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ABSTRACT

Fine-grained searching is an important feature in multi-user cloud environment and a combination 
of attribute-based encryption (ABE) and searchable encryption (SE) is used to facilitate it. This 
combination provides a powerful tool where multiple data owners can share their data with multiple 
data users in an independent and differential manner. In this article, the authors have used key-policy 
design framework of attribute-based encryption to construct the multi-keyword search scheme where 
access rights assigned to a data user are associated with his/her secret key. This leads to a situation 
where a data user can abuse his secret key to distribute it illegally to the unauthorized users to perform 
search over the shared data which is not intended for him/her. Therefore, to track such kind of key 
abusers the authors have embedded an extra functionality of tracing the traitors. For this purpose, each 
user is assigned a unique identity in the form of binary string where each bit represents an attribute 
related to his identity. In addition to the normal attributes, the access structure of a user also possesses 
identity-related attributes which are hidden from the user along with some normal attributes. Hence, 
the proposed scheme supports partial anonymity. Further, in the event of user revocation the proposed 
scheme efficiently handles the system update process by delegating the computationally intensive 
tasks to the cloud server. Finally, the proposed scheme is proved secure under Decisional Bilinear 
Diffie-Hellman (DBDH) assumption and decision linear assumption in the selective security model.
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INTRODUCTION

Cloud computing is one of the most promising technologies of the recent times as it has fundamentally 
changed the way we store and access our data. In cloud, the storage and management of data is 
delegated to a remote cloud server. This unburdens the user from the overhead of local storage and 
management of data and moreover, this stored data could be accessed anywhere anytime and on any 
device. Owing to these advantages more and more users are shifting towards cloud-based storage. 
But apart from these benefits there are some privacy concerns associated with the data stored over 
the cloud because the data is stored over a remote server which could not be fully trusted. One simple 
solution to this issue could be to store the data in an encrypted form. This definitely solve the issue of 
data privacy but will beget another problem (Gupta, 2016; Gupta, 2018). Searching operation is one 
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of the most basic and essential operations and encryption of data will severely debilitate this basic 
operation. Hence, there arises a need for a technique which should be conducive for search operation 
and at the same time ensures the privacy of data. Secure searchable encryption is the answer for this 
need (Yu, 2018; Yu, 2018; Gupta, 2017; Subramaniyaswamy, 2017).

Searchable encryption (SE) scheme enables the cloud server to perform keyword search over 
encrypted data without disclosing any information about the keyword being searched (San Nicolas-
Rocca, T., 2013). SE scheme can be developed using either symmetric key or asymmetric/public key 
cryptographic primitive. Between these two, public key setting is a more preferable choice as it solves 
the issue of complicated key sharing in symmetric key setting when there are multiple users in the 
system. Further, there are several choices available in public key setting like Identity Based Encryption 
(IBE), Attribute Based Encryption (ABE), Functional Encryption (FE), etc. In this paper, we have 
used ABE scheme and particularly the key-policy (KP) design framework to develop SE scheme as 
it provides fine-grained searching capability in multi-user setting. In KP-ABE, the access policy is 
embedded in the secret key of the user. Any authorized user can misuse his/her access rights by sharing 
his secret key with other users who are not supposed to have access to the information. Consider a 
database which contains digital media in an encrypted form and a user is provided access depending 
upon the subscription and the amount he paid. There is no way of tracing if the user who has got the 
subscription is not sharing his secret credentials with other users, which usually happens. To prevent 
such unauthorized searching and retrieval of information, we have added an extra functionality of 
tracing given by Yu et al. (2010). There are several key-policy attribute based keyword search schemes 
in the literature given by Zheng et al. (2014), Li et al. (2017), Ameri et al. (2018) and Mamta and 
Gupta (2019) but none of them has incorporated the feature of tracing the key abusers, which is the 
main contribution of this paper. Following are the key highlights of the proposed scheme:

•	 It provides protection against key abusers by incorporating extra ciphertext components which 
are used for tracing the identity of the traitors. The ciphertext used in the normal operation and 
in the tracing operation is indistinguishable under decisional linear assumption.

•	 It efficiently handles the event of user revocation by delegating the task of updating the secret 
key of remaining users to the cloud.

•	 The proposed scheme takes multi-valued attributes and also partially hides the access structure 
associated with the user.

•	 The proposed scheme performs multi-keyword search and supports monotonic predicate which 
consists of AND, OR and threshold gates. It uses the top-down approach for distributing the 
secret values to an access structure.

•	 The proposed scheme is proved secure against chosen keyword attack in selective security model 
under decisional Diffie-Hellman assumption.

Application Example
The proposed scheme suits well in the banking system where the data is stored over the remote cloud 
server in an encrypted form to maintain the privacy of customer’s financial and personal information. 
In order to access the information every employee is assigned an access privilege as per their role. 
For example: To evaluate the customer’s potential to return the loan amount, the loan officer needs to 
access the current financial status of the customer while a customer service representative’s role is to 
assist the new customers in completing their paperwork and answering any queries related to bank’s 
product and services. So, depending upon the role played by each employee their access rights differ 
and different employees can have different view of the information stored over the cloud server. As 
in the example mentioned above the loan officer can have the information about the current financial 
condition of a customer while a customer service representative do not require any such information 
about that customer. In such scenario, if any employee misuses his/her access privilege and shares 
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his/her secret key with some other employee. This may result in unauthorized access to sensitive data. 
To prevent such kind of abuse there should be a way through which these abusers can be tracked. The 
proposed scheme aims to provide this facility by associating a unique identity with each employee 
and generating the tracing ciphertext for some keywords encrypted using identity related attributes 
of the suspected user. Now, the user is tricked to find the keyword contained in tracing ciphertext 
which has the identity of the suspicious user. If a user is able to search that keyword and if a mismatch 
is found between his identity and the suspected user’s identity, then it means this user is using the 
secret key of other user to access the information which is not intended for him. Further, the proposed 
scheme supports the situation if any employee who resigns from the bank can no longer be able to 
have access to any information with his secret key, this is achieved by defining efficient procedure 
for user revocation using proxy re-encryption and lazy re-encryption techniques.

Apart from the introduction rest of the paper is organized as: Section 2 discusses the related work. 
In section 3, essential background needed to develop a searchable encryption scheme is discussed 
along with system definition, framework and security model of the proposed scheme. Section 4 gives 
the basic design and detailed construction of the proposed scheme with the proof of correctness of 
the proposed scheme. Next section analysis the proposed scheme in terms of security and compares 
the storage and computational cost with existing schemes. Finally, section 6 gives the concluding 
remarks and provides the future directions.

RELATED WORK

This section provides an overview of the existing attribute-based keyword search schemes and gives 
an analysis of the existing schemes in terms of the key features. Attribute based encryption (ABE) 
is a technique which enables fine-grained search in multi-user environment when it is used as an 
underlying technique to develop a searchable encryption scheme (Zheng et al., 2014; Sun et al., 2016). 
The concept of ABE was first introduced by Sahai and Waters (2005) in the form of fuzzy identity-
based encryption where identity is viewed as a set of descriptive attributes. After that two variants 
of ABE were proposed, namely key-policy attribute-based encryption (KP-ABE) (Goyal et al., 2006) 
and ciphertext-policy attribute-based encryption (CP-ABE) (Bethencourt et al., 2007). In KP-ABE, 
the access policy is embedded in the secret key of the user and the attributes are associated with the 
ciphertext while in CP-ABE, the access policy is embedded in the ciphertext and the attributes are 
associated with the secret key of the user. These variants can be used to develop an attribute based 
searchable encryption (Zheng et al., 2014; Sun et al., 2016; Li et al., 2017; Hu et al., 2017; Wang 
et al., 2017; Qiu et al., 2017; Cui et al., 2018; Ameri et al., 2018; Chen et al., 2018; Chaudhari & 
Das, 2019; Yin et al., 2019; Cui et al., 2019; Mamta & Gupta, 2019) where the access policy is 
used to determine who can perform search like it was used to determine the decryption capabilities 
in an encryption scheme. Out of the several existing schemes in the literature Zheng et al., Li et al. 
and Ameri et al. have used the key policy design framework to develop attribute-based keyword 
search scheme. Zheng et al. (2014) proposed the first attribute-based keyword search based on tree 
access structure where they have used both variants of ABE. The main feature of their technique is 
verifiability of the search result returned by the cloud server and hence broke the assumption that 
the cloud is honest. Later, Li et al. (2017) proposed an attribute based searchable encryption scheme 
based on the key policy design framework where they tried to reduce the computational burden by 
outsourcing heavy computational tasks to the cloud server, although it reduces the computational 
cost but results in an increased communication cost between different parties. A new attribute-based 
keyword search scheme based on key policy design framework was proposed Ameri et al. (2018) 
where a new concept of temporary keyword search is introduced. The main focus of this paper was to 
improve the security by associating a time period with the search token and with this search token the 
cloud server can perform search for only those keyword’s ciphertexts which were encrypted in that 
time interval. It was also based on key-policy design framework of ABE. Recently, Mamta & Gupta 
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(2019a) proposed a key policy attribute-based keyword search scheme where the main focus was to 
improve the efficiency of the scheme by making the size of secret key and the trapdoor independent 
of the number of attributes. Further, Mamta and Gupta (2019b) proposed a dynamic policy ABE 
scheme with constant size secret key using KP design framework and then transformed it to a multi-
keyword search scheme which inherits all the features of the proposed dynamic policy ABE scheme. 
So, from time to time several KP attribute-based keyword search schemes have been proposed where 
the focus was on either improving the efficiency or the security. In this paper, the focus is to add more 
functionality in terms of user’s secret key accountability where the identity of the secret key abusers 
can be disclosed. A detailed analysis of the existing schemes is given below in Table 1.

Table 1 compares the basic features of the proposed scheme with other schemes. As shown above 
in Table 1, the proposed scheme uses key-policy (KP) design framework of underlying ABE scheme 
and uses tree-based data structure which consists of AND, OR and threshold gate. In the proposed 
scheme some of the attributes assigned to the user are hidden, thus ensures partial anonymity. The 
proposed scheme is secure in the selective security model under decision linear and DBDH assumption. 
The proposed scheme supports user revocation and moreover, the system update task is delegated to 
the cloud server when a user is revoked from the system. In addition, the proposed scheme supports 
tracing of secret key abusers thus ensures secret key accountability.

PRELIMINARIES

In this section, first an introduction about the general mathematical entities involved in the proposed 
scheme is given and then it provides the basic definitions and models of the proposed scheme.

General Background
This section gives the necessary information about bilinear map, hardness assumptions on which the 
proposed scheme relies and the structure of access policy used in the proposed scheme.

Bilinear Map
Let G, GT be the source and target cyclic groups of prime order p and g be the generator of the source 
group G. Let e be the symmetric bilinear map between G and G e G G G

T T
, : × → , which satisfies 

the following properties:

•	 ∀ = ∈ = ∈ ( ) = ( )l g G m g G e g g e g gx y x y xy
, : , , , where x y Z

p
, ∈ .

•	 e g g,( )  is the generator of the target group, GT, if g is the generator of source groups G.

•	 ∀ ∈ ( )l m G e l m, ; ,  is efficiently computable.

Security Assumptions
Decisional Bilinear Diffie-Hellman (DBDH) assumption: It is hard to distinguish the tuples of the 

form g g g e g ga b c abc
, , , ,( )








 from the tuple of the form g g g e g ga b c z
, , , ,( )








 where 

a b c z Z
p

, , , ∈  and g G∈ .
Decision linear (DL) assumption: It is hard to distinguish the tuple of the form 

g g g g g g gx c cx y x y, , , , , ,� � �� �  from the tuple of the form g g g g g g Qx c cx y, , , , ,α α( ) , where 

g Q G, ∈ andx y Z
p

, ∈ .
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Access Policy
In this paper, the access policy is represented by the tree data structure as shown in Figure 1. Here, 
each leaf node represents an attribute and each non-leaf node represents a threshold gate. Let Ty be 
an access tree corresponding to a given access policy γ . Here, the type of the threshold gate is 
determined by the number of children, li, of a node i. A threshold value ki is defined for each node i, 
such that 1≤ ≤k li i .  For an internal node, if ki = 1, then it represents an OR gate and if ki = li, then 
it represents an AND gate and for a leaf node, ki = 1. It is assumed that access tree represents a subset 
of attribute universe Att. In the access tree, all the children of node are numbered in an ordered manner 
and let index(i) be a function which returns the number linked with node i. The type of attributes 
present at the leaf nodes can be the public normal attributes or the hidden attributes where each 
attribute can take multiple values. It is assumed that each attribute, Aj can have vj number of possible 

values, A A A Aj j j j v j
� �� �, , ,

, , ,
1 2

. For the purpose of key management on the event of user 

revocation the root node of the access tree is always assumed to be an AND gate. The identity-related 

Table 1. Analysis of the related works

Scheme Underlying 
Technique

Access 
Structure

Hidden Policy Security Model 
& Assumption

Support for 
user revocation

Secret Key 
Accountability

Zheng et al. 
(2014)

KP-ABE﻿
CP-ABE

Tree ⵝ SS, Decision 
Linear

ⵝ ⵝ

Sun et al. (2016) CP-ABE AND ⵝ SS, DBDH √ ⵝ

Li et al. (2017) KP-ABE Tree ⵝ SS, DBDH ⵝ ⵝ

Hu et al. (2017) CP-ABE Tree ⵝ SS, Decision 
Linear

ⵝ ⵝ

Wang et al. 
(2017)

CP-ABE AND Full FS, generic 
group model

√ ⵝ

Qiu et al. (2017) CP-ABE AND Full SS, generic 
group model

ⵝ ⵝ

Cui et al. (2018) CP-ABE Tree ⵝ DBDH √ ⵝ

Chen et al. 
(2018)

CP-ABE Tree ⵝ SS, DBDH ⵝ ⵝ

Ameri et al. 
(2018)

KP-ABE Tree ⵝ SS, MDDH ⵝ ⵝ

Chaudhari and 
Das (2019)

CP-ABE AND Full SS, DBDH ⵝ ⵝ

Yin et al. (2019) CP-ABE Tree ⵝ SS, DBDH ⵝ ⵝ

Cui et al. (2019) CP-ABE﻿
KP-ABE

LSSS ⵝ - ⵝ ⵝ

Mamta & Gupta 
(2019a)

KP-ABE Tree ⵝ SS, Decision 
Linear

√ ⵝ

Mamta & Gupta 
(2019b)

KP-ABE Tree ⵝ SS, DBDH ⵝ ⵝ

Proposed 
Scheme

KP-ABE Tree Partial SS, DBDH, 
Decision Linear

√ √

Notations used in Table 1:
CP-ABE: Ciphertext-Policy Attribute Based Encryption FS: Full Security SS: Selective Security
KP-ABE: Key-Policy Attribute Based Encryption
DDH: Decisional Diffie-Hellman
DBDH: Decisional Bilinear Diffie-Hellman Assumption
MDDH: Modified Decisional Diffie-Hellman
LSSS: Linear Secret Sharing Scheme
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hidden attributes (HID) and the normal hidden attributes (HN) are assumed to be present at depth 1, 
while the public normal attributes (PN) are present in a subtree at depth 1. The structure of the access 
policy is shown below in Figure 1.

Technique Preliminaries
This section provides the definition of the proposed scheme with the detailed framework and then 
defines the security model used for proving the security of the scheme.

System Definition
The system is composed of the following polynomial time algorithms:

1. 	 pp MSK Setup Att n, , , ,



 ← ( )λ  : This algorithm takes security parameter, attribute universe, 

keyword universe and a parameter n as input where n denotes that the first n elements in Att 
corresponds to the identity related attributes and outputs public parameters and master secret 
key.

2. 	 SK KeyGen pp MSK← ( ), ,γ : This algorithm assigns the secret key to the user by taking the 
public parameters, master secret key and access policy as the input. The access policy assigned 
to a user contains the normal attributes as well as the identity related attributes.

3. 	 C GenIndex pp Att W← ⊆ ∈( ), ,ξ  : This algorithm encrypts the set of keywords, W, under 
a set of attributes ξ ξ ξ ξ= ∪ ∪   

PN HN HID
 using the public parameters.

4. 	 TK GenTrap pp SK W← ( ), , ' : A legitimate user with secret key SK runs this algorithm to 
generate the trapdoor for a set of keywords, W ' .

Figure 1. Structure of the access policy
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5. 	 0 1/ , ,



 ← ( )Search pp C TK : The cloud server uses this algorithm to find whether the ciphertext 

and the trapdoor corresponds to same set of keywords or not. If so, it returns 1 otherwise it returns 0.

Correctness
The CP-ABSE scheme is correct if the following condition holds:

Search PP C TK ifW W, , '( ) = =1 	 (1)

For the given pp MSK Setup Att n, , ,



 ← ( )λ , C GenIndex pp W← ( ), ,ξ , 

SK Keygen pp MSK← ( ), ,γ  and TK GenTrap pp SK W� , , ’ .← ( )
System Model
The system is composed of the following entities as shown in Figure 2:

1. 	 Trusted Third Party (TTP): is an entity that issues secret key credentials to the cloud users. It 
uses KeyGen algorithm and corresponding to the access right assigned to a user it generates the 
secret key for that user.

2. 	 Data Owner: is an entity who wants to share his data with other users and for this purpose, the 
data owner encrypts his data and associate it with index of keywords which is also encrypted but 
this index can be searched by the authorized user. To generate this encrypted index data owner 
uses GenIndex algorithm.

3. 	 Data User: is an entity who wants to retrieve the data stored by data owner and to do so the data 
user generates the trapdoor using GenTrap algorithm through which the data user can allow the 
cloud server to find the data which contains the keyword specified in the trapdoor.

4. 	 Cloud server: is an entity that provides the storage facility to the data owner and performs the 
actual search operation on the behalf of data user based on the trapdoor provided by the data 
user.

Security Model
The security of the proposed scheme is defined by the following two security games:

Game 1: This game defines the security against chosen keyword attack in selective security model 
which states that the adversary   cannot distinguish between encryption of two challenge 
keywords of its choice in the selective security model (Canetti et al. (2003)). It consists of the 
following steps:

1. 	 Initialization: The adversary   commits the challenge attribute set ξ* , a version number ver*  

and a set of public normal attributes S
ver

�

�

� �
� � �

� �
1 1

*

on which she wish to be challenged upon.

2. 	 Setup: The challenger   runs the Setup algorithm of the proposed scheme to generate the public 
parameters and master secret key and gives the public parameters to  .

3. 	 Phase 1:   can ask the secret key corresponding to any policy, γ , provided � � *� � �1  and 
adversary can repeat this step polynomial number of times. By generating the secret key the 
challenger   can answer trapdoor query for any keyword, w, and maintains a list of keywords, 
Lk  which is initially empty and adds w to Lk  if w Lk∉ .
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4. 	 Challenge Phase:   selects two challenge keywords w0 and w1 of equal length such that 
w w Lk0 1
, ∉ . The challenger flips a random coin b and encrypts wb with parameters selected 

by   during initialization phase. The resulting challenge ciphertext is sent to  .
5. 	 Phase 2:   continues to query like in phase 1 with the additional restriction that   cannot 

ask trapdoor for w0 and w1.
6. 	 Guess Phase:   outputs a guess bit ′b  of b and wins the game if � �b b .

Figure 2. System model
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Let Adv Pr b bsCKA
 � �� ��� 1

2
 be the advantage of adversary winning the above defined 

game and the proposed scheme is sCKA secure if the advantage of any adversary winning the sCKA 
security game is negligible.

Game 2: This game defines the indistinguishability of the tracing and normal ciphertext in the selective 
security model. If one can distinguish between these two ciphertexts then we can get information 
about which set of attributes are used for generating them. As we know the attribute set used 
for encryption consists of three disjunctive subsets of public normal (PN) attributes, hidden 
normal (HN) attributes and hidden identity related (HID) attributes. In normal operation HID 
attributes are set as don’t care while during trace HID attributes are set to represent the identity 
of a suspicious user. This discloses an ongoing tracing activity. It consists of the following steps:

1. 	 Initialization: The adversary   commits two challenge attribute set �ξ ξ ξ ξ
0
= ∪ ∪� � �

PN HN HID
 

and ξ ξ ξ ξ
1
= ∪ ∪� �

PN HN HID
*  that   wishes to be challenged upon where ξ

HID
 represents 

the identity of a suspicious user and ξ
HID
*  represents the identity where each bit is set as 

don’t care and submits them to the challenger  .
2. 	 Setup: The challenger   runs the Setup algorithm of the proposed scheme to generate the 

public parameters and gives them to  .
3. 	 Phase 1:   can asks the secret key corresponding to any access structure Tγ  and   answers 

the query only if  the following condition holds:  ξ ξγ γ0 1
 T T( )∧ ( )( )  or 

ξ ξγ γ0 1
 T T( )∧ ( )( ) .

4. 	 Challenge Phase:   submits two challenge keywords w0 and w1 to  . If   obtained the 
secret key such that ξ ξγ γ0 1

 T T( )∧ ( )( )  then w0 and w1 should be of equal length. The 

challenger flips a random coin b and encrypts wb using attribute set ξ
b

 and gives the resulting 
challenge ciphertext to  .

5. 	 Phase 2:   continues to ask the secret key like in phase 1 but if w w
0 1
≠ ,   cannot submit 

the secret query for the access structure Tγ  for which ξ ξγ γ0 1
 T T( )∧ ( )( ) .

6. 	 Guess Phase:   outputs a guess bit ′b  of b and wins the game if ′ =b b .

Let Adv Pr b bIND
 = =


 −′ 1

2
 be the advantage of adversary winning the above defined game 

and in the proposed scheme the tracing and the normal ciphertexts are indistinguishable if the advantage 
of an adversary winning the above defined security game is negligible.

PROPOSED SCHEME

This section discusses the approach used by authors for tracing the key abusers which is embedded in 
the scheme in the construction part given in the subsequent subsection. Finally, this section discusses 
the event when a user leaves the system and explains the necessary system update operations.
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Basic Design
To achieve the security against key abusers we have used the approach proposed by Yu et al. (2009) 
where each user is assigned a unique identity, ID I I In=

1 2
  which is a n - bit binary string and 

each bit corresponds to an attribute. If Ij = 0, then the corresponding attribute, Aj  does not belong 
to the user having identity ID, otherwise A IDj ∈ . So, to incorporate the tracing feature each user’s 
access structure will have an extra n (at most) identity-related attributes in addition to the normal 
attributes corresponding to the access rights assigned to the user. When the data owner generates the 
ciphertext, these identity-related attributes are also used along with the normal attributes. There are 
different ways in which data owner can add the identity-related attributes: i) for tracing activity, data 
owner set these attributes to represent suspicious identity; ii) for normal operation, data owner sets 
these attributes as “don’t care”. During tracing, the data user is tricked to find some keyword which 
is included in the traceable ciphertext and he can generate a valid trapdoor and perform search if his 
identity is same as the one represented by suspicious identity. Now, the data owner can compare it 
with the identity used in traceable ciphertext and if a mismatch is found then data owner can find the 
original holder who has misused his secret key. For making the traceable ciphertext indistinguishable 
from the normal ciphertext, the identity-related attributes are hidden and also some of the normal 
attributes are hidden to avoid detection of ongoing tracing activity upon a failed search. Thus, the 
data user cannot find whether the failed search is the result of his access rights or the mismatched 
identity.

To enable the tracing of secret key abusers, the attributes are broadly divided into two types: i) 
Normal attributes: These attributes are used to assign the access rights to a user, ii) Hidden attributes: 
It contains some of the normal attributes which are fixed at the system setup and all the identity-
related attributes. The normal attributes which are not hidden are called public normal attributes. 
The universe of attributes is represented as Att which consists of universe of public normal attributes, 
AttPN, universe of hidden normal attributes, AttHN and hidden identity-related attributes, AttHID and 
AttHN ∪  AttHID represents the universe of hidden attributes, AttH. Since, some attributes are hidden 
in the access structure of a user therefore our scheme supports partial anonymity. It is assumed that 
the attributes from AttH are fixed at the system setup phase and are never updated.

Further, to handle the user revocation efficiently we have used the proxy re-encryption (PRE) 
(Yu et al., 2010) and lazy re-encryption techniques as used in (Yu et al., 2010; Sun et al., 2016) to 
delegate the computational intensive tasks to the cloud server. PRE scheme enables the semi-trusted 
proxy to convert a ciphertext from one form to another given the proxy re-encryption key i.e. using 
the proxy re-encryption key one can convert the ciphertext encrypted under public parameters, ppa to 
another ciphertext encrypted under public parameters, ppb and vice versa. Using lazy re-encryption 
technique one can aggregate several system operations together to save both computational effort and 
time. When a user is revoked, only the attributes from AttPN needs to be updated because the hidden 
attributes are used only for the purpose of tracing and key management.

Detailed Construction
Before introducing the construction, Table 2 describes the various notations used in the proposed 
scheme as follows:

The details of the algorithms involved in the proposed scheme are given below:

1. 	 Setup Att nλ, ,( ) : Using the attribute universe, Att, define the universe of hidden attributes, 
Att A A A A A

H n n n m
= { }+ +1 2 1

, , , , , ,� � . Here, first n elements corresponds to hidden identity-
related attributes, Att

HID
 and next m elements corresponds to hidden normal attributes,

 Att
HN

. Att
PN

 represents the universe of public normal attributes and 
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Att A A A Att l
PN n m n m n m l PN
= { } =+ + + + + +1 2

, , , :� � , Att n m l = + + . For each attribute, 

i Att
PN

∈ , select random numbers t Z
i k k v p

i
,{ } ∈

≤ ≤1
 and compute T g

i k

t

k v

i k

i

,
,= { }

≤ ≤1
 and for 

each hidden attribute, j Att
H

∈ , choose random numbers, a b Z
j k j k k v p

j
, ,
,{ } ∈

≤ ≤1
 and random 

points, B G
j k k vj
,{ } ∈

≤ ≤1
 and compute B B

j k

a

j k

b

k v

j k j k

j

, ,

, ,,( ) ( ){ }












≤ ≤1

. Finally, select a random 

number, α ∈ Z
p

 and compute Y e g g= ( ),
α

. Select collision resistant one-way hash function, 

H Z
p

: ,
*

0 1{ } → . Output the public parameters, 

pp e g p H Y T B B
i k k v

i Att
j k

a

j k

b

i
PN

j k j k= { }{ } ( ) ( ){ }≤ ≤ ∈

, , , , , , ,
, , ,

, ,

1
11≤ ≤

∈

























k v
j Attj

H

 and master secret 

key, MSK t a b
i k k v

i Att
j k j k k v

j Atti
PN

j
H

= { }{ } { }{ }




≤ ≤ ∈ ≤ ≤

∈

α, , ,
, , ,1 1








.  TTP publishes ver pp,( )  and 

keep ver MSK,( ) , where ver is the version number and initially ver = 1.
2. 	 New user Registration (KeyGen pp MSK, ,γ( ) ): Whenever a new user wants to enroll, he/she 

sends a registration request to TTP. After receiving the registration request, TTP assigns the 
access privilege to that user as follows:

Table 2. Description of the notations used in the proposed scheme

Notation Description

λ Security parameter

ID Unique identity (n-bit binary string) assigned to a user, ID I I I
n

=
1 2
, , ,�

AttPN, AttHN, AttHID
Universe of public normal attributes, hidden normal attributes and hidden identity related 

attributes

Att,  Attribute universe, AttPN ∪  AttHN ∪  AttHID and Keyword space,  = { }w w w
m1 2

, ,,
'

�  

where w
i
= { }0 1, *

Zp, H Group of integers of prime order p and hash function, H, which maps any binary string to Zp

G, GT, g G, GT - Cyclic group of prime order p with generator g

MSK, SK, PSK Master secret key of the trusted third party (TTP), secret key of the user and partial secret key sent 
to the cloud server respectively

ver Version number of the system initialized to 1

pp Public parameters

Cu Ciphertext component corresponding to a user, u, sent to the cloud server

C, TK Ciphertext and trapdoor for a set of keywords
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a. 	 First of all, TTP selects a random number, f Z
u p
← . and adds it to the MSK components 

and computes the corresponding public key component, Y Y
u

fu=  for that user and publish 
it with other pp.

b. 	 TTP constructs an access tree, Tγ  corresponding to the access policy, γ  assigned to a user. 
The root node of Tγ  is an AND gate and all the hidden attributes assigned to a user appears 
at depth 1 of Tγ  while the public normal attributes are present in the subtree, Tr rooted at 
depth 1. Let Att Att

H H
' ⊆  be the set of hidden attributes present in γ .

c. 	 Now, TTP generates the secret key components for the subtree Tr (public normal attributes) 
as follows: [5]
i. 	 TTP defines a random polynomial, q x

i ( )  for each node, i in Tr in top-down manner 
starting from the root node r of Tr.

ii. 	 For each node, i, set the degree, d
i
 of q x

i ( )  to be one less than the threshold value, Ki 
of that node.

iii. 	 For root node r, randomly select a number, v Z
p

∈  and set q v
r

0( ) =  and then randomly 
select K

r
−1  points to define qr completely.

iv. 	 For each non-root node, j T
r

∈  set q q index j
j parent j

0( ) = ( )( )( )  and other K
j
−1  points 

are chosen randomly.
The above process is repeated till the leaf nodes are reached. Let Lr denotes the set of leaf nodes of 
Tr where each leaf node is associated with a public normal attribute taken from Att

PN
. Now, TTP 

outputs secret key component for each leaf node, i L
r

∈  as: D g
i

q

t
i

i k=

( )0
,  where t

i k,
 is the value taken 

by the attribute, Ai.
d. 	 The secret key components corresponding to the hidden identity-related attributes are 

computed as follows:
i. 	 Let ID I I I

n
=

1 2
, , ,�  be the unique identity assigned to the user.

ii. 	 If I
j
= 1 , then for the corresponding A Att

j HID
∈  TTP selects random numbers 

x y Z
j j p
, ∈  and computes: �D g B

j

x

j k

a b y
j j k j k j= ( ),

, , , ˆ , �D g
j

a yj k j= , D gj
b yj k j

Ç

= ,

e. 	 In the similar manner, the secret key components corresponding to the hidden normal 
attributes are generated.

f. 	 Now, TTP calculates x x
j Att

j

H

=
∈

∑
'

 and gets another secret key component, D g v x
0
= − −α .

Finally, TTP outputs the user secret key, SK as follows:

SK ver f D D D D D
u i i L j j j

j Att
r

H

= { }














∀ ∈
∀ ∈

, , , , , ,ˆ
'

0
�

Ç










	

Now, TTP sends the partial secret key, PSK ver D
i i Lr

= { }( )∀ ∈
,  to the cloud server along with 

the identity of the user. PSK contains the secret key components corresponding to the public normal 
attributes. It allows the cloud server to update these components during user revocation. Note that 
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the cloud server cannot generate a valid trapdoor using PSK because of the undisclosed components 
corresponding to hidden attributes.

3. 	 GenIndex pp Att W, ,ξ ⊆ ∈( ) : Before outsourcing a data file to the cloud server, the data 
owner generates the encrypted index for this file using this algorithm. First of all data owner 
defines a set of attributes, ξ ⊆Att  and the set of keywords, W, which will be used for searching 
this data file and then encrypt W with ξ  to generate the index. The set of attributes, ξ  is the 
combination of attributes taken from Att

PN
, Att

HN
 and Att

HID
. So, ξ ξ ξ ξ= ∪ ∪   

PN HN HID
, 

where  ξ
PN PN

Att⊆ ,  ξ
HN HN

Att⊆ , and  ξ
HID HID

Att⊆ . Let an identity corresponding to a
 ξ
HID

 be I I I
n1 2

, , ,�  where I
j
= 0 1/ / * , ∀ ≤ ≤j j n: 1 . Data owner selects a random number 

s Z
p

←  and compute C gs
0
= , C Y s

1
= . The remaining components are computed as follows:

a. 	 For the ciphertext components corresponding to  ξ
PN

, the data owner computes 
C T
i k i k

s

i PN
, ,
= { }

∈
�

�ξ
and for some fixed attribute, ′ ∈i

PN
 ξ  (position is publicly visible), set 

C T
i k i k

s H w
wj W

j

′ ′

( )
=

∏
∀ ∈

, ,
.

i. 	 For the ciphertext components corresponding to ξ
HID

, the data owner selects random 

numbers r Z j n
j k k v p

j
,

;{ } ← ≤ ≤
≤ ≤1

1  and computes ˆ ,
, ,

,�

C C
j k j k

j n k vj

Ç









 ≤ ≤ ≤ ≤1 1

 as follows:

ii. 	 If Ij = 0, data owner sets ˆ ,
, ,C C
j k j k

Ç










 as random (mal-formed components) and if Ii = 

1 then data owner sets ˆ , ,
, , , ,

,
,

,
,

C C B B
j k j k j k

a
r

j k

b
s r

j k
j k

j k
j k

Ç










= ( ) ( ) −










 as well-formed components.

b. 	 If Ij = *, then data owner sets ˆ , ,
, , , ,

,
,

,
,

C C B B
j k j k j k

a
r

j k

b
s r

j k
j k

j k
j k

Ç










= ( ) ( ) −










 as well-formed 

components.
c. 	 The ciphertext components corresponding to ξ

HN
 are computed in the same manner as 

stated in step b.

In addition to these components, data owner computes a ciphertext component, Cu for each newly 
registered user, u, with whom he wants to share his data by allowing him to search his encrypted data 
files as, C Y

u u
s= −  and send it to the cloud server along with the identity of the user. The cloud server 

stores this information in a list, LU of legitimate users. Finally, output ciphertext, 

C ver C C C C C
i k i k v j k j k

PN i

= { }










∀ ∈ ≤ ≤
, , , , ,ˆ

, , , ,0 1 1ξ

Ç













∀ ∈ ≤ ≤j k vHN jξ ,1

4. 	 GenTrap pp SK W, , '( ) : When a legitimate user wants to find a document which contains a set 
of keywords, W ' , he generates a trapdoor by selecting a random number, u Z

p
←  and computing; 



Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

125

Q Du
0 0
= , Q u f

u1
= + , � �Q D Q D Q D

j j

u

j j

u

j j

u

= ( ) = ( ) =























, ,ˆ ˆ
Ç Ç

∀ ∈j AttH'
, for the same ′i  as in 

GenIndex , get Q D
i i

u

H w

i L

wj W
j

r

′ ′

( )

∈

=
∏



















∀ ∈ ′ 
 

 and Q D
i k i

u

i L ir
,

\

= ( ){ }
∀ ∈ ′

.

Finally, output TK ver Q Q Q Q Q Q
j j j

j Att

i i L

H

r

=











{ }

∀ ∈
∀ ∈

, , , , , ,ˆ
'

0 1
�

Ç










.

5. 	 Search pp C C TK
u

, , ,( ) : Cloud server will execute this algorithm and output:
a. 	 The secret key components corresponding to the public normal attributes are combined with 

the corresponding ξ
PN

 components of the ciphertext as follows:
i. 	 For each attribute, A

i PN
∈ ξ , let C C

i i k
'

,
=  where value taken by Ai is Ai,k. For each leaf 

node, x L
r

∈  (assuming att x( )  represents the attribute, Ai associated with node x) and 
for the ciphertext component corresponding to each A

i PN
∈ ξ , compute:

F
e Q C e g g if att x andW W

otherwx
i i

suq

PN

x

= ( ) = ( ) ( ) ∈ =

⊥

( )
, , , '

,

' 0
ξ

iise








	

For the attribute, ′ ∈i
PN
ξ , e Q C

i k i k′ ′( ), ,
,  is also equal to e g g

suqi,( ) ( )0
.

ii. 	 Now, for each non-leaf node, y of Tr, recursively execute the following step in bottom-up 
manner: For each child x of y, construct a ky sized set Sy (initially empty) which contains 
child of y such that F

x
≠⊥  and compute, Fy as follows:

F F e g g
y

x S
x

x S

suq

y

x Sy

y

x x Sy= = ( )
∈

∆ ( )

∈

( )∆ ( )
∏ ∏

, ,,
0 0 0

	

By construction,

F e g g
y

x S

suq index x

y

parent x x Sy= ( )
∈

( )( )∆ ( )
∏ ( ), , 0

	

By Lagrange Interpolation method,

F e g g
y

suqy= ( ) ( )
,

0
	

This recursion is repeated till the root node, r is reached:

F e g g e g g
r

suq suvr= ( ) = ( )( )
, ,

0
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b. 	 For each attribute, A
j H
∈ ξ , let ˆ ˆ, ,’

’

, ,C C C C
j j j k j k

Ç Ç














=










  where value taken by Aj is Aj,k. The 

secret key components corresponding to the hidden attributes are combined with the 
corresponding ξ

H
 components of the ciphertext as follows:

F
e C Q

e C Q e C Q

H
j Att

j

j j j j

H

=
( )


















∈
∏

0
,

, ,ˆ ˆ'

'

�

Ç Ç





= ( )e g g
sux

, 	

The following equation holds if γ ξ( ) = 1  and W =W' :

C C e C Q F FQ

u r H1 0 0
1 ⋅ = ( ) ⋅ ⋅, 	

6. 	 Trace: For each id, choose a set of attributes, ξ ξ ξ ξ= ∪ ∪
PN HN HID

, such that ξ  satisfies the 
access structure of id. Randomly choose a keyword, w ∈  and get the index. Check if the 
suspected user is able to search w. If it does, stop and return id. Otherwise, continue.

Correctness

C C Y Y e g gQ

u
s
u f

u
s suu

1
1 ⋅ = ( ) = ( )

+
− ,

α
	

e C Q F F e g g e g g e g g e g g
r H

s u v x suv sux

0 0
, , , , ,( ) ⋅ ⋅ = ( ) ⋅ ( ) ⋅ ( ) = ( )− −( )α αssu

	

User Revocation
When a user is revoked from the system then he/she should not be able to generate a valid trapdoor. 
For this purpose, TTP first determines the minimal set of attributes without which the revoked user’s 
access structure will never be satisfied and he will never be able to generate a valid trapdoor. So, 
TTP should update these attributes by defining new MSK and pp corresponding to all the updated 
attributes and should update secret key for all the remaining users and further the index also needs 
to be re-encrypted with the modified pp. This whole process incurs a heavy computational burden 
on TTP and also need TTP to remain online. To avoid this overhead of heavy computations we have 
used proxy re-encryption and lazy re-encryption techniques where these computations are delegated 
to the cloud server. Whenever a user is revoked from the system the version number is incremented 
by 1. The process of user revocation is divided into the following two stages:

1. 	 In the first stage, TTP determines the minimal set, S Att
PN

⊆  of attributes that needs to be 
updated for the revoked user having identity, id. For each attribute, i S∈ , TTP selects a new 
MSK component, t

i
' , compute pp component, T g

i

ti' '

=  and generates the corresponding re-

encryption key, rk
t

ti
i

i

=
' �

 and for the remaining attributes set rk
i
= 1 . TTP sends 
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rk id S ver rk T
i i

= , , , , '�  to the cloud server and go offline. On receiving this information, the 
cloud server removes the revoked users from LU and compares the ver in rk with the current ver 
of the system. If it is less than the current ver then the cloud server discards rk, otherwise, stores 
the re-encryption key.

2. 	 The second stage of user revocation starts when the cloud server receives a trapdoor for a particular 
keyword. On receiving the trapdoor request cloud server first determines if the requesting user 
is a legitimate by checking his entry in L. If the user belongs to L list, the cloud server gets the 

PSK ver D
i i Lr

= { }( )∀ ∈
,  tuple stored at the cloud server at the time of key generation. If ver is 

already the latest version then the cloud server will not update the index or the secret key 
components else calls ReGenIndex and ReKeyGen algorithm, only when it receives a trapdoor 
for a particular keyword. Thus, reduces a lot of computational burden from the cloud server by 
aggregating multiple re-encryption keys. This technique of re-encryption is called lazy re-
encryption where the index is re-encrypted once with aggregated re-encryption keys, 

RK rk
t

t

q

i
i

q

i

= =
=

( )

∏
ρ

ρ

2

 where q  is the latest version. Now, compute C C
i

q

i

RK( ) = ( )  and 

D D
i

q

i
RK( ) = ( )
1

. The cloud server replaces the old Ci components with the updated C
i

q( )  

components and sends the updated secret key components, D
i

q( )  to the user and finally the cloud 
server can remove the id of the revoked user and the associated data from LU. On receiving the 
updated D

i

q( )  components from the cloud server, the user can verify whether the cloud server 

has correctly computed them by checking e T D e T D
i i i

q

i

q
, ,( ) = ( )( ) ( ) .

ANALYSIS OF THE PROPOSED SCHEME

This section gives the detailed security analysis of the proposed scheme and also gives a comparative 
analysis of the proposed scheme with similar existing scheme in terms of storage and computational 
cost.

Security Analysis
(IND-sCKA) Indistinguishability of keywords against chosen keyword attack in selective security 
model. The following theorem guarantee the semantic security of keywords in selective security model:

Theorem 5.1: The proposed scheme is IND-sCKA secure under DBDH assumption if ∀  
(probabilistic polynomial time adversary), the advantage, ε  of winning the security game is negligible.

Adv Pr b bIND sCKA


� � �� �� �� 1

2
� 	

Proof: Let there exists an adversary   who can win the IND-sCKA game with advantage ε  

then there exists a challenger  . who can break the DBDH assumption with advantage 
ε
2

, given 

an instance g g g Zz z z1 2 3, , ,( ) of DBDH assumption.   simulates the IND-sCKA game defined 
in security model as follows:
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1. 	 Initialization:   selects the challenge attribute set ξ ξ ξ ξ* * * *= ∪ ∪
PN HN HID

, a version number 

ver*  and a set of public normal attributes S
ver

�

�

� �
� � �

� �
1 1

*

 and gives them to the challenger  .

2. 	 Setup:   sets Y e g g e g gz z z z� � � � � �1 2
1 2

, ,  and implicitly defines � � z z
1 2

. Randomly 

choose � � Zp  and set Y Yu �
� . Now, for each value of an attribute A Atti PN∈ , choose a 

random number r Zi k p, ←  and if Ai PN�� * , set T gi k
ri k

,
,= ; otherwise, set T gi k

z ri k
,

,= 2 . For 

each value of an attribute A Attj HID∈ , choose a random number h Zj k p, ← , and if Aj HID�� *  

set B gj k
hj k

,
,=  else set B gj k

z hj k
,

,= 2 . Now publish the pp by choosing a b Zj k j k p, ,, ←  for 

version 1. For each attribute set S
ver

�

�

� �
� � �

� �
2 1

*

,   generates the re-encryption key rk �� �  and 

the corresponding pp for that version. For each attribute, i S� � �� , choose a random number 

rk Zi k p,
�� � �  and set T Ti k i k

rki k
, ,

,� �
�

�� � � �� � �
� �

1 and for the remaining attributes i S� � �� , set rki k,
�� � �1  

and sends the rki k,
�� �  to  . The remaining pp for version � �1 are same as version ρ .

3. 	 Phase 1: In this phase   can ask secret key for any access policy γ  represented by Tγ , such 

that ξ γ
* T . Depending upon the structure of Tγ ,   defines the following two cases and 

answers the secret key queries accordingly:
a. 	 Case 1- ξPN rT

*  : Here,   generates the secret key components corresponding to the 
hidden attributes in the same manner as in the original scheme and to generate the secret 
key components corresponding to TR ,   uses the PolySat x PN x , ,

*� �� �  and 

PolyUnSat gx PN
x , ,

*� �� �  procedures defined in [Goyal] to assign a polynomial Qx  

for every node in Tr .   calls PolyUnSat T gr PN
z r

, ,
*� 1

� �� �  by choosing a random number 

� �r Z p  and impl ic i t ly  sets  q z rr 0 1� � � � �  and then recurs ively  cal ls 

PolySat q index xx PN r , ,
*� � �� �� �  for each satisf ied child, x  of node r  and 

PolyUnSat g
x PN

q index xr , ,*ξ ( )( )( )  for each unsatisfied child, x of node r to get qx. Now,   

defines the final polynomial Q z q
x x
⋅( ) = ⋅( )2

 for each node x of T
r

 and defines the secret 
key components corresponding to each leaf node of T

r
 as follows, where each leaf node x 

corresponds to an attribute A
i
:

D
g g g if att x

g

x

Q

t

z q

r z

q

r
PN

Q

x

i k

x

i k

x

i k

=
= = ( ) ( ) ∈

( ) ( ) ( )0 0 02

2, , , , *ξ
xx

i k

x

i k

x

i kt

z q

z r

q

r
g g Otherwise

0 0 02

2

( ) ( ) ( )

= =









 , , , ,

	

Finally set D g g gv x z z z z r x z r x

0
1 2 2 1 2= = =− − − +( )− − −′ ′α , where x is generated while computing 

secret key components corresponding to hidden attributes. Now, for 2 ≤ ≤ρ ver *  if 
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an attribute A S
i
∉ ( )ρ , set rk

i k,

ρ( ) = 1 . Otherwise, for each A S
i
∈ ( )ρ ,   computes 

R rk
i i k
ρ

ω

ρ
ω=

=

−

∏
2

1

,
 and set D D g

x x
R

z

q

r R
i

x

i k i= ( ) = ( )
( )1 0

2ρ ρ
,  if att x

PN( ) ∈ ξ*  else set D g
x

q

r R

x

i k i= ( )
( )0

,
ρ .

b. 	 Case 2- ξ
PN r

T*  : Here,   generates the secret key components corresponding to the PN 
attributes in the same manner as in the original scheme. Since ξ

PN r
T*  , therefore the hidden 

attributes in Tγ  does not match ξ
H
* . Let A

j
 be a hidden attribute which is not meant by 

ξ
HID
* . For the hidden attributes, randomly choose x Z

i i

m n

p
'

∀ =

+
←

1
 and set x z z x

j j
= +

1 2
'  and 

x x
i i
= '  for every i j≠ . Now, set x x z z x

i

m n

i
i

m n

i
= = +

=

+

=

+

∑ ∑
1

1 2
1

'  and compute �D
j

=

g B g g
x

j k

a b y x z h
a b y

j j k j k j j j k
j k j k j

,

, ,
'

,
, ,

'

( ) = ( )2 , where y
j
'  is chosen by   and y

z

a b h
y

j
j k j k j k

j
=

−
+1

, , ,

' . 

Now ˆ ,D D
j j

Ç










 are computed in the same manner as �D

j
 and for i j≠ , �D D D

i i i, ,ˆ
Ç











 are 

computed l ike in the or iginal  scheme. Finally compute the component, 

D g g gv x
z z v z z x v x

i

m n

i
i

m n

i

0

1 2 1 2
1 1= =
∑
=

∑
− −

− − − − −
=

+

=

+

α

' '

, where v is generated while computing secret 
key components corresponding to Tr.

Finally,   sends the secret key SK to   and using the secret key credentials,   can also answer 
the trapdoor query for any keyword, w. In addition,   maintains a list, Lt of the keywords and the 
corresponding trapdoor value for which adversary had asked the trapdoor. If the queried keyword w 
∉  Lt, then   answers the query by looking into Lt. If w ∉  Lt, then C� generates the credentials to 
answer the query and adds w and the corresponding trapdoor value to Lt.

4. 	 Challenge Phase:   submits two keywords w w
0 1
,  of equal length such that w w L

t0 1
,{ } ∉  and 

send them to  . Now,   flips a fair coin, b and encrypts the corresponding keyword w
b

 to 
generate the challenge ciphertext as follows: First,   implicitly sets s z=

3
 and for ver *  computes 

C gz
0

3= , C Z
1
= , C g

i k

z
r Ri k i

ver

,

,

*

= ( )








3 , C g
i k

z
H w r Rb i k i

ver

′

( )
= ( ) ′ ′









,

,

*

3 , C Z
u
= −θ . The remaining 

components ˆ ,
, ,C C
j k j k

Ç










 can also be generated correctly because B

j k,
 does not contain the 

unknown z
2

 if A
j k H,

*∈ ξ  (the kth occurrence of attribute j belongs to ξ
H
* ), otherwise ˆ ,

, ,C C
j k j k

Ç










 

are randomly chosen. Note that if Z e g g
z z z

= ( ), 1 2 3  then the challenge ciphertext is a valid 
encryption of keyword wb, otherwise it represents some random value.

5. 	 Phase 2:   continues to query like in phase 1 with the restriction that   cannot query the 
trapdoor for wb if γ ξ

*( ) = 1 .

6. 	 Guess Phase:   submits her guess ′b  of b. If Z e g g
z

= ( ),  where z is a random number from 

Zp then   gets no information about b but a random guess. So Pr b b Pr b b=

 = = ≠


′ ′1

2
. 
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So, the challenger correctly guesses z to be some random when b b≠ ′  with probability 1
2

. If 

Z e g g
z z z

= ( ), 1 2 3 , then ciphertext represents a valid encryption of wb and Pr b b=

 = +′ 1

2
ε . 

So the challenger correctly guesses z to be z z z
1 2 3

 when b b= ′  with probability 1
2
+ ε . Therefore, 

the probability of correctly guessing z given the DBDH challenge instance g g g Zz z z1 2 3, , ,( )  is 

1

2

1

2

1

2

1

2 2
+ +










= +ε

ε  and the advantage with which the challenger can solve the DBDH 

problem is 1
2 2

1

2 2
+ − =
ε ε , if   wins the sCKA game with advantage ε . However, the DBDH 

problem is a known hard problem having negligible advantage so ε  is also negligible and this 
proves that the proposed scheme is secure against sCKA.

Theorem 5.2: In the proposed scheme it is hard to distinguish the tracing ciphertext and the 
normal ciphertext under Decision Linear assumption.

Proof: Let there exists an adversary   who can win the Indistinguishability game (IND - G) 
with advantage ε  then we can build a simulator   that can solve the Decision Linear problem with 

advantage ε
2

, given an instance g g g Z g gz z z z z z, , , , ,1 2 1 4 3 4+( ) of decision linear assumption.

Before the beginning of IND-game,   commits two attribute sets ξ ξ ξ ξ
0
= ∪ ∪

PN HN HID
 and 

ξ ξ ξ ξ
1
= ∪ ∪

PN HN HID
* , where in ξ

HID
 contains the attributes corresponding to identity of the 

suspicious user and ξ
HID
*  represents the identity where each bit is don’t care. The indistinguishability 

of tracing and normal ciphertext uses a sequence of games where the original game takes the identity 
of suspicious user in ξ

0
. The IND – G1 is same as the original game except that in ξ

0
, ξ
HID

 represents 
the identity I

1
* * * *⋅ ⋅ ⋅ , where only the first bit is kept same as in the original game and remaining 

n - 1 bits are set as don’t care. In IND – G2 the first two bits are kept same and the remaining n - 2 
bits are set as don’t care and so on. Thus, the IND – Gn represents the original game. Now, to prove 
the indistinguishability of tracing and normal ciphertext, it is sufficient to prove the IND – G1 and 
IND – G1+1 are indistinguishable. In the sequence of games from IND – G1 to IND – Gn every time 
by replacing the original bits from the upper side with the don’t care bits, we can embed the decision 
linear challenge in the ciphertext in such a way that if IND – G1 and IND – G1+1 are distinguishable 
then it leads to the distinguishability of the decision linear challenge.

  simulates the IND-Game defined in security model as follows:

1. 	 Initialization: In this phase,   selects two challenge attribute set �ξ
0
 and ξ

1
, where the difference 

lies only in the set of hidden attributes related to identity, ξ
0
 contains ξ

HID
 attributes related to 

the identity of suspected user while ξ
1

 contains don’t care values for each attribute in ξ
HID

 and 
gives them to the simulator  . Now,   flips a fair coin b and

2. 	 Setup: In this phase,   sets the pp based on the decision linear challenge.   sets Y e g g= ( ),
α

 
where α  is known to  . Randomly choose θ← Z

p
 and set Y Y

u
= θ . For the normal attributes, 

parameters are set in the similar manner as in proof of theorem 1. For each value of an attribute 
A Att
j HID
∈ , choose a random number h Z

j k p,
← , and if A

j HID HID
∈ ∩ξ ξ*  set B g

j k

hj k
,

,=  else 
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set B g
j k

z hj k
,

,= 2 . Finally,   publishes the pp  by choosing the random numbers 

a b Z
j k j k k v p

j
, ,
,{ } ←

≤ ≤1
 but for a b

j k j kl l l l, ,
,  set a z

j kl l,
=

1
 and b z

j kl l,
=

2
 and compute B g

j k

a z
h

l l

jl kl
jl kl

,
, ,

= ( )1  

and B g
j k

b z
h

l l

jl kl
jl kl

,
, ,

= ( )2  without knowing z
1

 and z
2

.
3. 	 Phase 1: In this phase,   can ask the secret key for any access structure T such that 

ξ ξ
0 1
 T T∧( )  or ξ ξ

0 1
 T T∧( ) . The secret key components corresponding to subtree 

TR and the hidden normal attributes in T are generated in the same manner as the original scheme. 
If there exists a HID attribute A Att

j k HIDl l,
∈  such that A T

j kl l,
∉  then it is easy to find the 

corresponding secret key component, otherwise   needs to compute the corresponding secret 
key components as follows where a z

j kl l,
=

1
 and b z

j kl l,
=

2
:

�D g B g g g
j

x

j k

a b y x h
z z y

x

l

jl

l l

jl kl jl kl jl jl jl kl
jl jl= ( ) = ( ) =

,

, , ,
1 2 ''

	

Where x
jl

 is randomly chosen such that x x h z z y
j j j k jl l l l l
= −'

, 1 2
, and x

jl

'  is a random number 

chosen by  . Similarly,   can compute the remaining secret key components ˆ ,D D
j j
l

l

Ç









 . To find 

the secret key components corresponding to HID attributes in T for the given challenge attribute set, 
ξ
b

, we consider only the case where ξ ξ
0 1
 T T∧( )  because as per the definition in the security 

model if ξ ξ
0 1
 T T∧( )  then the challenge keywords will be equal and   simply terminates. 

Since, ξ ξ
0 1
 T T∧( )  hence there exists some attribute A

m b
∉ ξ , and in this case   computes 

the secret key components by selecting a random number x Z
m p
' ←  and set x x h z z y

m m j k jl l l
= +'

, 1 2
 

and compute:

�D g B g g
m

x

m k

a b y x h z z y z h
a b

m m k m k m m jl kl jl m k
m k m

= ( ) = ( )+

.

, ,
'

, ,
,

1 2 2
� ,, ’

,
, ,

’�k m
m m k

m k m k my
x z h

a b y

g g= ( )2 	

Here y
m

 is chosen at random such that y y
z h y

a b hm m

j k j

m k m k m k

l l l= −'
,

, , ,

1  where y Z
m p
' ←  is chosen 

randomly by  .

S imi la r ly,    can  compute  ˆ ,D D
m m

Ç









 .  F ina l ly,  fo r  j j m

l
≠ , ,    computes 

x x x x x x h z z y x h z
j

n

j j m
j j m

n

j j j k j m j kl

l

l l l l l l
= = + + = − + +

= ≠
∑ ∑
1

1 2
,

'
,

'
, 11 2
z y x x x x

j
j j m

n

j j m
j j m

n

jl

l

l

l

+ = + +
≠ ≠
∑ ∑
,

' '

,

. 

Now,   can compute D g v x
0
= − −α  where v is calculated while computing secret key components 

for T
R

 like in the original scheme and a is already known to  .

4. 	 Challenge Phase: In this phase,   submits two challenge keywords, w w
0 1
,{ }  of equal length 

and if   had asked for the secret key corresponding to T in phase 1 such that ξ ξ
0 1
 T T∧( )  



Journal of Organizational and End User Computing
Volume 32 • Issue 4 • October-December 2020

132

then w0 should be equal to w1. Now,   tosses a fair coin b and encrypts w
b

 using the attribute 

set ξ
b

 by setting C gz z

0
3 4= + , C e g gz z

1
3 4= ( )+,

α
 which implies s z z= +

3 4
.   generates the 

ciphertext components corresponding to ξ
PN

 and ξ
HN

 as in the original game and the ciphertext 
components corresponding to HID attributes in ξ

b
 are generated in the same manner as IND G

l
−  

with the exception that the components ˆ ,
, ,C C
j k j k
l l

l l

Ç










 are computed as follows: 

ˆ
, ,

,
, ,

C B g
j k j k

a
r

z z
h

l l l l

jl kl
jl kl jl kl= ( ) = ( )1 4  and C B Zj k j k

b
s r

h

l l
l l

jl kl
jl kl jl kl

Ç

, ,
,

,
,= ( ) =

−

 without knowing z z
1 4

 and 

z z
2 3

. If Z gz z= 2 3  then the components are well-formed and   is in the game IND – Gl, otherwise 
  is in the game IND – Gl+1.

5. 	 Phase 2:   can continue secret key queries like in phase 1.
6. 	 Guess Phase: Here,   outputs b '  as its guess for bit b and gives it to   and the difference of 

probability that   guesses b correctly in IND – Gl and in IND – Gl+1 is negligible because if 
Z gz z= 2 3  then   is in the game IND – Gl and if Z is random then   is in the game IND – Gl+1. 
This implies distinction of IND – Gl and IND – Gl+1 leads to the distinction of decision linear 
challenge which is a known hard problem.

Storage and Computational Cost Analysis
This section compares the storage and computational cost of the proposed scheme with the existing 
key policy attribute-based keyword search schemes.

As shown in the Table 3, in the proposed scheme the size of the secret key, the encrypted index 
and the trapdoor varies proportionally with the number of attributes like in the similar existing schemes 
except in the scheme proposed by Mamta and Gupta (2019a) where the target was to make them 
independent of the number of attributes. Therefore, with respect to performance nothing remarkable 
has been achieved but the authors have managed to incorporate phenomenal features like the proposed 
scheme can trace the secret key abusers, thus ensures accountability and also it can handle the event 
of user revocation efficiently by delegating the computational intensive tasks to the cloud server, thus 
reduces computational burden over the data owner and the trusted third party.

Performance Analysis
To evaluate the performance, the authors have implemented the proposed scheme in JAVA using 
Netbeans-8.1 IDE and java pairing based cryptography library (JPBC) (Caro & Iovino, 2011) on a 
64-bit windows-10 system with Intel core i3 processor 2.00 GHz and 4 GB RAM. In JPBC to instantiate 
Bilinear map we have used Type A pairing constructed on elliptic curve, y x x2 3= +  over a field 
F
q

, where q mod≡ 3 4  is some prime. In this pairing both G1 and G2 are the group of points from 

E F
q( )  and hence it is called symmetric pairing. The size of the base field is set to be 512-bit which 

offers a security equivalent to 1024-bit DLOG (Caro & Iovino, 2011) and the order, p of source group 
G and target group GT is set to be 160-bit. To demonstrate the performance, the authors have varied 
the number of attributes in the attribute universe, the access policy and in the set ξ  from 10 to 50 
with a step length of 10 and in each step the experiment has been executed 10 times to find the average 
time taken by each algorithm which is listed below in Table 4.

From Table 4, it is observed that the running time of all the algorithms varies linearly with 
the number of attributes as all of the algorithms contain components proportional to the number 
of attributes. For the better demonstration of the experimental results, the authors have plotted the 
average execution time taken by each algorithm against the number of attributes in Figure 3.
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Table 3. Comparison of storage and computational cost with similar existing scheme

Scheme Algorithm Storage Cost Computational Cost

Zheng et al. (2014)

KeyGen 2N G( ) 3NE NH+

GenIndex ξ +( )3 G ξ ξ+( ) +4 E H

GenTrap 2 2N G+( ) 2 2N E+( )

Search 2 2ξ ξ+( ) +P E
T

Li et al. (2017)

KeyGen 2 4 1N G Z
p

+( ) + 2 6N E+( )

GenIndex K G G
T
+ +( )ξ 2 ξ +( ) + +2 2E KE KH

T

GenTrap 2 2N G+( ) 2 1E H+

Search 2 2 1ξ ξ+( ) + +P E H
T

Ameri et al. (2018)

KeyGen 2N G( ) 2 1N E NH+( ) +

GenIndex ξ +( ) +3 1G Z
p

ξ ξ+( ) + +( )4 2E H

GenTrap 2 1N t G+ +( ) 2 1 1N t E t H+ +( ) + +( )

Search 2 2ξ ξ+( ) + +P E tE
T

Mamta & B. B. 
Gupta (2019a)

KeyGen 1 3Z G
p
+ 3 1E H+

GenIndex ξ + +( )3 2U G ξ +( ) + +( )6 1E K H

GenTrap 6G 7 1 1E P H+ +

Search ξ +( ) +2 6E P

Proposed Scheme

KeyGen mN mN G Z
p

' ''+ +( ) +3 1 1 mN mN E E
T

' ''+ +( ) +4 1 1

GenIndex m m G G
T

ξ ξ'+ +( ) +′′2 1 1 m m E E KH
T

ξ ξ'+ +( ) + +′′2 1 1

GenTrap mN mN G Z
p

'+ +( ) +′′3 1 1 mN mN E KH'+ +( ) +′′3 1

Search m m P E E
T

ξ ξ ξ' '+ +( ) + +′′3 1 1

Notations used in Table 3:
G - Source group; GT - Target group; K - # of keywords; H - Hash operation; Zp - Group of integers of prime order, p P - Pairing operation in Bilinear 

Maps; E - Exponent operation in Source group ET - Exponent operation in Target group; N - # of attributes associated with access policy ξ −  # of 
attributes associated with users; ξ '−  # of public normal attributes associated with users
ξ ''−  # of hidden attributes associated with users; N '−  # of public normal attributes associated with the access policy; N ''−  # of hidden 

attributes associated with the access policy; m - # of possible values an attribute can take
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Figure 3-a) shows the average execution time of KeyGen algorithm and it can be observed that 
the average time varies linearly with the number of attributes. The reason for this linear relation are 

the components, Di i Lr
� �� �

 and 
� � �D D Dj j j j AttH
, ,

'
� �

� �  which depends upon the number of attributes 

(public normal and hidden attributes respectively). Figure 3-b) shows that the average execution time 
of GenIndex algorithm also increases with the increase in number of attributes because of the 

components, C
i k i k vPN i
, ,

{ }
∀ ∈ ≤ ≤ξ 1

 and ˆ ,
, ,

,

C C
j k j k

j k vHN j

Ç









∀ ∈ ≤ ≤ξ 1

 which varies with the number of 

attributes. Also, the average execution time shown in Figure 3-c) and 3-d) is directly proportional to 
the number of attributes. The trapdoor is generated using secret key which varies with the number 

Table 4. Average execution time (second) of the proposed scheme (# of attributes in attribute universe, access policy and the 
set ξ  are kept same and m is set to 1)

# of attributes 10 20 30 40 50

KeyGen 0.812493 1.672628 2.449628 3.181871 3.967871

GenIndex 1.0353108 1.336525 1.745529 2.051441 2.324317

GenTrap 0.597493 0.917628 1.20123 1.586872 1.803499

Search 0.4749731 0.68453 0.957417 1.175047 1.312767

Figure 3. Average execution time of the proposed scheme
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of attributes and thus GenTrap algorithm time will also vary in the same way. In the Search algorithm, 
the number of pairing operations and the exponentiation operations in the target group increases with 
the increase in the number of attributes which causes the linear graph shown in Figure 3-d). The 
asymptotic complexities shown in Table 3 exactly matches the simulation results shown in Table 4 
and Figure 3, thus ensures the proposed scheme is correct.

CONCLUSION

In this paper, the authors have developed a secure fine-grained multi-keyword scheme using key 
policy design framework. The proposed efficiently handles user revocation using proxy and lazy 
re-encryption techniques. Since in the proposed scheme the access right is associated with the secret 
key of the user so any user can misuse his/her access privilege by giving his secret key to other users. 
In order to keep a check on such users the authors have added traceability feature where such key 
abusers can be traced. Finally, the authors have proved that the proposed scheme is secure against 
selective chosen keyword attack under Decisional Bilinear Diffie-Hellman assumption and also 
proved that the ciphertext generated during normal operation and during trace activity are completely 
indistinguishable under Decision Linear assumption in the selective security model. In future, the 
aim is to reduce the computational cost and make it independent of the number of attributes involved.
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