
DOI: 10.4018/JOEUC.2020100106

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

﻿
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

112

Secure Fine-Grained Keyword Search
With Efficient User Revocation and
Traitor Tracing in the Cloud
Mamta, National Institute of Technology, Kurukshetra, India

Brij B. Gupta, National Institute of Technology, Kurukshetra, India & Asia University, Taiwan & Macquarie University,
Australia

ABSTRACT

Fine-grained searching is an important feature in multi-user cloud environment and a combination
of attribute-based encryption (ABE) and searchable encryption (SE) is used to facilitate it. This
combination provides a powerful tool where multiple data owners can share their data with multiple
data users in an independent and differential manner. In this article, the authors have used key-policy
design framework of attribute-based encryption to construct the multi-keyword search scheme where
access rights assigned to a data user are associated with his/her secret key. This leads to a situation
where a data user can abuse his secret key to distribute it illegally to the unauthorized users to perform
search over the shared data which is not intended for him/her. Therefore, to track such kind of key
abusers the authors have embedded an extra functionality of tracing the traitors. For this purpose, each
user is assigned a unique identity in the form of binary string where each bit represents an attribute
related to his identity. In addition to the normal attributes, the access structure of a user also possesses
identity-related attributes which are hidden from the user along with some normal attributes. Hence,
the proposed scheme supports partial anonymity. Further, in the event of user revocation the proposed
scheme efficiently handles the system update process by delegating the computationally intensive
tasks to the cloud server. Finally, the proposed scheme is proved secure under Decisional Bilinear
Diffie-Hellman (DBDH) assumption and decision linear assumption in the selective security model.

Keywords
Attribute-Based Encryption, Cloud Computing, Efficient User Revocation, Key Abuse, Multi-Keyword Search,
Multi-User

INTRODUCTION

Cloud computing is one of the most promising technologies of the recent times as it has fundamentally
changed the way we store and access our data. In cloud, the storage and management of data is
delegated to a remote cloud server. This unburdens the user from the overhead of local storage and
management of data and moreover, this stored data could be accessed anywhere anytime and on any
device. Owing to these advantages more and more users are shifting towards cloud-based storage.
But apart from these benefits there are some privacy concerns associated with the data stored over
the cloud because the data is stored over a remote server which could not be fully trusted. One simple
solution to this issue could be to store the data in an encrypted form. This definitely solve the issue of
data privacy but will beget another problem (Gupta, 2016; Gupta, 2018). Searching operation is one

This article, originally published under IGI Global’s copyright on October 1, 2020 will proceed with publication as an Open Access article
starting on January 21, 2021 in the gold Open Access journal, Journal of Organizational and End User Computing (converted to gold Open

Access January 1, 2021), and will be distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the original work and

original publication source are properly credited.

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

113

of the most basic and essential operations and encryption of data will severely debilitate this basic
operation. Hence, there arises a need for a technique which should be conducive for search operation
and at the same time ensures the privacy of data. Secure searchable encryption is the answer for this
need (Yu, 2018; Yu, 2018; Gupta, 2017; Subramaniyaswamy, 2017).

Searchable encryption (SE) scheme enables the cloud server to perform keyword search over
encrypted data without disclosing any information about the keyword being searched (San Nicolas-
Rocca, T., 2013). SE scheme can be developed using either symmetric key or asymmetric/public key
cryptographic primitive. Between these two, public key setting is a more preferable choice as it solves
the issue of complicated key sharing in symmetric key setting when there are multiple users in the
system. Further, there are several choices available in public key setting like Identity Based Encryption
(IBE), Attribute Based Encryption (ABE), Functional Encryption (FE), etc. In this paper, we have
used ABE scheme and particularly the key-policy (KP) design framework to develop SE scheme as
it provides fine-grained searching capability in multi-user setting. In KP-ABE, the access policy is
embedded in the secret key of the user. Any authorized user can misuse his/her access rights by sharing
his secret key with other users who are not supposed to have access to the information. Consider a
database which contains digital media in an encrypted form and a user is provided access depending
upon the subscription and the amount he paid. There is no way of tracing if the user who has got the
subscription is not sharing his secret credentials with other users, which usually happens. To prevent
such unauthorized searching and retrieval of information, we have added an extra functionality of
tracing given by Yu et al. (2010). There are several key-policy attribute based keyword search schemes
in the literature given by Zheng et al. (2014), Li et al. (2017), Ameri et al. (2018) and Mamta and
Gupta (2019) but none of them has incorporated the feature of tracing the key abusers, which is the
main contribution of this paper. Following are the key highlights of the proposed scheme:

•	 It provides protection against key abusers by incorporating extra ciphertext components which
are used for tracing the identity of the traitors. The ciphertext used in the normal operation and
in the tracing operation is indistinguishable under decisional linear assumption.

•	 It efficiently handles the event of user revocation by delegating the task of updating the secret
key of remaining users to the cloud.

•	 The proposed scheme takes multi-valued attributes and also partially hides the access structure
associated with the user.

•	 The proposed scheme performs multi-keyword search and supports monotonic predicate which
consists of AND, OR and threshold gates. It uses the top-down approach for distributing the
secret values to an access structure.

•	 The proposed scheme is proved secure against chosen keyword attack in selective security model
under decisional Diffie-Hellman assumption.

Application Example
The proposed scheme suits well in the banking system where the data is stored over the remote cloud
server in an encrypted form to maintain the privacy of customer’s financial and personal information.
In order to access the information every employee is assigned an access privilege as per their role.
For example: To evaluate the customer’s potential to return the loan amount, the loan officer needs to
access the current financial status of the customer while a customer service representative’s role is to
assist the new customers in completing their paperwork and answering any queries related to bank’s
product and services. So, depending upon the role played by each employee their access rights differ
and different employees can have different view of the information stored over the cloud server. As
in the example mentioned above the loan officer can have the information about the current financial
condition of a customer while a customer service representative do not require any such information
about that customer. In such scenario, if any employee misuses his/her access privilege and shares

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

114

his/her secret key with some other employee. This may result in unauthorized access to sensitive data.
To prevent such kind of abuse there should be a way through which these abusers can be tracked. The
proposed scheme aims to provide this facility by associating a unique identity with each employee
and generating the tracing ciphertext for some keywords encrypted using identity related attributes
of the suspected user. Now, the user is tricked to find the keyword contained in tracing ciphertext
which has the identity of the suspicious user. If a user is able to search that keyword and if a mismatch
is found between his identity and the suspected user’s identity, then it means this user is using the
secret key of other user to access the information which is not intended for him. Further, the proposed
scheme supports the situation if any employee who resigns from the bank can no longer be able to
have access to any information with his secret key, this is achieved by defining efficient procedure
for user revocation using proxy re-encryption and lazy re-encryption techniques.

Apart from the introduction rest of the paper is organized as: Section 2 discusses the related work.
In section 3, essential background needed to develop a searchable encryption scheme is discussed
along with system definition, framework and security model of the proposed scheme. Section 4 gives
the basic design and detailed construction of the proposed scheme with the proof of correctness of
the proposed scheme. Next section analysis the proposed scheme in terms of security and compares
the storage and computational cost with existing schemes. Finally, section 6 gives the concluding
remarks and provides the future directions.

RELATED WORK

This section provides an overview of the existing attribute-based keyword search schemes and gives
an analysis of the existing schemes in terms of the key features. Attribute based encryption (ABE)
is a technique which enables fine-grained search in multi-user environment when it is used as an
underlying technique to develop a searchable encryption scheme (Zheng et al., 2014; Sun et al., 2016).
The concept of ABE was first introduced by Sahai and Waters (2005) in the form of fuzzy identity-
based encryption where identity is viewed as a set of descriptive attributes. After that two variants
of ABE were proposed, namely key-policy attribute-based encryption (KP-ABE) (Goyal et al., 2006)
and ciphertext-policy attribute-based encryption (CP-ABE) (Bethencourt et al., 2007). In KP-ABE,
the access policy is embedded in the secret key of the user and the attributes are associated with the
ciphertext while in CP-ABE, the access policy is embedded in the ciphertext and the attributes are
associated with the secret key of the user. These variants can be used to develop an attribute based
searchable encryption (Zheng et al., 2014; Sun et al., 2016; Li et al., 2017; Hu et al., 2017; Wang
et al., 2017; Qiu et al., 2017; Cui et al., 2018; Ameri et al., 2018; Chen et al., 2018; Chaudhari &
Das, 2019; Yin et al., 2019; Cui et al., 2019; Mamta & Gupta, 2019) where the access policy is
used to determine who can perform search like it was used to determine the decryption capabilities
in an encryption scheme. Out of the several existing schemes in the literature Zheng et al., Li et al.
and Ameri et al. have used the key policy design framework to develop attribute-based keyword
search scheme. Zheng et al. (2014) proposed the first attribute-based keyword search based on tree
access structure where they have used both variants of ABE. The main feature of their technique is
verifiability of the search result returned by the cloud server and hence broke the assumption that
the cloud is honest. Later, Li et al. (2017) proposed an attribute based searchable encryption scheme
based on the key policy design framework where they tried to reduce the computational burden by
outsourcing heavy computational tasks to the cloud server, although it reduces the computational
cost but results in an increased communication cost between different parties. A new attribute-based
keyword search scheme based on key policy design framework was proposed Ameri et al. (2018)
where a new concept of temporary keyword search is introduced. The main focus of this paper was to
improve the security by associating a time period with the search token and with this search token the
cloud server can perform search for only those keyword’s ciphertexts which were encrypted in that
time interval. It was also based on key-policy design framework of ABE. Recently, Mamta & Gupta

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

115

(2019a) proposed a key policy attribute-based keyword search scheme where the main focus was to
improve the efficiency of the scheme by making the size of secret key and the trapdoor independent
of the number of attributes. Further, Mamta and Gupta (2019b) proposed a dynamic policy ABE
scheme with constant size secret key using KP design framework and then transformed it to a multi-
keyword search scheme which inherits all the features of the proposed dynamic policy ABE scheme.
So, from time to time several KP attribute-based keyword search schemes have been proposed where
the focus was on either improving the efficiency or the security. In this paper, the focus is to add more
functionality in terms of user’s secret key accountability where the identity of the secret key abusers
can be disclosed. A detailed analysis of the existing schemes is given below in Table 1.

Table 1 compares the basic features of the proposed scheme with other schemes. As shown above
in Table 1, the proposed scheme uses key-policy (KP) design framework of underlying ABE scheme
and uses tree-based data structure which consists of AND, OR and threshold gate. In the proposed
scheme some of the attributes assigned to the user are hidden, thus ensures partial anonymity. The
proposed scheme is secure in the selective security model under decision linear and DBDH assumption.
The proposed scheme supports user revocation and moreover, the system update task is delegated to
the cloud server when a user is revoked from the system. In addition, the proposed scheme supports
tracing of secret key abusers thus ensures secret key accountability.

PRELIMINARIES

In this section, first an introduction about the general mathematical entities involved in the proposed
scheme is given and then it provides the basic definitions and models of the proposed scheme.

General Background
This section gives the necessary information about bilinear map, hardness assumptions on which the
proposed scheme relies and the structure of access policy used in the proposed scheme.

Bilinear Map
Let G, GT be the source and target cyclic groups of prime order p and g be the generator of the source
group G. Let e be the symmetric bilinear map between G and G e G G G

T T
, : × → , which satisfies

the following properties:

•	 ∀ = ∈ = ∈ () = ()l g G m g G e g g e g gx y x y xy
, : , , , where x y Z

p
, ∈ .

•	 e g g,() is the generator of the target group, GT, if g is the generator of source groups G.

•	 ∀ ∈ ()l m G e l m, ; , is efficiently computable.

Security Assumptions
Decisional Bilinear Diffie-Hellman (DBDH) assumption: It is hard to distinguish the tuples of the

form g g g e g ga b c abc
, , , ,()








 from the tuple of the form g g g e g ga b c z
, , , ,()








 where

a b c z Z
p

, , , ∈ and g G∈ .
Decision linear (DL) assumption: It is hard to distinguish the tuple of the form

g g g g g g gx c cx y x y, , , , , ,� � �� � from the tuple of the form g g g g g g Qx c cx y, , , , ,α α() , where

g Q G, ∈ andx y Z
p

, ∈ .

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

116

Access Policy
In this paper, the access policy is represented by the tree data structure as shown in Figure 1. Here,
each leaf node represents an attribute and each non-leaf node represents a threshold gate. Let Ty be
an access tree corresponding to a given access policy γ . Here, the type of the threshold gate is
determined by the number of children, li, of a node i. A threshold value ki is defined for each node i,
such that 1≤ ≤k li i . For an internal node, if ki = 1, then it represents an OR gate and if ki = li, then
it represents an AND gate and for a leaf node, ki = 1. It is assumed that access tree represents a subset
of attribute universe Att. In the access tree, all the children of node are numbered in an ordered manner
and let index(i) be a function which returns the number linked with node i. The type of attributes
present at the leaf nodes can be the public normal attributes or the hidden attributes where each
attribute can take multiple values. It is assumed that each attribute, Aj can have vj number of possible

values, A A A Aj j j j v j
� �� �, , ,

, , ,
1 2

. For the purpose of key management on the event of user

revocation the root node of the access tree is always assumed to be an AND gate. The identity-related

Table 1. Analysis of the related works

Scheme Underlying
Technique

Access
Structure

Hidden Policy Security Model
& Assumption

Support for
user revocation

Secret Key
Accountability

Zheng et al.
(2014)

KP-ABE﻿
CP-ABE

Tree ⵝ SS, Decision
Linear

ⵝ ⵝ

Sun et al. (2016) CP-ABE AND ⵝ SS, DBDH √ ⵝ

Li et al. (2017) KP-ABE Tree ⵝ SS, DBDH ⵝ ⵝ

Hu et al. (2017) CP-ABE Tree ⵝ SS, Decision
Linear

ⵝ ⵝ

Wang et al.
(2017)

CP-ABE AND Full FS, generic
group model

√ ⵝ

Qiu et al. (2017) CP-ABE AND Full SS, generic
group model

ⵝ ⵝ

Cui et al. (2018) CP-ABE Tree ⵝ DBDH √ ⵝ

Chen et al.
(2018)

CP-ABE Tree ⵝ SS, DBDH ⵝ ⵝ

Ameri et al.
(2018)

KP-ABE Tree ⵝ SS, MDDH ⵝ ⵝ

Chaudhari and
Das (2019)

CP-ABE AND Full SS, DBDH ⵝ ⵝ

Yin et al. (2019) CP-ABE Tree ⵝ SS, DBDH ⵝ ⵝ

Cui et al. (2019) CP-ABE﻿
KP-ABE

LSSS ⵝ - ⵝ ⵝ

Mamta & Gupta
(2019a)

KP-ABE Tree ⵝ SS, Decision
Linear

√ ⵝ

Mamta & Gupta
(2019b)

KP-ABE Tree ⵝ SS, DBDH ⵝ ⵝ

Proposed
Scheme

KP-ABE Tree Partial SS, DBDH,
Decision Linear

√ √

Notations used in Table 1:
CP-ABE: Ciphertext-Policy Attribute Based Encryption FS: Full Security SS: Selective Security
KP-ABE: Key-Policy Attribute Based Encryption
DDH: Decisional Diffie-Hellman
DBDH: Decisional Bilinear Diffie-Hellman Assumption
MDDH: Modified Decisional Diffie-Hellman
LSSS: Linear Secret Sharing Scheme

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

117

hidden attributes (HID) and the normal hidden attributes (HN) are assumed to be present at depth 1,
while the public normal attributes (PN) are present in a subtree at depth 1. The structure of the access
policy is shown below in Figure 1.

Technique Preliminaries
This section provides the definition of the proposed scheme with the detailed framework and then
defines the security model used for proving the security of the scheme.

System Definition
The system is composed of the following polynomial time algorithms:

1. 	 pp MSK Setup Att n, , , ,



 ← ()λ  : This algorithm takes security parameter, attribute universe,

keyword universe and a parameter n as input where n denotes that the first n elements in Att
corresponds to the identity related attributes and outputs public parameters and master secret
key.

2. 	 SK KeyGen pp MSK← (), ,γ : This algorithm assigns the secret key to the user by taking the
public parameters, master secret key and access policy as the input. The access policy assigned
to a user contains the normal attributes as well as the identity related attributes.

3. 	 C GenIndex pp Att W← ⊆ ∈(), ,ξ  : This algorithm encrypts the set of keywords, W, under
a set of attributes ξ ξ ξ ξ= ∪ ∪

PN HN HID
 using the public parameters.

4. 	 TK GenTrap pp SK W← (), , ' : A legitimate user with secret key SK runs this algorithm to
generate the trapdoor for a set of keywords, W ' .

Figure 1. Structure of the access policy

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

118

5. 	 0 1/ , ,



 ← ()Search pp C TK : The cloud server uses this algorithm to find whether the ciphertext

and the trapdoor corresponds to same set of keywords or not. If so, it returns 1 otherwise it returns 0.

Correctness
The CP-ABSE scheme is correct if the following condition holds:

Search PP C TK ifW W, , '() = =1 	 (1)

For the given pp MSK Setup Att n, , ,



 ← ()λ , C GenIndex pp W← (), ,ξ ,

SK Keygen pp MSK← (), ,γ and TK GenTrap pp SK W� , , ’ .← ()
System Model
The system is composed of the following entities as shown in Figure 2:

1. 	 Trusted Third Party (TTP): is an entity that issues secret key credentials to the cloud users. It
uses KeyGen algorithm and corresponding to the access right assigned to a user it generates the
secret key for that user.

2. 	 Data Owner: is an entity who wants to share his data with other users and for this purpose, the
data owner encrypts his data and associate it with index of keywords which is also encrypted but
this index can be searched by the authorized user. To generate this encrypted index data owner
uses GenIndex algorithm.

3. 	 Data User: is an entity who wants to retrieve the data stored by data owner and to do so the data
user generates the trapdoor using GenTrap algorithm through which the data user can allow the
cloud server to find the data which contains the keyword specified in the trapdoor.

4. 	 Cloud server: is an entity that provides the storage facility to the data owner and performs the
actual search operation on the behalf of data user based on the trapdoor provided by the data
user.

Security Model
The security of the proposed scheme is defined by the following two security games:

Game 1: This game defines the security against chosen keyword attack in selective security model
which states that the adversary  cannot distinguish between encryption of two challenge
keywords of its choice in the selective security model (Canetti et al. (2003)). It consists of the
following steps:

1. 	 Initialization: The adversary  commits the challenge attribute set ξ* , a version number ver*

and a set of public normal attributes S
ver

�

�

� �
� � �

� �
1 1

*

on which she wish to be challenged upon.

2. 	 Setup: The challenger  runs the Setup algorithm of the proposed scheme to generate the public
parameters and master secret key and gives the public parameters to  .

3. 	 Phase 1:  can ask the secret key corresponding to any policy, γ , provided � � *� � �1 and
adversary can repeat this step polynomial number of times. By generating the secret key the
challenger  can answer trapdoor query for any keyword, w, and maintains a list of keywords,
Lk which is initially empty and adds w to Lk if w Lk∉ .

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

119

4. 	 Challenge Phase:  selects two challenge keywords w0 and w1 of equal length such that
w w Lk0 1
, ∉ . The challenger flips a random coin b and encrypts wb with parameters selected

by  during initialization phase. The resulting challenge ciphertext is sent to  .
5. 	 Phase 2:  continues to query like in phase 1 with the additional restriction that  cannot

ask trapdoor for w0 and w1.
6. 	 Guess Phase:  outputs a guess bit ′b of b and wins the game if � �b b .

Figure 2. System model

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

120

Let Adv Pr b bsCKA
 � �� ��� 1

2
 be the advantage of adversary winning the above defined

game and the proposed scheme is sCKA secure if the advantage of any adversary winning the sCKA
security game is negligible.

Game 2: This game defines the indistinguishability of the tracing and normal ciphertext in the selective
security model. If one can distinguish between these two ciphertexts then we can get information
about which set of attributes are used for generating them. As we know the attribute set used
for encryption consists of three disjunctive subsets of public normal (PN) attributes, hidden
normal (HN) attributes and hidden identity related (HID) attributes. In normal operation HID
attributes are set as don’t care while during trace HID attributes are set to represent the identity
of a suspicious user. This discloses an ongoing tracing activity. It consists of the following steps:

1. 	 Initialization: The adversary  commits two challenge attribute set �ξ ξ ξ ξ
0
= ∪ ∪� � �

PN HN HID

and ξ ξ ξ ξ
1
= ∪ ∪� �

PN HN HID
* that  wishes to be challenged upon where ξ

HID
 represents

the identity of a suspicious user and ξ
HID
* represents the identity where each bit is set as

don’t care and submits them to the challenger  .
2. 	 Setup: The challenger  runs the Setup algorithm of the proposed scheme to generate the

public parameters and gives them to  .
3. 	 Phase 1:  can asks the secret key corresponding to any access structure Tγ and  answers

the query only if the following condition holds: ξ ξγ γ0 1
 T T()∧ ()() or

ξ ξγ γ0 1
 T T()∧ ()() .

4. 	 Challenge Phase:  submits two challenge keywords w0 and w1 to  . If  obtained the
secret key such that ξ ξγ γ0 1

 T T()∧ ()() then w0 and w1 should be of equal length. The

challenger flips a random coin b and encrypts wb using attribute set ξ
b

 and gives the resulting
challenge ciphertext to  .

5. 	 Phase 2:  continues to ask the secret key like in phase 1 but if w w
0 1
≠ ,  cannot submit

the secret query for the access structure Tγ for which ξ ξγ γ0 1
 T T()∧ ()() .

6. 	 Guess Phase:  outputs a guess bit ′b of b and wins the game if ′ =b b .

Let Adv Pr b bIND
 = =


 −′ 1

2
 be the advantage of adversary winning the above defined game

and in the proposed scheme the tracing and the normal ciphertexts are indistinguishable if the advantage
of an adversary winning the above defined security game is negligible.

PROPOSED SCHEME

This section discusses the approach used by authors for tracing the key abusers which is embedded in
the scheme in the construction part given in the subsequent subsection. Finally, this section discusses
the event when a user leaves the system and explains the necessary system update operations.

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

121

Basic Design
To achieve the security against key abusers we have used the approach proposed by Yu et al. (2009)
where each user is assigned a unique identity, ID I I In=

1 2
 which is a n - bit binary string and

each bit corresponds to an attribute. If Ij = 0, then the corresponding attribute, Aj does not belong
to the user having identity ID, otherwise A IDj ∈ . So, to incorporate the tracing feature each user’s
access structure will have an extra n (at most) identity-related attributes in addition to the normal
attributes corresponding to the access rights assigned to the user. When the data owner generates the
ciphertext, these identity-related attributes are also used along with the normal attributes. There are
different ways in which data owner can add the identity-related attributes: i) for tracing activity, data
owner set these attributes to represent suspicious identity; ii) for normal operation, data owner sets
these attributes as “don’t care”. During tracing, the data user is tricked to find some keyword which
is included in the traceable ciphertext and he can generate a valid trapdoor and perform search if his
identity is same as the one represented by suspicious identity. Now, the data owner can compare it
with the identity used in traceable ciphertext and if a mismatch is found then data owner can find the
original holder who has misused his secret key. For making the traceable ciphertext indistinguishable
from the normal ciphertext, the identity-related attributes are hidden and also some of the normal
attributes are hidden to avoid detection of ongoing tracing activity upon a failed search. Thus, the
data user cannot find whether the failed search is the result of his access rights or the mismatched
identity.

To enable the tracing of secret key abusers, the attributes are broadly divided into two types: i)
Normal attributes: These attributes are used to assign the access rights to a user, ii) Hidden attributes:
It contains some of the normal attributes which are fixed at the system setup and all the identity-
related attributes. The normal attributes which are not hidden are called public normal attributes.
The universe of attributes is represented as Att which consists of universe of public normal attributes,
AttPN, universe of hidden normal attributes, AttHN and hidden identity-related attributes, AttHID and
AttHN ∪ AttHID represents the universe of hidden attributes, AttH. Since, some attributes are hidden
in the access structure of a user therefore our scheme supports partial anonymity. It is assumed that
the attributes from AttH are fixed at the system setup phase and are never updated.

Further, to handle the user revocation efficiently we have used the proxy re-encryption (PRE)
(Yu et al., 2010) and lazy re-encryption techniques as used in (Yu et al., 2010; Sun et al., 2016) to
delegate the computational intensive tasks to the cloud server. PRE scheme enables the semi-trusted
proxy to convert a ciphertext from one form to another given the proxy re-encryption key i.e. using
the proxy re-encryption key one can convert the ciphertext encrypted under public parameters, ppa to
another ciphertext encrypted under public parameters, ppb and vice versa. Using lazy re-encryption
technique one can aggregate several system operations together to save both computational effort and
time. When a user is revoked, only the attributes from AttPN needs to be updated because the hidden
attributes are used only for the purpose of tracing and key management.

Detailed Construction
Before introducing the construction, Table 2 describes the various notations used in the proposed
scheme as follows:

The details of the algorithms involved in the proposed scheme are given below:

1. 	 Setup Att nλ, ,() : Using the attribute universe, Att, define the universe of hidden attributes,
Att A A A A A

H n n n m
= { }+ +1 2 1

, , , , , ,� � . Here, first n elements corresponds to hidden identity-
related attributes, Att

HID
 and next m elements corresponds to hidden normal attributes,

 Att
HN

. Att
PN

 represents the universe of public normal attributes and

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

122

Att A A A Att l
PN n m n m n m l PN
= { } =+ + + + + +1 2

, , , :� � , Att n m l = + + . For each attribute,

i Att
PN

∈ , select random numbers t Z
i k k v p

i
,{ } ∈

≤ ≤1
 and compute T g

i k

t

k v

i k

i

,
,= { }

≤ ≤1
 and for

each hidden attribute, j Att
H

∈ , choose random numbers, a b Z
j k j k k v p

j
, ,
,{ } ∈

≤ ≤1
 and random

points, B G
j k k vj
,{ } ∈

≤ ≤1
 and compute B B

j k

a

j k

b

k v

j k j k

j

, ,

, ,,() (){ }












≤ ≤1

. Finally, select a random

number, α ∈ Z
p

 and compute Y e g g= (),
α

. Select collision resistant one-way hash function,

H Z
p

: ,
*

0 1{ } → . Output the public parameters,

pp e g p H Y T B B
i k k v

i Att
j k

a

j k

b

i
PN

j k j k= { }{ } () (){ }≤ ≤ ∈

, , , , , , ,
, , ,

, ,

1
11≤ ≤

∈

























k v
j Attj

H

 and master secret

key, MSK t a b
i k k v

i Att
j k j k k v

j Atti
PN

j
H

= { }{ } { }{ }




≤ ≤ ∈ ≤ ≤

∈

α, , ,
, , ,1 1








. TTP publishes ver pp,() and

keep ver MSK,() , where ver is the version number and initially ver = 1.
2. 	 New user Registration (KeyGen pp MSK, ,γ()): Whenever a new user wants to enroll, he/she

sends a registration request to TTP. After receiving the registration request, TTP assigns the
access privilege to that user as follows:

Table 2. Description of the notations used in the proposed scheme

Notation Description

λ Security parameter

ID Unique identity (n-bit binary string) assigned to a user, ID I I I
n

=
1 2
, , ,�

AttPN, AttHN, AttHID
Universe of public normal attributes, hidden normal attributes and hidden identity related

attributes

Att,  Attribute universe, AttPN ∪ AttHN ∪ AttHID and Keyword space,  = { }w w w
m1 2

, ,,
'

�

where w
i
= { }0 1, *

Zp, H Group of integers of prime order p and hash function, H, which maps any binary string to Zp

G, GT, g G, GT - Cyclic group of prime order p with generator g

MSK, SK, PSK Master secret key of the trusted third party (TTP), secret key of the user and partial secret key sent
to the cloud server respectively

ver Version number of the system initialized to 1

pp Public parameters

Cu Ciphertext component corresponding to a user, u, sent to the cloud server

C, TK Ciphertext and trapdoor for a set of keywords

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

123

a. 	 First of all, TTP selects a random number, f Z
u p
← . and adds it to the MSK components

and computes the corresponding public key component, Y Y
u

fu= for that user and publish
it with other pp.

b. 	 TTP constructs an access tree, Tγ corresponding to the access policy, γ assigned to a user.
The root node of Tγ is an AND gate and all the hidden attributes assigned to a user appears
at depth 1 of Tγ while the public normal attributes are present in the subtree, Tr rooted at
depth 1. Let Att Att

H H
' ⊆ be the set of hidden attributes present in γ .

c. 	 Now, TTP generates the secret key components for the subtree Tr (public normal attributes)
as follows: [5]
i. 	 TTP defines a random polynomial, q x

i () for each node, i in Tr in top-down manner
starting from the root node r of Tr.

ii. 	 For each node, i, set the degree, d
i
 of q x

i () to be one less than the threshold value, Ki
of that node.

iii. 	 For root node r, randomly select a number, v Z
p

∈ and set q v
r

0() = and then randomly
select K

r
−1 points to define qr completely.

iv. 	 For each non-root node, j T
r

∈ set q q index j
j parent j

0() = ()()() and other K
j
−1 points

are chosen randomly.
The above process is repeated till the leaf nodes are reached. Let Lr denotes the set of leaf nodes of
Tr where each leaf node is associated with a public normal attribute taken from Att

PN
. Now, TTP

outputs secret key component for each leaf node, i L
r

∈ as: D g
i

q

t
i

i k=

()0
, where t

i k,
 is the value taken

by the attribute, Ai.
d. 	 The secret key components corresponding to the hidden identity-related attributes are

computed as follows:
i. 	 Let ID I I I

n
=

1 2
, , ,� be the unique identity assigned to the user.

ii. 	 If I
j
= 1 , then for the corresponding A Att

j HID
∈ TTP selects random numbers

x y Z
j j p
, ∈ and computes: �D g B

j

x

j k

a b y
j j k j k j= (),

, , , ˆ , �D g
j

a yj k j= , D gj
b yj k j

Ç

= ,

e. 	 In the similar manner, the secret key components corresponding to the hidden normal
attributes are generated.

f. 	 Now, TTP calculates x x
j Att

j

H

=
∈

∑
'

 and gets another secret key component, D g v x
0
= − −α .

Finally, TTP outputs the user secret key, SK as follows:

SK ver f D D D D D
u i i L j j j

j Att
r

H

= { }














∀ ∈
∀ ∈

, , , , , ,ˆ
'

0
�

Ç










	

Now, TTP sends the partial secret key, PSK ver D
i i Lr

= { }()∀ ∈
, to the cloud server along with

the identity of the user. PSK contains the secret key components corresponding to the public normal
attributes. It allows the cloud server to update these components during user revocation. Note that

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

124

the cloud server cannot generate a valid trapdoor using PSK because of the undisclosed components
corresponding to hidden attributes.

3. 	 GenIndex pp Att W, ,ξ ⊆ ∈() : Before outsourcing a data file to the cloud server, the data
owner generates the encrypted index for this file using this algorithm. First of all data owner
defines a set of attributes, ξ ⊆Att and the set of keywords, W, which will be used for searching
this data file and then encrypt W with ξ to generate the index. The set of attributes, ξ is the
combination of attributes taken from Att

PN
, Att

HN
 and Att

HID
. So, ξ ξ ξ ξ= ∪ ∪

PN HN HID
,

where ξ
PN PN

Att⊆ , ξ
HN HN

Att⊆ , and ξ
HID HID

Att⊆ . Let an identity corresponding to a
 ξ
HID

 be I I I
n1 2

, , ,� where I
j
= 0 1/ / * , ∀ ≤ ≤j j n: 1 . Data owner selects a random number

s Z
p

← and compute C gs
0
= , C Y s

1
= . The remaining components are computed as follows:

a. 	 For the ciphertext components corresponding to ξ
PN

, the data owner computes
C T
i k i k

s

i PN
, ,
= { }

∈
�

�ξ
and for some fixed attribute, ′ ∈i

PN
 ξ (position is publicly visible), set

C T
i k i k

s H w
wj W

j

′ ′

()
=

∏
∀ ∈

, ,
.

i. 	 For the ciphertext components corresponding to ξ
HID

, the data owner selects random

numbers r Z j n
j k k v p

j
,

;{ } ← ≤ ≤
≤ ≤1

1 and computes ˆ ,
, ,

,�

C C
j k j k

j n k vj

Ç









 ≤ ≤ ≤ ≤1 1

 as follows:

ii. 	 If Ij = 0, data owner sets ˆ ,
, ,C C
j k j k

Ç










 as random (mal-formed components) and if Ii =

1 then data owner sets ˆ , ,
, , , ,

,
,

,
,

C C B B
j k j k j k

a
r

j k

b
s r

j k
j k

j k
j k

Ç










= () () −










 as well-formed components.

b. 	 If Ij = *, then data owner sets ˆ , ,
, , , ,

,
,

,
,

C C B B
j k j k j k

a
r

j k

b
s r

j k
j k

j k
j k

Ç










= () () −










 as well-formed

components.
c. 	 The ciphertext components corresponding to ξ

HN
 are computed in the same manner as

stated in step b.

In addition to these components, data owner computes a ciphertext component, Cu for each newly
registered user, u, with whom he wants to share his data by allowing him to search his encrypted data
files as, C Y

u u
s= − and send it to the cloud server along with the identity of the user. The cloud server

stores this information in a list, LU of legitimate users. Finally, output ciphertext,

C ver C C C C C
i k i k v j k j k

PN i

= { }










∀ ∈ ≤ ≤
, , , , ,ˆ

, , , ,0 1 1ξ

Ç













∀ ∈ ≤ ≤j k vHN jξ ,1

4. 	 GenTrap pp SK W, , '() : When a legitimate user wants to find a document which contains a set
of keywords, W ' , he generates a trapdoor by selecting a random number, u Z

p
← and computing;

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

125

Q Du
0 0
= , Q u f

u1
= + , � �Q D Q D Q D

j j

u

j j

u

j j

u

= () = () =























, ,ˆ ˆ
Ç Ç

∀ ∈j AttH'
, for the same ′i as in

GenIndex , get Q D
i i

u

H w

i L

wj W
j

r

′ ′

()

∈

=
∏



















∀ ∈ ′

 and Q D
i k i

u

i L ir
,

\

= (){ }
∀ ∈ ′

.

Finally, output TK ver Q Q Q Q Q Q
j j j

j Att

i i L

H

r

=











{ }

∀ ∈
∀ ∈

, , , , , ,ˆ
'

0 1
�

Ç










.

5. 	 Search pp C C TK
u

, , ,() : Cloud server will execute this algorithm and output:
a. 	 The secret key components corresponding to the public normal attributes are combined with

the corresponding ξ
PN

 components of the ciphertext as follows:
i. 	 For each attribute, A

i PN
∈ ξ , let C C

i i k
'

,
= where value taken by Ai is Ai,k. For each leaf

node, x L
r

∈ (assuming att x() represents the attribute, Ai associated with node x) and
for the ciphertext component corresponding to each A

i PN
∈ ξ , compute:

F
e Q C e g g if att x andW W

otherwx
i i

suq

PN

x

= () = () () ∈ =

⊥

()
, , , '

,

' 0
ξ

iise








	

For the attribute, ′ ∈i
PN
ξ , e Q C

i k i k′ ′(), ,
, is also equal to e g g

suqi,() ()0
.

ii. 	 Now, for each non-leaf node, y of Tr, recursively execute the following step in bottom-up
manner: For each child x of y, construct a ky sized set Sy (initially empty) which contains
child of y such that F

x
≠⊥ and compute, Fy as follows:

F F e g g
y

x S
x

x S

suq

y

x Sy

y

x x Sy= = ()
∈

∆ ()

∈

()∆ ()
∏ ∏

, ,,
0 0 0

	

By construction,

F e g g
y

x S

suq index x

y

parent x x Sy= ()
∈

()()∆ ()
∏ (), , 0

	

By Lagrange Interpolation method,

F e g g
y

suqy= () ()
,

0
	

This recursion is repeated till the root node, r is reached:

F e g g e g g
r

suq suvr= () = ()()
, ,

0
	

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

126

b. 	 For each attribute, A
j H
∈ ξ , let ˆ ˆ, ,’

’

, ,C C C C
j j j k j k

Ç Ç














=










 where value taken by Aj is Aj,k. The

secret key components corresponding to the hidden attributes are combined with the
corresponding ξ

H
 components of the ciphertext as follows:

F
e C Q

e C Q e C Q

H
j Att

j

j j j j

H

=
()


















∈
∏

0
,

, ,ˆ ˆ'

'

�

Ç Ç





= ()e g g
sux

, 	

The following equation holds if γ ξ() = 1 and W =W' :

C C e C Q F FQ

u r H1 0 0
1 ⋅ = () ⋅ ⋅, 	

6. 	 Trace: For each id, choose a set of attributes, ξ ξ ξ ξ= ∪ ∪
PN HN HID

, such that ξ satisfies the
access structure of id. Randomly choose a keyword, w ∈ and get the index. Check if the
suspected user is able to search w. If it does, stop and return id. Otherwise, continue.

Correctness

C C Y Y e g gQ

u
s
u f

u
s suu

1
1 ⋅ = () = ()

+
− ,

α
	

e C Q F F e g g e g g e g g e g g
r H

s u v x suv sux

0 0
, , , , ,() ⋅ ⋅ = () ⋅ () ⋅ () = ()− −()α αssu

	

User Revocation
When a user is revoked from the system then he/she should not be able to generate a valid trapdoor.
For this purpose, TTP first determines the minimal set of attributes without which the revoked user’s
access structure will never be satisfied and he will never be able to generate a valid trapdoor. So,
TTP should update these attributes by defining new MSK and pp corresponding to all the updated
attributes and should update secret key for all the remaining users and further the index also needs
to be re-encrypted with the modified pp. This whole process incurs a heavy computational burden
on TTP and also need TTP to remain online. To avoid this overhead of heavy computations we have
used proxy re-encryption and lazy re-encryption techniques where these computations are delegated
to the cloud server. Whenever a user is revoked from the system the version number is incremented
by 1. The process of user revocation is divided into the following two stages:

1. 	 In the first stage, TTP determines the minimal set, S Att
PN

⊆ of attributes that needs to be
updated for the revoked user having identity, id. For each attribute, i S∈ , TTP selects a new
MSK component, t

i
' , compute pp component, T g

i

ti' '

= and generates the corresponding re-

encryption key, rk
t

ti
i

i

=
' �

 and for the remaining attributes set rk
i
= 1 . TTP sends

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

127

rk id S ver rk T
i i

= , , , , '� to the cloud server and go offline. On receiving this information, the
cloud server removes the revoked users from LU and compares the ver in rk with the current ver
of the system. If it is less than the current ver then the cloud server discards rk, otherwise, stores
the re-encryption key.

2. 	 The second stage of user revocation starts when the cloud server receives a trapdoor for a particular
keyword. On receiving the trapdoor request cloud server first determines if the requesting user
is a legitimate by checking his entry in L. If the user belongs to L list, the cloud server gets the

PSK ver D
i i Lr

= { }()∀ ∈
, tuple stored at the cloud server at the time of key generation. If ver is

already the latest version then the cloud server will not update the index or the secret key
components else calls ReGenIndex and ReKeyGen algorithm, only when it receives a trapdoor
for a particular keyword. Thus, reduces a lot of computational burden from the cloud server by
aggregating multiple re-encryption keys. This technique of re-encryption is called lazy re-
encryption where the index is re-encrypted once with aggregated re-encryption keys,

RK rk
t

t

q

i
i

q

i

= =
=

()

∏
ρ

ρ

2

 where q is the latest version. Now, compute C C
i

q

i

RK() = () and

D D
i

q

i
RK() = ()
1

. The cloud server replaces the old Ci components with the updated C
i

q()

components and sends the updated secret key components, D
i

q() to the user and finally the cloud
server can remove the id of the revoked user and the associated data from LU. On receiving the
updated D

i

q() components from the cloud server, the user can verify whether the cloud server

has correctly computed them by checking e T D e T D
i i i

q

i

q
, ,() = ()() () .

ANALYSIS OF THE PROPOSED SCHEME

This section gives the detailed security analysis of the proposed scheme and also gives a comparative
analysis of the proposed scheme with similar existing scheme in terms of storage and computational
cost.

Security Analysis
(IND-sCKA) Indistinguishability of keywords against chosen keyword attack in selective security
model. The following theorem guarantee the semantic security of keywords in selective security model:

Theorem 5.1: The proposed scheme is IND-sCKA secure under DBDH assumption if ∀
(probabilistic polynomial time adversary), the advantage, ε of winning the security game is negligible.

Adv Pr b bIND sCKA


� � �� �� �� 1

2
� 	

Proof: Let there exists an adversary  who can win the IND-sCKA game with advantage ε

then there exists a challenger  . who can break the DBDH assumption with advantage
ε
2

, given

an instance g g g Zz z z1 2 3, , ,() of DBDH assumption.  simulates the IND-sCKA game defined
in security model as follows:

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

128

1. 	 Initialization:  selects the challenge attribute set ξ ξ ξ ξ* * * *= ∪ ∪
PN HN HID

, a version number

ver* and a set of public normal attributes S
ver

�

�

� �
� � �

� �
1 1

*

 and gives them to the challenger  .

2. 	 Setup:  sets Y e g g e g gz z z z� � � � � �1 2
1 2

, , and implicitly defines � � z z
1 2

. Randomly

choose � � Zp and set Y Yu �
� . Now, for each value of an attribute A Atti PN∈ , choose a

random number r Zi k p, ← and if Ai PN�� * , set T gi k
ri k

,
,= ; otherwise, set T gi k

z ri k
,

,= 2 . For

each value of an attribute A Attj HID∈ , choose a random number h Zj k p, ← , and if Aj HID�� *

set B gj k
hj k

,
,= else set B gj k

z hj k
,

,= 2 . Now publish the pp by choosing a b Zj k j k p, ,, ← for

version 1. For each attribute set S
ver

�

�

� �
� � �

� �
2 1

*

,  generates the re-encryption key rk �� � and

the corresponding pp for that version. For each attribute, i S� � �� , choose a random number

rk Zi k p,
�� � � and set T Ti k i k

rki k
, ,

,� �
�

�� � � �� � �
� �

1 and for the remaining attributes i S� � �� , set rki k,
�� � �1

and sends the rki k,
�� � to  . The remaining pp for version � �1 are same as version ρ .

3. 	 Phase 1: In this phase  can ask secret key for any access policy γ represented by Tγ , such

that ξ γ
* T . Depending upon the structure of Tγ ,  defines the following two cases and

answers the secret key queries accordingly:
a. 	 Case 1- ξPN rT

*  : Here,  generates the secret key components corresponding to the
hidden attributes in the same manner as in the original scheme and to generate the secret
key components corresponding to TR ,  uses the PolySat x PN x , ,

*� �� � and

PolyUnSat gx PN
x , ,

*� �� � procedures defined in [Goyal] to assign a polynomial Qx

for every node in Tr .  calls PolyUnSat T gr PN
z r

, ,
*� 1

� �� � by choosing a random number

� �r Z p and impl ic i t ly sets q z rr 0 1� � � � � and then recurs ively cal ls

PolySat q index xx PN r , ,
*� � �� �� � for each satisf ied child, x of node r and

PolyUnSat g
x PN

q index xr , ,*ξ ()()() for each unsatisfied child, x of node r to get qx. Now, 

defines the final polynomial Q z q
x x
⋅() = ⋅()2

 for each node x of T
r

 and defines the secret
key components corresponding to each leaf node of T

r
 as follows, where each leaf node x

corresponds to an attribute A
i
:

D
g g g if att x

g

x

Q

t

z q

r z

q

r
PN

Q

x

i k

x

i k

x

i k

=
= = () () ∈

() () ()0 0 02

2, , , , *ξ
xx

i k

x

i k

x

i kt

z q

z r

q

r
g g Otherwise

0 0 02

2

() () ()

= =









 , , , ,

	

Finally set D g g gv x z z z z r x z r x

0
1 2 2 1 2= = =− − − +()− − −′ ′α , where x is generated while computing

secret key components corresponding to hidden attributes. Now, for 2 ≤ ≤ρ ver * if

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

129

an attribute A S
i
∉ ()ρ , set rk

i k,

ρ() = 1 . Otherwise, for each A S
i
∈ ()ρ ,  computes

R rk
i i k
ρ

ω

ρ
ω=

=

−

∏
2

1

,
 and set D D g

x x
R

z

q

r R
i

x

i k i= () = ()
()1 0

2ρ ρ
, if att x

PN() ∈ ξ* else set D g
x

q

r R

x

i k i= ()
()0

,
ρ .

b. 	 Case 2- ξ
PN r

T*  : Here,  generates the secret key components corresponding to the PN
attributes in the same manner as in the original scheme. Since ξ

PN r
T*  , therefore the hidden

attributes in Tγ does not match ξ
H
* . Let A

j
 be a hidden attribute which is not meant by

ξ
HID
* . For the hidden attributes, randomly choose x Z

i i

m n

p
'

∀ =

+
←

1
 and set x z z x

j j
= +

1 2
' and

x x
i i
= ' for every i j≠ . Now, set x x z z x

i

m n

i
i

m n

i
= = +

=

+

=

+

∑ ∑
1

1 2
1

' and compute �D
j

=

g B g g
x

j k

a b y x z h
a b y

j j k j k j j j k
j k j k j

,

, ,
'

,
, ,

'

() = ()2 , where y
j
' is chosen by  and y

z

a b h
y

j
j k j k j k

j
=

−
+1

, , ,

' .

Now ˆ ,D D
j j

Ç










 are computed in the same manner as �D

j
 and for i j≠ , �D D D

i i i, ,ˆ
Ç











 are

computed l ike in the or iginal scheme. Finally compute the component,

D g g gv x
z z v z z x v x

i

m n

i
i

m n

i

0

1 2 1 2
1 1= =
∑
=

∑
− −

− − − − −
=

+

=

+

α

' '

, where v is generated while computing secret
key components corresponding to Tr.

Finally,  sends the secret key SK to  and using the secret key credentials,  can also answer
the trapdoor query for any keyword, w. In addition,  maintains a list, Lt of the keywords and the
corresponding trapdoor value for which adversary had asked the trapdoor. If the queried keyword w
∉ Lt, then  answers the query by looking into Lt. If w ∉ Lt, then C� generates the credentials to
answer the query and adds w and the corresponding trapdoor value to Lt.

4. 	 Challenge Phase:  submits two keywords w w
0 1
, of equal length such that w w L

t0 1
,{ } ∉ and

send them to  . Now,  flips a fair coin, b and encrypts the corresponding keyword w
b

 to
generate the challenge ciphertext as follows: First,  implicitly sets s z=

3
 and for ver * computes

C gz
0

3= , C Z
1
= , C g

i k

z
r Ri k i

ver

,

,

*

= ()








3 , C g
i k

z
H w r Rb i k i

ver

′

()
= () ′ ′









,

,

*

3 , C Z
u
= −θ . The remaining

components ˆ ,
, ,C C
j k j k

Ç










 can also be generated correctly because B

j k,
 does not contain the

unknown z
2

 if A
j k H,

*∈ ξ (the kth occurrence of attribute j belongs to ξ
H
*), otherwise ˆ ,

, ,C C
j k j k

Ç











are randomly chosen. Note that if Z e g g
z z z

= (), 1 2 3 then the challenge ciphertext is a valid
encryption of keyword wb, otherwise it represents some random value.

5. 	 Phase 2:  continues to query like in phase 1 with the restriction that  cannot query the
trapdoor for wb if γ ξ

*() = 1 .

6. 	 Guess Phase:  submits her guess ′b of b. If Z e g g
z

= (), where z is a random number from

Zp then  gets no information about b but a random guess. So Pr b b Pr b b=

 = = ≠


′ ′1

2
.

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

130

So, the challenger correctly guesses z to be some random when b b≠ ′ with probability 1
2

. If

Z e g g
z z z

= (), 1 2 3 , then ciphertext represents a valid encryption of wb and Pr b b=

 = +′ 1

2
ε .

So the challenger correctly guesses z to be z z z
1 2 3

 when b b= ′ with probability 1
2
+ ε . Therefore,

the probability of correctly guessing z given the DBDH challenge instance g g g Zz z z1 2 3, , ,() is

1

2

1

2

1

2

1

2 2
+ +










= +ε

ε and the advantage with which the challenger can solve the DBDH

problem is 1
2 2

1

2 2
+ − =
ε ε , if  wins the sCKA game with advantage ε . However, the DBDH

problem is a known hard problem having negligible advantage so ε is also negligible and this
proves that the proposed scheme is secure against sCKA.

Theorem 5.2: In the proposed scheme it is hard to distinguish the tracing ciphertext and the
normal ciphertext under Decision Linear assumption.

Proof: Let there exists an adversary  who can win the Indistinguishability game (IND - G)
with advantage ε then we can build a simulator  that can solve the Decision Linear problem with

advantage ε
2

, given an instance g g g Z g gz z z z z z, , , , ,1 2 1 4 3 4+() of decision linear assumption.

Before the beginning of IND-game,  commits two attribute sets ξ ξ ξ ξ
0
= ∪ ∪

PN HN HID
 and

ξ ξ ξ ξ
1
= ∪ ∪

PN HN HID
* , where in ξ

HID
 contains the attributes corresponding to identity of the

suspicious user and ξ
HID
* represents the identity where each bit is don’t care. The indistinguishability

of tracing and normal ciphertext uses a sequence of games where the original game takes the identity
of suspicious user in ξ

0
. The IND – G1 is same as the original game except that in ξ

0
, ξ
HID

 represents
the identity I

1
* * * *⋅ ⋅ ⋅ , where only the first bit is kept same as in the original game and remaining

n - 1 bits are set as don’t care. In IND – G2 the first two bits are kept same and the remaining n - 2
bits are set as don’t care and so on. Thus, the IND – Gn represents the original game. Now, to prove
the indistinguishability of tracing and normal ciphertext, it is sufficient to prove the IND – G1 and
IND – G1+1 are indistinguishable. In the sequence of games from IND – G1 to IND – Gn every time
by replacing the original bits from the upper side with the don’t care bits, we can embed the decision
linear challenge in the ciphertext in such a way that if IND – G1 and IND – G1+1 are distinguishable
then it leads to the distinguishability of the decision linear challenge.

 simulates the IND-Game defined in security model as follows:

1. 	 Initialization: In this phase,  selects two challenge attribute set �ξ
0
 and ξ

1
, where the difference

lies only in the set of hidden attributes related to identity, ξ
0
 contains ξ

HID
 attributes related to

the identity of suspected user while ξ
1

 contains don’t care values for each attribute in ξ
HID

 and
gives them to the simulator  . Now,  flips a fair coin b and

2. 	 Setup: In this phase,  sets the pp based on the decision linear challenge.  sets Y e g g= (),
α

where α is known to  . Randomly choose θ← Z

p
 and set Y Y

u
= θ . For the normal attributes,

parameters are set in the similar manner as in proof of theorem 1. For each value of an attribute
A Att
j HID
∈ , choose a random number h Z

j k p,
← , and if A

j HID HID
∈ ∩ξ ξ* set B g

j k

hj k
,

,= else

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

131

set B g
j k

z hj k
,

,= 2 . Finally,  publishes the pp by choosing the random numbers

a b Z
j k j k k v p

j
, ,
,{ } ←

≤ ≤1
 but for a b

j k j kl l l l, ,
, set a z

j kl l,
=

1
 and b z

j kl l,
=

2
 and compute B g

j k

a z
h

l l

jl kl
jl kl

,
, ,

= ()1

and B g
j k

b z
h

l l

jl kl
jl kl

,
, ,

= ()2 without knowing z
1

 and z
2

.
3. 	 Phase 1: In this phase,  can ask the secret key for any access structure T such that

ξ ξ
0 1
 T T∧() or ξ ξ

0 1
 T T∧() . The secret key components corresponding to subtree

TR and the hidden normal attributes in T are generated in the same manner as the original scheme.
If there exists a HID attribute A Att

j k HIDl l,
∈ such that A T

j kl l,
∉ then it is easy to find the

corresponding secret key component, otherwise  needs to compute the corresponding secret
key components as follows where a z

j kl l,
=

1
 and b z

j kl l,
=

2
:

�D g B g g g
j

x

j k

a b y x h
z z y

x

l

jl

l l

jl kl jl kl jl jl jl kl
jl jl= () = () =

,

, , ,
1 2 ''

	

Where x
jl

 is randomly chosen such that x x h z z y
j j j k jl l l l l
= −'

, 1 2
, and x

jl

' is a random number

chosen by  . Similarly,  can compute the remaining secret key components ˆ ,D D
j j
l

l

Ç









 . To find

the secret key components corresponding to HID attributes in T for the given challenge attribute set,
ξ
b

, we consider only the case where ξ ξ
0 1
 T T∧() because as per the definition in the security

model if ξ ξ
0 1
 T T∧() then the challenge keywords will be equal and  simply terminates.

Since, ξ ξ
0 1
 T T∧() hence there exists some attribute A

m b
∉ ξ , and in this case  computes

the secret key components by selecting a random number x Z
m p
' ← and set x x h z z y

m m j k jl l l
= +'

, 1 2

and compute:

�D g B g g
m

x

m k

a b y x h z z y z h
a b

m m k m k m m jl kl jl m k
m k m

= () = ()+

.

, ,
'

, ,
,

1 2 2
� ,, ’

,
, ,

’�k m
m m k

m k m k my
x z h

a b y

g g= ()2 	

Here y
m

 is chosen at random such that y y
z h y

a b hm m

j k j

m k m k m k

l l l= −'
,

, , ,

1 where y Z
m p
' ← is chosen

randomly by  .

S imi la r ly,  can compute ˆ ,D D
m m

Ç









 . F ina l ly, fo r j j m

l
≠ , ,  computes

x x x x x x h z z y x h z
j

n

j j m
j j m

n

j j j k j m j kl

l

l l l l l l
= = + + = − + +

= ≠
∑ ∑
1

1 2
,

'
,

'
, 11 2
z y x x x x

j
j j m

n

j j m
j j m

n

jl

l

l

l

+ = + +
≠ ≠
∑ ∑
,

' '

,

.

Now,  can compute D g v x
0
= − −α where v is calculated while computing secret key components

for T
R

 like in the original scheme and a is already known to  .

4. 	 Challenge Phase: In this phase,  submits two challenge keywords, w w
0 1
,{ } of equal length

and if  had asked for the secret key corresponding to T in phase 1 such that ξ ξ
0 1
 T T∧()

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

132

then w0 should be equal to w1. Now,  tosses a fair coin b and encrypts w
b

 using the attribute

set ξ
b

 by setting C gz z

0
3 4= + , C e g gz z

1
3 4= ()+,

α
 which implies s z z= +

3 4
.  generates the

ciphertext components corresponding to ξ
PN

 and ξ
HN

 as in the original game and the ciphertext
components corresponding to HID attributes in ξ

b
 are generated in the same manner as IND G

l
−

with the exception that the components ˆ ,
, ,C C
j k j k
l l

l l

Ç










 are computed as follows:

ˆ
, ,

,
, ,

C B g
j k j k

a
r

z z
h

l l l l

jl kl
jl kl jl kl= () = ()1 4 and C B Zj k j k

b
s r

h

l l
l l

jl kl
jl kl jl kl

Ç

, ,
,

,
,= () =

−

 without knowing z z
1 4

 and

z z
2 3

. If Z gz z= 2 3 then the components are well-formed and  is in the game IND – Gl, otherwise
 is in the game IND – Gl+1.

5. 	 Phase 2:  can continue secret key queries like in phase 1.
6. 	 Guess Phase: Here,  outputs b ' as its guess for bit b and gives it to  and the difference of

probability that  guesses b correctly in IND – Gl and in IND – Gl+1 is negligible because if
Z gz z= 2 3 then  is in the game IND – Gl and if Z is random then  is in the game IND – Gl+1.
This implies distinction of IND – Gl and IND – Gl+1 leads to the distinction of decision linear
challenge which is a known hard problem.

Storage and Computational Cost Analysis
This section compares the storage and computational cost of the proposed scheme with the existing
key policy attribute-based keyword search schemes.

As shown in the Table 3, in the proposed scheme the size of the secret key, the encrypted index
and the trapdoor varies proportionally with the number of attributes like in the similar existing schemes
except in the scheme proposed by Mamta and Gupta (2019a) where the target was to make them
independent of the number of attributes. Therefore, with respect to performance nothing remarkable
has been achieved but the authors have managed to incorporate phenomenal features like the proposed
scheme can trace the secret key abusers, thus ensures accountability and also it can handle the event
of user revocation efficiently by delegating the computational intensive tasks to the cloud server, thus
reduces computational burden over the data owner and the trusted third party.

Performance Analysis
To evaluate the performance, the authors have implemented the proposed scheme in JAVA using
Netbeans-8.1 IDE and java pairing based cryptography library (JPBC) (Caro & Iovino, 2011) on a
64-bit windows-10 system with Intel core i3 processor 2.00 GHz and 4 GB RAM. In JPBC to instantiate
Bilinear map we have used Type A pairing constructed on elliptic curve, y x x2 3= + over a field
F
q

, where q mod≡ 3 4 is some prime. In this pairing both G1 and G2 are the group of points from

E F
q() and hence it is called symmetric pairing. The size of the base field is set to be 512-bit which

offers a security equivalent to 1024-bit DLOG (Caro & Iovino, 2011) and the order, p of source group
G and target group GT is set to be 160-bit. To demonstrate the performance, the authors have varied
the number of attributes in the attribute universe, the access policy and in the set ξ from 10 to 50
with a step length of 10 and in each step the experiment has been executed 10 times to find the average
time taken by each algorithm which is listed below in Table 4.

From Table 4, it is observed that the running time of all the algorithms varies linearly with
the number of attributes as all of the algorithms contain components proportional to the number
of attributes. For the better demonstration of the experimental results, the authors have plotted the
average execution time taken by each algorithm against the number of attributes in Figure 3.

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

133

Table 3. Comparison of storage and computational cost with similar existing scheme

Scheme Algorithm Storage Cost Computational Cost

Zheng et al. (2014)

KeyGen 2N G() 3NE NH+

GenIndex ξ +()3 G ξ ξ+() +4 E H

GenTrap 2 2N G+() 2 2N E+()

Search 2 2ξ ξ+() +P E
T

Li et al. (2017)

KeyGen 2 4 1N G Z
p

+() + 2 6N E+()

GenIndex K G G
T
+ +()ξ 2 ξ +() + +2 2E KE KH

T

GenTrap 2 2N G+() 2 1E H+

Search 2 2 1ξ ξ+() + +P E H
T

Ameri et al. (2018)

KeyGen 2N G() 2 1N E NH+() +

GenIndex ξ +() +3 1G Z
p

ξ ξ+() + +()4 2E H

GenTrap 2 1N t G+ +() 2 1 1N t E t H+ +() + +()

Search 2 2ξ ξ+() + +P E tE
T

Mamta & B. B.
Gupta (2019a)

KeyGen 1 3Z G
p
+ 3 1E H+

GenIndex ξ + +()3 2U G ξ +() + +()6 1E K H

GenTrap 6G 7 1 1E P H+ +

Search ξ +() +2 6E P

Proposed Scheme

KeyGen mN mN G Z
p

' ''+ +() +3 1 1 mN mN E E
T

' ''+ +() +4 1 1

GenIndex m m G G
T

ξ ξ'+ +() +′′2 1 1 m m E E KH
T

ξ ξ'+ +() + +′′2 1 1

GenTrap mN mN G Z
p

'+ +() +′′3 1 1 mN mN E KH'+ +() +′′3 1

Search m m P E E
T

ξ ξ ξ' '+ +() + +′′3 1 1

Notations used in Table 3:
G - Source group; GT - Target group; K - # of keywords; H - Hash operation; Zp - Group of integers of prime order, p P - Pairing operation in Bilinear

Maps; E - Exponent operation in Source group ET - Exponent operation in Target group; N - # of attributes associated with access policy ξ − # of
attributes associated with users; ξ '− # of public normal attributes associated with users
ξ ''− # of hidden attributes associated with users; N '− # of public normal attributes associated with the access policy; N ''− # of hidden

attributes associated with the access policy; m - # of possible values an attribute can take

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

134

Figure 3-a) shows the average execution time of KeyGen algorithm and it can be observed that
the average time varies linearly with the number of attributes. The reason for this linear relation are

the components, Di i Lr
� �� �

 and
� � �D D Dj j j j AttH
, ,

'
� �

� � which depends upon the number of attributes

(public normal and hidden attributes respectively). Figure 3-b) shows that the average execution time
of GenIndex algorithm also increases with the increase in number of attributes because of the

components, C
i k i k vPN i
, ,

{ }
∀ ∈ ≤ ≤ξ 1

 and ˆ ,
, ,

,

C C
j k j k

j k vHN j

Ç









∀ ∈ ≤ ≤ξ 1

 which varies with the number of

attributes. Also, the average execution time shown in Figure 3-c) and 3-d) is directly proportional to
the number of attributes. The trapdoor is generated using secret key which varies with the number

Table 4. Average execution time (second) of the proposed scheme (# of attributes in attribute universe, access policy and the
set ξ are kept same and m is set to 1)

of attributes 10 20 30 40 50

KeyGen 0.812493 1.672628 2.449628 3.181871 3.967871

GenIndex 1.0353108 1.336525 1.745529 2.051441 2.324317

GenTrap 0.597493 0.917628 1.20123 1.586872 1.803499

Search 0.4749731 0.68453 0.957417 1.175047 1.312767

Figure 3. Average execution time of the proposed scheme

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

135

of attributes and thus GenTrap algorithm time will also vary in the same way. In the Search algorithm,
the number of pairing operations and the exponentiation operations in the target group increases with
the increase in the number of attributes which causes the linear graph shown in Figure 3-d). The
asymptotic complexities shown in Table 3 exactly matches the simulation results shown in Table 4
and Figure 3, thus ensures the proposed scheme is correct.

CONCLUSION

In this paper, the authors have developed a secure fine-grained multi-keyword scheme using key
policy design framework. The proposed efficiently handles user revocation using proxy and lazy
re-encryption techniques. Since in the proposed scheme the access right is associated with the secret
key of the user so any user can misuse his/her access privilege by giving his secret key to other users.
In order to keep a check on such users the authors have added traceability feature where such key
abusers can be traced. Finally, the authors have proved that the proposed scheme is secure against
selective chosen keyword attack under Decisional Bilinear Diffie-Hellman assumption and also
proved that the ciphertext generated during normal operation and during trace activity are completely
indistinguishable under Decision Linear assumption in the selective security model. In future, the
aim is to reduce the computational cost and make it independent of the number of attributes involved.

ACKNOWLEDGMENT

This publication is an outcome of the R&D work undertaken under the project Visvesvaraya Ph.D.
Scheme of Ministry of Electronics & Information Technology, Government of India and being
implemented by Digital India Corporation.

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

136

REFERENCES

Ameri, M. H., Delavar, M., Mohajeri, J., & Salmasizadeh, M. (2018). A key-policy attribute-based temporary
keyword search scheme for secure cloud storage. IEEE Transactions on Cloud Computing. doi:10.1109/
TCC.2018.2825983

Blaze, M., Bleumer, G., & Strauss, M. (1998, May). Divertible protocols and atomic proxy cryptography. In
Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (pp.
127-144). Springer.

Canetti, R., Halevi, S., & Katz, J. (2003, May). A forward-secure public-key encryption scheme. In Proceedings
of the International Conference on the Theory and Applications of Cryptographic Techniques (pp. 255-271).
Springer.

Chaudhari, P., & Das, M. L. (2019). Privacy Preserving Searchable Encryption with Fine-grained Access Control.
IEEE Transactions on Cloud Computing. doi:10.1109/TCC.2019.2892116

Chen, Z., Zhang, F., Zhang, P., Liu, J. K., Huang, J., Zhao, H., & Shen, J. (2018). Verifiable keyword search for
secure big data-based mobile healthcare networks with fine-grained authorization control. Future Generation
Computer Systems, 87, 712–724. doi:10.1016/j.future.2017.10.022

Cui, J., Zhou, H., Xu, Y., & Zhong, H. (2019). OOABKS: Online/Offline Attribute-based Encryption for Keyword
Search in Mobile Cloud. Information Sciences, 489, 63–77. doi:10.1016/j.ins.2019.03.043

Cui, J., Zhou, H., Zhong, H., & Xu, Y. (2018). AKSER: Attribute-based keyword search with efficient revocation
in cloud computing. Information Sciences, 423, 343–352. doi:10.1016/j.ins.2017.09.029

De Caro, A., & Iovino, V. (2011, June). jPBC: Java pairing based cryptography. In Proceedings of the 2011
IEEE symposium on computers and communications (ISCC) (pp. 850-855). IEEE.

Goyal, V., Pandey, O., Sahai, A., & Waters, B. (2006, October). Attribute-based encryption for fine-grained
access control of encrypted data. In Proceedings of the 13th ACM conference on Computer and communications
security (pp. 89-98). ACM. doi:10.1145/1180405.1180418

Gupta, B., Agrawal, D. P., & Yamaguchi, S. (Eds.). (2016). Handbook of research on modern cryptographic
solutions for computer and cyber security. Hershey, PA; IGI global. doi:10.4018/978-1-5225-0105-3

Gupta, B. B. (Ed.). (2018). Computer and cyber security: principles, algorithm, applications, and perspectives.
CRC Press.

Gupta, B. B., Gupta, S., & Chaudhary, P. (2017). Enhancing the browser-side context-aware sanitization of
suspicious HTML5 code for halting the DOM-based XSS vulnerabilities in cloud. International Journal of
Cloud Applications and Computing, 7(1), 1–31. doi:10.4018/IJCAC.2017010101

Hu, B., Liu, Q., Liu, X., Peng, T., Wang, G., & Wu, J. (2017, May). DABKS: Dynamic attribute-based keyword
search in cloud computing. In Proceedings of the 2017 IEEE International Conference on Communications
(ICC) (pp. 1-6). IEEE. doi:10.1109/ICC.2017.7997108

Li, J., Lin, X., Zhang, Y., & Han, J. (2016). KSF-OABE: Outsourced attribute-based encryption with keyword
search function for cloud storage. IEEE Transactions on Services Computing, 10(5), 715–725. doi:10.1109/
TSC.2016.2542813

Mamta, & Gupta, B. B. (2019a). An efficient KP design framework of attribute‐based searchable encryption for
user level revocation in cloud. Concurrency and Computation: Practice and Experience, e5291.

Mamta, & Gupta, B. B. (2019b). Dynamic Policy Attribute Based Encryption and its Application in Generic
Construction of Multi-Keyword Search. International Journal of E-Services and Mobile Applications, 11(4).

Qiu, S., Liu, J., Shi, Y., & Zhang, R. (2017). Hidden policy ciphertext-policy attribute-based encryption
with keyword search against keyword guessing attack. Science China. Information Sciences, 60(5), 052105.
doi:10.1007/s11432-015-5449-9

San Nicolas-Rocca, T., & Olfman, L. (2013). End user security training for identification and access management.
Journal of Organizational and End User Computing, 25(4), 75–103. doi:10.4018/joeuc.2013100104

http://dx.doi.org/10.1109/TCC.2018.2825983
http://dx.doi.org/10.1109/TCC.2018.2825983
http://dx.doi.org/10.1109/TCC.2019.2892116
http://dx.doi.org/10.1016/j.future.2017.10.022
http://dx.doi.org/10.1016/j.ins.2019.03.043
http://dx.doi.org/10.1016/j.ins.2017.09.029
http://dx.doi.org/10.1145/1180405.1180418
http://dx.doi.org/10.4018/978-1-5225-0105-3
http://dx.doi.org/10.4018/IJCAC.2017010101
http://dx.doi.org/10.1109/ICC.2017.7997108
http://dx.doi.org/10.1109/TSC.2016.2542813
http://dx.doi.org/10.1109/TSC.2016.2542813
http://dx.doi.org/10.1007/s11432-015-5449-9
http://dx.doi.org/10.4018/joeuc.2013100104

Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

137

Mamta is a Ph.D. Scholar under the Supervision of Dr. B. B. Gupta in the Department of Computer Engineering
at National Institute of Technology (NIT), Kurukshetra, India. Her research interests include number theory and
cryptography, searchable encryption, information security, and cloud computing. She has done her M. Tech.
(Computer Engineering) from the Department of Computer Engineering at National Institute of Technology (NIT),
Kurukshetra, India. B. B. Gupta received PhD degree from Indian Institute of Technology Roorkee, India in the area
of information security. He has published more than 50 research papers in international journals and conferences
of high repute. He has visited several countries to present his research work. His biography has published in the
Marquis Who’s Who in the World, 2012. At present, he is working as an Assistant Professor in the Department
of Computer Engineering, National Institute of Technology Kurukshetra, India. His research interest includes
information security, cyber security, cloud computing, web security, intrusion detection, computer networks, and
phishing.

B. B. Gupta received PhD degree from Indian Institute of Technology Roorkee, India in the area of information
security. He has published more than 50 research papers in international journals and conferences of high repute.
He has visited several countries to present his research work. His biography has published in the Marquis Who’s
Who in the World, 2012. At present, he is working as an Assistant Professor in the Department of Computer
Engineering, National Institute of Technology Kurukshetra, India. His research interest includes information security,
cyber security, cloud computing, web security, intrusion detection, computer networks and phishing. He is the
corresponding author for this paper. (gupta.brij@gmail.com)

Subramaniyaswamy, V., Logesh, R., Abejith, M., Umasankar, S., & Umamakeswari, A. (2017). Sentiment analysis
of tweets for estimating criticality and security of events. Journal of Organizational and End User Computing,
29(4), 51–71. doi:10.4018/JOEUC.2017100103

Sun, W., Yu, S., Lou, W., Hou, Y. T., & Li, H. (2014). Protecting your right: Verifiable attribute-based keyword
search with fine-grained owner-enforced search authorization in the cloud. IEEE Transactions on Parallel and
Distributed Systems, 27(4), 1187–1198. doi:10.1109/TPDS.2014.2355202

Wang, H., Dong, X., & Cao, Z. (2017). Multi-value-independent ciphertext-policy attribute based encryption
with fast keyword search. IEEE Transactions on Services Computing, 1. doi:10.1109/TSC.2017.2753231

Yin, H., Zhang, J., Xiong, Y., Ou, L., Li, F., Liao, S., & Li, K. (2019). CP-ABSE: A Ciphertext-Policy Attribute-
Based Searchable Encryption Scheme. IEEE Access, 7, 5682–5694. doi:10.1109/ACCESS.2018.2889754

Yin, H., Zhang, J., Xiong, Y., Ou, L., Li, F., Liao, S., & Li, K. (2019). CP-ABSE: A Ciphertext-Policy Attribute-
Based Searchable Encryption Scheme. IEEE Access, 7, 5682–5694. doi:10.1109/ACCESS.2018.2889754

Yu, C., Li, J., Li, X., Ren, X., & Gupta, B. B. (2018). Four-image encryption scheme based on quaternion Fresnel
transform, chaos and computer generated hologram. Multimedia Tools and Applications, 77(4), 4585–4608.
doi:10.1007/s11042-017-4637-6

Yu, S., Ren, K., Lou, W., & Li, J. (2009, September). Defending against key abuse attacks in KP-ABE enabled
broadcast systems. In Proceedings of the International Conference on Security and Privacy in Communication
Systems (pp. 311-329). Springer. doi:10.1007/978-3-642-05284-2_18

Yu, S., Wang, C., Ren, K., & Lou, W. (2010, March). Achieving secure, scalable, and fine-grained data
access control in cloud computing. In Proceedings IEEE INFOCOM 2010 (pp. 1-9). IEEE. doi:10.1109/
INFCOM.2010.5462174

Yu, Z., Gao, C. Z., Jing, Z., Gupta, B. B., & Cai, Q. (2018). A practical public key encryption scheme based on
learning parity with noise. IEEE Access, 6, 31918–31923. doi:10.1109/ACCESS.2018.2840119

Zheng, Q., Xu, S., & Ateniese, G. (2014, April). VABKS: verifiable attribute-based keyword search over
outsourced encrypted data. In Proceedings of the IEEE INFOCOM 2014-IEEE Conference on Computer
Communications (pp. 522-530). IEEE. doi:10.1109/INFOCOM.2014.6847976

http://dx.doi.org/10.4018/JOEUC.2017100103
http://dx.doi.org/10.1109/TPDS.2014.2355202
http://dx.doi.org/10.1109/TSC.2017.2753231
http://dx.doi.org/10.1109/ACCESS.2018.2889754
http://dx.doi.org/10.1109/ACCESS.2018.2889754
http://dx.doi.org/10.1007/s11042-017-4637-6
http://dx.doi.org/10.1007/978-3-642-05284-2_18
http://dx.doi.org/10.1109/INFCOM.2010.5462174
http://dx.doi.org/10.1109/INFCOM.2010.5462174
http://dx.doi.org/10.1109/ACCESS.2018.2840119
http://dx.doi.org/10.1109/INFOCOM.2014.6847976

