of the nodes even if 
the distribution of collection cycles is not uniform.

As future work, we will try to clear the current limitations described in the fifth section entitled 
Discussion. More specifically, we will consider other information to determine the data forwarding 
paths such as data types, node performances, and security/privacy.
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