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ABSTRACT

Knowledge discovery in databases (KDD) aims to exploit the large amounts of data collected every day 
in various fields of computing application. The idea is to extract hidden knowledge from a set of data. 
It gathers several tasks that constitute a process, such as: data selection, pre-processing, transformation, 
data mining, visualization, etc. Data mining techniques include supervised classification and 
unsupervised classification. Classification consists of predicting the class of new instances with a 
classifier built on learning data of labeled instances. Several approaches were proposed such as: the 
induction of decision trees, Bayes, nearest neighbor search, neural networks, support vector machines, 
and formal concept analysis. Learning formal concepts always refers to the mathematical structure 
of concept lattice. This article presents a state of the art on formal concept analysis classifier. The 
authors present different ways to calculate the closure operators from nominal data and also present 
new approach to build only a part of the lattice including the best concepts. This approach is based on 
Dagging (ensemble method) that generates an ensemble of classifiers, each one represents a formal 
concept, and combines them by a voting rule. Experimental results are given to prove the efficiency 
of the proposed method.

Keywords
Classification Rules, Closure Operator, Dagging, Data Mining, Ensemble method, Formal Concept Analysis, 
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INTRODUCTION

The classification approach, which is based on formal concept analysis, is a symbolic approach 
allowing the extraction of correlations, reasons and rules according to the concepts discovered from 
data. Many learning methods based on Formal Concept Analysis are proposed, such as: JSM-method 
(Blinova, Dobrynin, Finn, Kuznetsov & Pankratova, 2003), CLANN (Tsopze, Mephu-Nguifo & Tindo, 
2007)), CITREC (Douar, Latiri & Slimani, 2008), NAVIGALA (Visani, Bertet & Ogier, 2011), HMCS-
FCA-SC (Ferrandin et al, 2013), SPFC (Ikeda & Yamamoto, 2013) and MCSD-FCA-PS (Buzmakov 
et al, 2016). Unfortunately, this approach encountered some problems such as exponential complexity 
(in the worst case), a high error rate and over-fitting (Meddouri & Maddouri, 2008,2010). Most of 
them handle only binary data. The construction of the all concepts can be either exhaustive or non-
contextual. There is absence of the adaptive selection of concepts (Meddouri & Maddouri, 2008).

For these reasons, we focused in our research on ensemble methods used to improve the error 
rate of any single learner. We proposed BFC (MeddouriI & Maddouri, 2009) and BNC (Meddouri 
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& Maddouri, 2010) methods based on sequential learning (Boosting). All the data are considered 
in each learning step and weights are assigned to learning instances. However, it was proved that 
sequential learning (Boosting) is not interesting, insufficient for a more efficient classifier as Decision 
Tree (Meddouri & Maddouri, 2010). Other ensemble learning methods exists, and they are based on 
parallel learning. The difference between these two ensemble methods, derives from how to select 
data for learning. They are distinguished by the data sampling techniques as Bootstrapping used 
to learn the classifiers from particular subsets. The particularity of learning from a Bootstrap is to 
combine hard learning instances to misleading instances in the training set (unlike the sequential 
approach) (Breiman, 96a, 96b). The best known method, which is based on this type of learning is 
Dagging (Disjoint samples aggregating) (Kotsiantis, Anyfantis, Karagiannopoulus & Pintelas, 2007) 
that creates a number of disjoint groups and stratified data from the original learning data set (Ting 
& Witten, 1997), each considered as a subset of learning. The classifier is built on this learning sets. 
The predictions are then obtained by combining the classifiers outputs by majority voting (Ting & 
Witten, 1997). This method has shown its importance in recent work (Meddouri, Khoufi & Maddouri, 
2014). Then, we propose to use this technique in this work to study the classifier ensembles based on 
formal concepts, since, no study has focused on the formal concepts in the context of parallel learning.

In section 2, we present a state of the art on Formal Concept Analysis. In section 3, we propose 
classifiers using closure operators based on Formal Concept Analysis. In the section 4, an experimental 
study is presented to evaluate the performance of nominal classifiers based on different closure 
operators. An experimental study is also presented showing the importance of parallel learning 
compared to single learning for classifiers based on Formal Concept Analysis.

FORMAL CONCEPT ANALYSIS AND CLASSIFICATION

Definition

A formal context is a triplet I A R, , , where  = …{ }i i i
n1 2

, , ,  is a set of n instances, 
 = …{ }a a a

m1 2
, , ,  a set of m binary attributes and   is a binary relation defined between   and 

 .  i a
k l
,( )  = 1 means that kth  instance i

k
 verifies the l th  attribute a

l
 in relation   (Stumme, 

Ganter & Wille, 2005). The context is often represented by a cross-table or a binary-table as shown 
in Table 11.

Let X ⊆   and Y ⊆   be two finite sets. For both sets X  and Y , operators ϕ X( )  and δ Y( )  
are defined as:

•	 ϕ X y x x X and R x y( ) = ∀ ∈ ( ) ={ }| , ~ ~ , 1

•	 δ Y x y y Y and R x y( ) = ∀ ∈ ( ) ={ }| , ~ ~ , 1

Operator ϕ  defines the properties shared by all elements of X . Operator δ  defines the instances 
which share the same attributes included in Y . Operators ϕ  and ´  define the Galois connection 
between sets   and   (Stumme, Ganter & Wille, 2005). An example from the formal context 
Weather of Table 1, we consider X i i= { }1 2

,  and Y a a= { }4 8
, , so ϕ X a a( ) = { }1 4

,  and 
δ Y i i i( ) = { }1 3 13

, , .
The closure operators are X X"= ( )δ ϕ�  and Y Y"= ( )ϕ δ� . Finally, the closed sets X  and 

Y  are defined by Y Y= ( )ϕ δ�  and X X= ( )δ ϕ�  (Stumme, Ganter & Wille, 2005). An example 
from the previous formal context of Table 1, we have:
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•	 i i i i a a a i i
5 10 5 10 3 7 8 5 10
, " , , , , .{ } = { }( ) = { }( ) = { }δ ϕ δ�

•	 a a a a i i i a a
3 7 3 7 5 6 10 3 7
, " , , , , .{ } = { }( ) = { }( ) = { }ϕ δ ϕ�

A formal concept of the context I A R, ,  is a pair (X Y, ) where X ⊆  , Y ⊆  , ϕ X Y( ) =  
and δ Y X( ) = . Sets X  and Y  are called, respectively, the extent (domain) and intent (co-domain) 
of the formal concept (Stumme, Ganter, & Wille, 2005). For example, ( i i a a

1 2 1 4
, , ,{ } { } ) is a formal 

concept from Weather context (Table 1). The set of attributes common to i
1

 and i
2
 is a a

1 4
,{ } . The 

set of instances that share both a
1
 and a

4
 is i i

1 2
,{ } . Contrariwise, ( i i a

2 3 4
, ,{ } { } ) is not a formal 

concept since ϕ i i a
2 3 4
,{ }( ) = { }  and δ a i i i i

4 1 2 3 13{ }( ) = { }, , , .

Table 1. Illustration of the formal context (Weather data under binary format seen in Table 2)

I\A a1 a2 a3 a4 a5 a6 a7 a8 Play

i1 1 0 0 1 0 0 0 1 No

i2 1 0 0 1 0 0 0 0 No

i3 0 1 0 1 0 0 0 1 Yes

i4 0 0 1 0 1 0 0 1 Yes

i5 0 0 1 0 0 1 1 1 Yes

i6 0 0 1 0 0 1 1 0 No

i7 0 1 0 0 0 1 1 0 Yes

i8 1 0 0 0 1 0 0 1 No

i9 1 0 0 0 0 1 1 1 Yes

i10 0 0 1 0 1 0 1 1 Yes

i11 1 0 0 0 1 0 1 0 Yes

i12 0 1 0 0 1 0 0 0 Yes

i13 0 1 0 1 0 0 1 1 Yes

i14 0 0 1 0 1 0 0 0 No

Table 2. Specification of binary attributes

Attributes Signification

a1 Outlook=sunny

a2 Outlook=overcast

a3 Outlook=rainy

a4 Temperature=hot

a5 Temperature=mild

a6 Temperature=cool

a7 Humidity

a8 Windy
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From the formal context I A R, , , we can extract all possible concepts organized as a complete 
lattice (called Galois lattice (Stumme, Ganter & Wille, 2005)). We define the following partial order 
relation ‘� ’ between two concepts as: (X Y X Y_ , _ ) ( ,1 1

2 2{ } { } � ) if and only if (X X
1 2
⊆ ) and 

(Y Y
2 1
⊆ ). The concepts (X Y

1 1
, ) and (X Y

2 2
, ) are represented by nodes in the lattice diagram.

Formal Concept Analysis Based Classification
A classification method must determine the class of new instances. The Galois lattice can be used in 
classification as a search space in which we evolve level to another, by validating the characteristics 
associated to the new instance (Visani, Bertet & Ogier, 2011). Many classification methods were 
proposed in the literature using Galois lattices (Trabelsi, Meddouri & Maddouri, 2016).

Exhaustive Classification Methods
Using only one single classifier to generate all the formal concepts, is an exhaustive way to build a 
learning model based on Galois lattices of formal concepts. Many classification methods exist in the 
literature using complete lattice of concepts such as JSM-method (Blinova, Dobrynin, Finn, Kuznetsov 
& Pankratova, 2003), NAVIGALA (Visani, Bertet & Ogier, 2011), HMCS-FCA-SC (Ferrandin et 
al., 2013) and SPFC (Ikeda & Yamamoto, 2013). These recent methods carried out the validation 
of the characteristics associated to each concept in the lattices level by level. The navigation in the 
lattice of concepts starts from the minimal concept where all the concepts of the lattice are considered 
as candidates without having an idea on their validity. However, they vary according to the criteria 
used for concepts selection and the size of lattices outlining formal concepts (Trabelsi, Meddouri, 
& Maddouri, 2016). There are three common limitations for systems based on concept lattice: the 
complexity (time and space) of generating the lattice is exponential, the navigation in huge search 
space is hard (Meddouri & Maddouri, 2008) and the used data is binary. For these reasons, many 
researchers focused on sub-lattice-based classification.

Other methods can build a sub-lattice of concepts, which reduces their theoretical complexity 
and their times of execution. A sub-lattice is a mathematical structure which represents a part of the 
full lattice in a selective way (Stumme, Ganter & Wille, 2005) (Trabelsi, Meddouri & Maddouri, 
2016). Classification based on sub-lattice is similar to that started from a complete lattice. The 
major difference between complete lattice and sub-lattice-based classification is the number of 
concepts generated. However, their limitation is the possible loss of information in a condensed 
data representation or a partial reproduction of the full lattice. Systems like IPR (Maddouri, 2004), 
CLANN (Tsopze, Mephu-Nguifo & Tindo, 2007) and CITREC (Douar, Latiri & Slimani, 2008), 
MCSD-FCA-PS (Buzmakov et al, 2016) are characterized by the ability to build a part of the concept 
lattice and induce classification rules.

Adaptive Classification Methods
Generating many classifiers from the same model and combining them by a fusion technique is an 
adaptive way to build a learning model. Various methods have been proposed based on sequential 
approach (Boosting) such as BFC (MeddouriI & Maddouri, 2009), BNC (Meddouri & Maddouri, 
2010) and others based on parallel approach (Bagging) such as DNC (Meddouri, Khoufi & Maddouri, 
2014), FPS-FCA (Kuznetsov, 2013) and RMCS (Kashnitsky & Ignatov, 2014).

Boosting is an adaptive approach, which makes it possible to correctly classify an object that 
can be badly classified by an ordinary classifier. The main idea of Boosting is to build many classifiers 
who complement each other, in order to build a more powerful classifier. At first, it selects a subset 
of instances from the learning data set (different subset from the training data set in each iteration). 
Then, it builds a classifier using the selected instances. Next, it evaluates the classifier on the learning 
data set, and it starts again T  times (T  is the number of generated classifiers). AdaBoost (Adaptive 
Boosting) is the most well-known method of Boosting for classifiers generation and combination.
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In parallel approach, Bagging is based on Bootstraps. Each classifier is trained on a set of ′n  
training instances ( ′ <n n ), drawn randomly with replacement from the original training set of size 
n. Such a training set is called a Bootstrap replicate of the original set. Each Bootstrap replicate 
contains, on average, 63.2% of the original training set, with many instances appearing several times. 
Predictions on the new instances are made by taking the majority vote of the ensemble. The particularity 
of these training sets is to reduce the impact of hard instances to learn (called outliers and misleaders) 
(Skurichina & Duin, 1998).

In the literature of vote methods, the majority vote can turn good classifiers to almost optimal 
(Breiman, 1996a, 1996b). Bagging is typically applied to learning algorithms that are unstable, i.e., 
a small change in the training set leads to a noticeable change in the model produced (Melville & 
Mooney, 2005). Because each ensemble member is not exposed to the same set of instances, they 
are different from each other. By voting the predictions of each of these classifiers, Bagging seeks 
to reduce the error due to variance of the base classifier. Bagging of stable learners, such as Naive 
Bayes, does not reduce error (Melville & Mooney, 2005). The authors of (Kuncheva, Skurichina & 
Duin, 2002) report that parallel learning improves the performance of unstable classifier such as 
neural networks and decision trees. They report that Bagging is not very beneficial for improving the 
performance of a linear classifier on large data. It will be then advantageous to use these methods 
with unstable classifier which is the case of classifiers based on formal concepts (Meddouri, Khoufi 
& Maddouri, 2014).

In the literature of data sampling methods, stratified sampling has proved to be efficient.
Disjoint and stratified data sets are more representative of the original training data base (Ting 

& Witten, 1997). Learning from stratified data samples allows to generate a more efficient classifier 
than those generated from the weighted data in the case of sequential learning classifiers. Dagging has 
the particularity to learn in parallel from stratified data sets (Kotsiantis, Anyfantis, Karagiannopoulus 
& Pintelas, 2007).

PROPOSED METHODS LABEL

A nominal (multi-valued) context is a quadruple I A V R
nom nom nom
, , , , where:

•	 
nom
= … …{ }i i i i

nom nom nom nomk n1 2
, , , , ,  is the set of n

nom
 instances.

•	 
nom l m

a a a a
nom nom nom nom

= … …{ }1 2
, , , , ,  is the set of m

nom
 attributes.

•	  = … …{ }v v v vl l l lp1 2
, , , ,

*
 is the set of values

•	 
nom

 is a relation defined between 
nom

, 
nom

 and  . So 
nom

 is a set of triples.

Each triple i a v
k l pnom nom

l, ,( )  means that v
pl

 is a value taken by the l th  nominal attribute a
lnom

 on 

kth  nominal instance i
knom

 (R i a v
k l pnom nom

l, ,( )  exist) (Stumme, Ganter & Wille, 2005). Table 3 represents 
the nominal (multi-valued) context of Weather.

We denote by n
nom

 the number of nominal instances 
nom

 and m
nom

 the number of nominal 
attributes 

nom
 with:

A I A A
nom l k nom l nom nom k l

a i a i a
nom nom nom nom nom

= { }∃ ∈ ∃ ∈ ( ) =| , , 	 (1)



International Journal of Artificial Intelligence and Machine Learning
Volume 10 • Issue 2 • July-December 2020

84

A pertinent nominal concept within the data set is extracted by selecting the nominal attribute 
which maximize the measure of Informational Gain (IG) calculated from the learning context.

IG a E
S v

N
E v

l nom nom
p

p
l

p
l

nom

l

,
*

 ( ) = ( )−
( ) ( )

=
∑
1

	 (2)

a
lnom

 is represented by (*l ) different values. The Information Gain IG a
l nomnom
, ( )  of the nominal 

attribute a
lnom

 is calculated from the entropy function: E(). E
nom
( )  calculates the entropy of the 

whole nominal instances 
nom

. E v
p
l( )  calculates the entropy of a value v

p
l  of the a

lnom
 on 

nom
. S() 

calculates the pertinence of a value v
p
l  of the a

lnom
 on 

nom
. n

nom
 represents the number of nominal 

instances from 
nom

.

Proposition 1: From a nominal context (multi-valued), the δ  operator is set by:

δ v i R i a v exist
p
l

k nom k l pnom nom nom
l( ) = ∈ ( ){ } | , , 	 (3)

Proposition 2: From a nominal context (multi-valued), the Æ operator is set by:

ϕ i v i i i
nom p k k noml

nom nom
{ }( ) = ∀ ∈ { }{ | , and ∃ ∈ ( ) }a R i a v exist

l nom k l pnom nom nom
l | , , 	 (4)

Table 3. Illustration of the multi-valued context (Weather data under nominal format)

Outlook Temperature Humidity Windy Play

i1 sunny hot high false No

i2 sunny hot high true No

i3 overcast hot high false Yes

i4 rainy mild high false Yes

i5 rainy cool normal false Yes

i6 rainy cool normal true No

i7 overcast cool normal true Yes

i8 sunny mild high false No

i9 sunny cool normal false Yes

i10 rainy mild normal false Yes

i11 sunny mild normal true Yes

i12 overcast mild high true Yes

i13 overcast hot normal false Yes

i14 rainy mild high true No
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Then, we look for the other attributes describing all the extracted instances (using the closure 
operator δ ϕ� v

p
l( ) ).

Learning Classification Rules Based on Nominal Concepts

We construct nominal concepts associated with one or each value v
p
l  of the nominal attribute 

a v v
l p

l
p
l

nom
δ δ ϕ( ){ } ( ){ }( ), � . A classifier is obtained by seeking the majority class associated with 

the extent of one or each concept ( δ v
p
l( ) ). It induces a classification rule. The condition part of each 

rule is made up by the conjunction of the attributes included in the intent: δ ϕ� v
p
l( ) . The conclusion 

part of the rule is made up by the majority class.
We consider here 4 variants to learn classification rules based on Nominal Concepts. These 4 

variants differ by the way we calculate the closure operator δ ϕ� .

•	 CpNC_COMV: Classifier pertinent Nominal Concept based on Closure Operator for Multi-Values 
of the pertinent nominal attribute.

•	 CpNC_CORV: Classifier pertinent Nominal Concept based on Closure Operator for Relevant-
Values of the pertinent nominal attribute.

•	 CaNC_COMV: Classifier all Nominal Concept based on Closure Operator for Multi-Values of 
the pertinent nominal attribute.

•	 CaNC_CORV: Classifier all Nominal Concept based on Closure Operator for Relevant-Values 
of the pertinent nominal attribute.

Classifier Based on Pertinent Nominal Concepts (CpNC)
Closure Operator on Each Value From the Pertinent Attribute (CpNC_COMV)

Once the pertinent nominal attribute is selected (a
lnom

* ), we extract associated instances to each value 

v
p
l  from this attribute ( δ v

p
l( ) ). Then, we look for the other attributes describing all the extracted 

instances (using the closure operator δ ϕ� v
p
l( ) ). We construct nominal concepts associated with 

each value v
p
l  of the nominal attribute a v v

l p
l

p
l

nom

* ,δ δ ϕ( ){ } ( ){ }( )� . A classifier is obtained by seeking 

the majority class associated with the extent of each concept ( δ v
p
l( ) ). It induces a classification rule. 

The condition part of each rule is made up by the conjunction of the attributes included in the intent: 
δ ϕ� v

p
l( ).  The conclusion part of the rule is made up by the majority class.

Algorithm 1: Algorithm of Classifier pertinent Nominal Concept based on Closure Operator for 
multi-values of the pertinent nominal attribute (CpNC_COMV)

Input: Sequence of n
nom

 instances 
nom n k

i y i y
nom nom

= ( ) … ( ){ }1 1
, , , ,  with 

labels  = { }y y
k1

,.., .

Output: h
CpNC COMV_

 a classifier.

Begin 
From 

nom
, find the attribute a

lnom

*  having the best IG value using 

(2); 
For each nominal value v

p
l  of a

lnom

* , calculate the closure 

associated to each v
p
l  based on (3) and (4) to construct pertinent 
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nominal concepts ({ }δ v
p
l( ), δ ϕ� v

p
l{ }( ));

Determine the majority class y  associated with the extent of each 

pertinent concept ( δ v
p
l( ) );

Induce and combine the new classification rules into h
CpNC COMV_

;

Return h
CpNC COMV_

;

End

Closure Operator on the Relevant Value of the Pertinent Attribute (CpNC_CORV)

Back to CpNC_COMV and once the pertinent nominal attribute (a
lnom

* ) is selected, we extract instances 

associated to more relevant value v
p
l
*
*  of this attribute. So we construct only one pertinent concept 

associated to the most relevant value v
p
l
*
*  of the pertinent attribute a a v

l l p
l

nom nom

* *
*
*,δ δ ϕ( ){ } ( ){ }( )� . A 

CpNC_CORV classifier is obtained by seeking the majority class associated to the extent of the 
obtained pertinent concept ( δ v

p
l
*
*( ){ } )It induces only one classification rule. The condition part of 

this rule is made up by the conjunction of the attributes included in the intent: δ ϕ� v
p
l
*
*( ){ } . The 

conclusion part of this rule is made up by the majority class.
Algorithm 2: Algorithm of Classifier pertinent Nominal Concept 
based on Closure Operator for the relevant value of the pertinent 
nominal attribute (CpNC_CORV) 

Input: Sequence of n
nom

 instances 
nom n k

i y i y
nom nom

= ( ) … ( ){ }1 1
, , , ,  with 

labels  = { }y y
k1

,.., .

Output: h
CpNC CORV_

 a classifier.

Begin 
From 

nom
, find the attribute a

lnom

*  having the best IG value using 

(2) and its more relevant value v
p
l
*
*  ;

From v
p
l
*
* , calculate the closure based on (3) and (4) to construct 

a pertinent nominal concept δ δ ϕv v
p
l

p
l

*
*

*
*,( ){ } ( ){ }( )�  ;

Determine the majority class y  associated with the extent of the 

obtained pertinent concept δ v
p
l
*
*( ){ }( ) ;

Induce the classification rule to h
CpNC CORV_

 ;

Return h
CpNC CORV_

;

End

Classifier Based on all Nominal Concepts (CaNC)
CaNC consider the whole of training instances and use nominal attributes. While CpNC calculate 
only the closure of the pertinent attribute, CaNC consider all nominal attributes and calculate the 
closure associated to each one.
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Closure Operator on Each Value from the All Nominal Attributes

On each nominal attribute (a
lnom

) from the nominal context, we extract associated instances to each 

value v
p
l  from this attribute, using δ v

p
l( )  (3). Then we extract one or many common nominal values 

associated with one or many common nominal attributes, using δ ϕ� v
p
l( )  (4). So, we construct many 

nominal concepts associated with each value v
p
l  of the nominal attribute a

lnom
: δ δ ϕv v

p
l

p
l( ){ } ( ){ }( ), � . 

A CaNC_COMV classifier is obtained by investigating the majority class associated to the extent of 

each nominal concept δ v
p
l( ){ }( ) . It induces many classification rules. The condition part of each 

rule is made up of the conjunction of the attributes included in the intent: δ ϕ� v
p
l( ){ } . The conclusion 

part of the rule is made up of the majority class.
Algorithm 3: Algorithm of Classifier pertinent Nominal Concept 
based on Closure Operator for multi-values of each nominal 
attribute (CaNC_COMV) 

Input: Sequence of n
nom

 instances 
nom n k

i y i y
nom nom

= ( ) … ( ){ }1 1
, , , ,  with 

labels  = { }y y
k1

,..,

Output: h
CaNC COMV_

 a classifier.

Begin 
For each a

lnom
 and for each nominal value v

p
l , calculate the closure 

associated to v
p
l  based on (3) and (4) to construct nominal 

concepts δ δ ϕv v
p
l

p
l( ){ } ( ){ }( ), �  ;

Determine the majority class y  associated with the extent of each 

nominal concept δ v
p
l( ){ }( ) ;

Induce and combine the classification rules into h
CaNC COMV_

 ;

Return h
CaNC COMV\ _

 ;

End

Closure Operator on the Relevant Value from Each Nominal Attribute

On each nominal attribute (a
lnom

) from the nominal context, we extract associated instances to its 

relevant value v
p
l
*

, using δ v
p
l
*( )  (3). Then we extract one or many common nominal values associated 

with one or many common nominal attributes, using δ ϕ� v
p
l
*{ }( )  (4}). So, we construct one nominal 

concept associated with the pertinent value v
p
l
*

 of the nominal attribute a v v
l p

l
p
l

nom
: ,

* *
δ δ ϕ( ) ( )( )� . 

A CaNC_CORV classifier is obtained by investigating the majority class associated to the extent of 
each nominal concept ( δ v

p
l
*( ){ } ). It induces many classification rules. The condition part of each 

rule is made up by the conjunction of the attributes included in the intent: δ ϕ� v
p
l
*
.( ){ }( )  The 

conclusion part of the rule is made up by the majority class.
Algorithm 4: Algorithm of Classifier pertinent Nominal Concept 
based on Closure Operator for a relevant value of each nominal 
attribute (CaNC_CORV) 
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Input: Sequence of n
nom

 instances 
nom n k

i y i y
nom nom

= ( ) … ( ){ }1 1
, , , ,  with 

labels  = { }y y
k1

,.., .

Output: h
CaNC CORV_

 a classifier.

Begin 

For each alnom  and for its relevant nominal value v p
l
* , calculate 

the closure associated to v p
l
*� �  based on (3) and (4) to construct 

nominal concepts δ δ ϕv v
p
l

p
l

* *
,( ){ } ( ){ }( )�  ;

Determine the majority class y  associated with the extent of each 
obtained concept δ v

p
l
*( ){ } ;

Induce and combine the classification rules into hCaNC CORV_  ;

Return hCaNC CORV_  ;

End

Dagging FCA Based Classifiers
Recently, a great number of researches in machine learning have been concerned with ensemble 
learning of classifiers that allow the improvement of a single learner performances (Meddouri, Khoufi 
& Maddouri, 2014; Kuznetsov, 2013; Kashnitsky & Ignatov, 2014). The two principal reasons for 
this success are probably the simplicity of implementation and the recent theorems relative to the 
boundaries, the margins, or to the convergence (Meddouri & Maddouri, 2010).

In (Meddouri & Maddouri, 2010), authors have found that the sequential learning is beneficial 
for classifiers having Decision Tree structure such as J48 and Id3. In (Meddouri, Khoufi & Maddouri, 
2012), authors noticed that classifier based on Formal Concept Analysis is not good enough with 
the sequential learning on data sets of different sizes. In (Breiman, 1996a, 1996b) and (Breiman, 
1999), the author has shown, theoretically and experimentally, the importance and the reliability of 
the parallel ensemble approach.

In the literature, stratified sampling has proved to be efficient (Ting & Witten, 1997). Learning 
from stratified data samples allows to generate more efficient classifier than those generated from 
the weighted data in the case of sequential learning classifiers. Dagging has the particularity to learn 
classifiers in parallel way from stratified data sets. We propose to exploit this variant of parallel 
learning method to generate classifiers based on nominal concepts. To generate T  classifiers, we 
execute T  times the learning algorithm on various disjoint and stratified sets of learning instances. 
Each set of learning instances is satisfied to have a similar distribution to the initial set. The samples 
are obtained by drawing nnom

'  instances randomly without replacement in the training sample nom , 
with n nnom nom

' < . These samples respect the distribution of learning instances as classes. The 
principle of Dagging Classifiers Nominal Concept is then to take several disjoint and stratified samples 
I I T

nom nom

Θ Θ1 , ,…{ } . On each of which, the Classifier Nominal Concept is built to get a collection of 

classifiers h hT1
, ,�� �  and to combine them by majority voting rule (Ting & Witten, 1997).

We propose to exploit the advantages of Dagging (kotsiantis, Anyfantis, karagiannopoulos & 
Pintelas, 2007) to improve the performance of proposed Classifiers Nominal Concept: CpNC and 
CaNC. Our objective here is to study the behavior of proposed nominal classifiers in parallel learning 
using Dagging.
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EXPERIMENTAL STUDY

In this section, we are going to compare experimentally the proposed Classifiers Nominal Concept: 
CpNC_COMV, CpNC_CORV, CaNC_COMV and CaNC_CORV. To compare the proposed methods, 
we consider their classification error rates and training time. Further comparison will include the 
Dagging of the proposed classifiers.

We used well-known data sets from UCI Machine Learning Repository (Asuncion & Newman, 
2007)). The chosen data sets contain continuous attributes. We discretize them with a WEKA2 filter. 
The used filter3 is an instance filter that converts a range of numeric attributes into nominal attributes. 
This transformation of data must be used by our proposed classifiers. These data sets are presented 
in Table 4. The Duplicated Data column present the ratio between the number of duplicated vectors 
of instances (attributes) and the total number of vectors in each data set. The Diversity Data column 
present the ratio between the number of different vectors of instances (attributes) and the total number 
of vectors in each data set (Haghighi, Vahedian & Yazdi, 2011).

The performance of classifiers generated is evaluated in terms of error rates. To calculate these 
rates, 10 Cross-validation method is used in WEKA whose principle is to divide each data set on 
10 subsets. In turn, each subset used for testing and the other subsets for learning (Kohavi, 1995).

Table 4. Characteristics of data sets used

Data Sets Instances Attributes Classes Data 
Duplicated

Data 
Diversity

1. Anneal 898 38 6 53,34 67,93

2. Car 1728 6 4 0 100

3. CMC 1473 9 3 51,6 64,83

4. Ecoli 336 7 8 88,69 20,24

5. Haberman 306 3 2 98,69 15,36

6. Iris 150 4 3 95,33 16

7. Kdd_synthetic_control 600 60 6 0 100

8. Kr-vs-Kp 3196 36 2 0 100

9. Lymphography 148 18 4 1,35 99,32

10. Molecular-biology_Promoters 106 57 2 0 100

11. Nursery 12960 8 5 0 100

12. Page-blocks 5473 10 5 85,53 23,1

13. Postoperative-Patient 90 8 3 18,89 88,89

14. Sonar 208 60 2 7,69 95,19

15. Spectrometer 531 101 48 3,01 97,36

16. Tae 151 5 3 99,34 7,28

17. Tic-Tac-Toe 958 9 2 0 100

18. Vowel 990 13 11 62,63 61,21

19. Waveform 5000 40 3 0 100

20. Wine 178 13 3 38,76 71,91
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In the next subsection, we will try to provide answers to the following questions: What is the 
best proposed Classifier Nominal Concept? Which closure operator it is based on? Is Dagging able 
to ameliorate the performance of the proposed Classifier Nominal Concept based on Formal Concept 
Analysis?

Comparison of Proposed Classifiers Nominal Concept
Table 5 present the error rates of the proposed classifiers nominal concept such as: CpNC_COMV, 
CpNC_CORV, CaNC_COMV and CaNC_CORV. As shown in Table 5, CpNC_CORV has the specific 
ability to reduce the error rates compared to the others proposed methods (average of 11.94%). These 
results show that CpNC_CORV is better than CpNC_COMV (average of 34.14%) and holds the best 
error rates for all the data sets. CaNC_COMV and CaNC_CORV produced higher error rates than the 
rest of the proposed classifiers (respectively average of 38.3% and 44.1%).

Table 6 present the training time for the proposed classifiers nominal concept. CpNC_CORV 
and CpNC_COMV are the faster compared to CaNC_COMV and CaNC_CORV. We report that 
CpNC_CORV is 4.61 times faster than CaNC_CORV. Also, CaNC_COMV is 16.67 times slower 
than CpNC_CORV.

Table 5. Error rates of proposed classifiers nominal concept

Data Sets
CpNC_CORV CpNC_COMV CaNC_CORV CaNC_COMV

Err. Dev. Err. Dev. Err. Dev. Err. Dev.

1. Anneal 1.43 0.96 22.81 3.63 23.83 0.55 23.83 0.55

2. Car 8.69 7.12 29.98 0.16 25.25 2.66 29.98 0.16

3. Cmc 23.96 5.42 55.89 3.02 57.36 0.31 57.30 0.25

4. Ecoli 7.41 3.81 34.67 4.95 57.44 1.18 53.53 3.50

5. Haberman 14.96 4.96 24.87 5.34 18.33 4.13 26.47 1.08

6. Iris 0.00 0.00 4.00 4.64 9.73 6.59 11.93 8.33

7. Kdd_Synthetic_Control 9.35 3.40 42.35 4.56 59.75 4.94 34.73 4.27

8. Kr-vs-Kp 33.95 1.72 33.95 1.72 47.75 0.13 47.75 0.13

9. Lymphography 8.43 7.51 24.63 11.86 44.90 2.67 44.30 3.32

10. Molecular-Biology-Promoter 13.50 8.97 27.53 10.94 50.00 3.54 27.84 14.21

11. Nursery 13.55 2.84 29.03 0.99 55.74 3.58 51.76 1.83

12. Page-Blocks 0.64 0.34 8.99 0.66 10.23 0.04 10.23 0.04

13. Postoperatie-Patient-Data 19.78 9.94 27.89 6.61 28.89 5.47 28.89 5.47

14. Sonar 4.78 4.36 27.86 9.19 30.62 10.47 26.05 8.11

15. Spectrometer 26.25 6.33 72.30 3.35 82.88 3.43 75.72 2.54

16. Tae 18.73 13.18 55.48 12.33 64.61 6.19 56.85 8.67

17. Tic-Tac-Toe 9.60 2.42 30.06 4.31 34.66 0.41 34.66 0.41

18. Vowel 13.88 2.87 65.41 3.22 84.70 3.39 72.57 4.60

19. Waveform 7.25 1.04 43.18 1.24 54.12 2.23 36.18 3.07

20. Wine 2.74 4.24 21.93 8.71 41.24 9.44 15.39 8.11

Average 11.94 34.14 44.10 38.30
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In our experiments, the performance of theses classifiers is not correlated with the diversity of 
training data. CaNC_COMV and CaNC_CORV have the particularity to generate many classification 
rules, at least, each one is associated to each attribute. Theirs higher error rates are due to the no-
pertinent generated nominal concept.

Dagging of Proposed Classifiers Nominal Concept
To study the performance of Dagging using proposed classifiers nominal concept, we generated sets 
of 11 classifiers (Meddouri, Khoufi, & Maddouri, 2014). We reported their error rates in Table 7 
and their training time in Table 8.

From Table 7, we report that Dagging ameliorates the error rates of CpNC_CORV and CpNC_
COMV by respectively average of 3,85% and 9,96%. The error rates of CaNC_COMV deteriorate 
by average of 2,77%. The error rates of CaNC_COpRV is slightly improved by average of 0,77%.

In addition, we report that Dagging produces the best error rates with CpNC_CORV (average of 
8.09%). These results show that Dagging of CpNC_CORV holds the best error rates for all the data sets 
(average of 43.33%). Dagging CpNC_CORV is more efficient than Dagging CpNC_COMV (average of 
25.13%). Dagging of CaNC_COMV and CaNC_CORV produced the highest error rates (respectively 
average of 43.33% and 41.07%) compared to the rest of the classifiers. In conclusion, we can note 
from these experiments that parallel learning is interesting for CpNC, especially for CpNC_CORV.

Table 6. Training time (milliseconds) of proposed classifier nominal concept

Data Sets CpNC_CORV CpNC_COMV CaNC_CORV CaNC_COMV

Time Dev. Time Dev. Time Dev. Time Dev.

1. Anneal 2.19 5.45 1.72 4.91 20.16 7.79 33.28 7.25

2. Car 1.56 4.71 1.41 4.49 1.72 4.91 4.38 7.05

3. Cmc 1.41 4.49 1.41 4.49 2.66 5.90 6.41 7.72

4. Ecoli 0.78 3.42 0.78 3.42 0.31 2.20 3.28 6.40

5. Haberman 0.00 0.00 0.47 2.68 0.47 2.68 1.09 4.01

6. Iris 0.00 0.00 0.31 2.20 0.63 3.08 0.16 1.56

7. Kdd_Synthetic_Control 1.72 4.91 3.13 6.28 15.16 3.48 84.06 10.60

8. Kr-vs-Kp 4.53 7.13 5.63 7.54 34.06 7.16 58.75 8.35

9. Lymphography 0.16 1.56 0.16 1.56 0.78 3.42 2.34 5.61

10. Molecular-Biology-Promoter 0.31 2.20 0.47 2.68 2.19 5.45 7.34 7.84

11. Nursery 12.34 6.77 13.44 6.29 19.69 6.89 48.91 6.14

12. Page-Blocks 5.94 7.62 7.34 7.84 17.50 5.10 49.22 6.43

13. Postoperatie-Patient-Data 0.00 0.00 0.00 0.00 0.00 0.00 0.47 2.68

14. Sonar 0.78 3.42 1.09 4.01 6.25 7.69 27.66 6.61

15. Spectrometer 4.38 7.05 4.84 7.26 31.25 3.85 155.00 7.91

16. Tae 0.31 2.20 0.16 1.56 0.47 2.68 0.94 3.73

17. Tic-Tac-Toe 0.78 3.42 0.63 3.08 2.34 5.61 3.13 6.28

18. Vowel 1.41 4.49 1.56 4.71 4.53 7.13 14.06 4.71

19. Waveform 12.66 6.16 14.84 4.65 77.34 7.15 359.38 12.37

20. Wine 0.63 3.08 0.31 2.20 1.25 4.26 3.75 6.71

Average 2.59 2.98 11.94 43.18
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Table 8 presents the training time of Dagging for the proposed classifiers nominal concept. 
Dagging of CpNC_CORV and CpNC_COMV (respectively average of 18.16 ms and 18.84 ms) are 
the faster compared to the Dagging of CaNC_COMV and CaNC_CORV (respectively average of 
27.57 ms and 64.88 ms). We report that Dagging CpNC_CORV is 1.51 times faster than Dagging 
CaNC_CORV. Also, Dagging CaNC_COMV is 3.57 times slower than Dagging CpNC_CORV.

Similarly, to the previous experiments, the performance of these classifier ensembles is not 
correlated with the diversity of training data. In conclusion, the diversity of data is not correlated 
with the performance of classifiers nominal concept based on Formal Concept Analysis.

Comparison With State-of-the-Art Classification Methods
Table 9 present the error rates of different classification methods from the literature (Bayes Net, 
Naive Bayes, SVM4, IB15, Decision Stump, Hoeffding Tree, C4.56, Random Forest and Random Tree). 
As shown in this table, Dagging CpNC_CORV has the specific ability to reduce the error rates with 
the less error rate for 12 data sets. Dagging CpNC_CORV has the best error rates for most of the 
data sets (average of 8.09%), then Random Forest (average of 14.54%) compared to Decision Stump 
(average of 40.08%).

Table 7. Performance of Dagging using proposed methods based on Classifier Nominal Concept

Data Sets

Dagging

CpNC_CORV CpNC_COMV CaNC_CORV CaNC_COMV

Err. Dev. Err. Dev. Err. Dev. Err. Dev.

1. Anneal 6.07 5.67 16.83 3.81 21.57 2.05 21.57 2.05

2. Car 6.06 7.47 31.31 2.97 26.21 2.25 29.98 0.16

3. Cmc 9.99 5.65 52.59 4.59 57.11 1.11 56.99 1.24

4. Ecoli 4.89 4.78 25.23 10.71 57.35 1.32 55.50 3.36

5. Haberman 4.51 4.96 19.37 8.14 13.96 5.41 24.41 3.53

6. Iris 0.67 3.73 3.13 6.93 11.27 9.32 19.93 11.93

7. Kdd_Synthetic_Control 5.10 3.11 36.20 9.24 56.27 5.91 33.98 5.19

8. Kr-vs-Kp 33.33 3.09 33.70 1.90 47.37 0.51 47.37 0.51

9. Lymphography 5.85 6.51 9.29 9.85 40.18 8.09 39.58 7.75

10. Molecular-Biology-Promoter 0.27 1.56 0.27 1.56 41.13 13.16 41.33 13.18

11. Nursery 13.95 2.95 29.03 0.99 56.07 3.29 47.09 2.74

12. Page-Blocks 0.77 0.94 7.90 0.94 10.23 0.05 10.23 0.04

13. Postoperatie-Patient-Data 11.11 11.05 16.22 13.16 24.44 8.79 24.56 8.83

14. Sonar 3.75 5.03 6.24 7.81 44.66 10.76 42.67 10.70

15. Spectrometer 11.96 5.24 42.98 10.38 85.10 3.65 77.91 4.74

16. Tae 7.76 9.46 19.05 12.59 60.87 10.16 58.80 9.86

17. Tic-Tac-Toe 11.46 4.22 33.21 6.58 34.49 1.66 34.61 0.48

18. Vowel 12.88 3.73 69.23 6.11 84.27 3.99 79.88 4.36

19. Waveform 8.56 2.18 44.90 2.10 57.81 2.98 36.23 3.01

20. Wine 2.77 4.91 5.98 8.13 36.26 11.88 38.78 10.31

Average 8.09 25.13 43.33 41.07
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Table 10 present the training time (in milliseconds) of different classification methods cited 
previously, compared to the Dagging of CpNC_CORV. As shown in this table, IB1 has the best training 
time (average of 0.15 ms), then Naive Bayes (average of 2.07 ms) compared to SVM (average of 636.38 
ms). As shown in Table 9, IB1, Naive Bayes and SVM didn’t have the best error rates (respectively 
average of 17.74%, 22.09% and 17.44%). Dagging CpNC_CORV, Random Forest and SVM holds the 
best error rates (respectively average of 8.09%, 14.54% and 17.44%). Dagging CpNC_CORV is 17.13 
times faster than Random Forest and 36.17 times faster than SVM. However, Dagging CpNC_CORV 
is slower than IB1, Naive Bayes and Decision Stump (which have the worst error rates).

CONCLUSION

Formal Concept Analysis is an interesting formalism to study machine learning and classification 
methods. It allows a full construction of the concepts and the dependence relationships between 
concepts in order to build a lattice of formal concepts. Many classification methods based on exhaustive 
or combinatory approach exists in the literature of classification based on Formal Concept Analysis. 
We have presented a learning method: Dagging classifiers based on nominal concepts. Our method 

Table 8. Training time (milliseconds) of Dagging using proposed methods

Data Sets

Dagging

CpNC_CORV CpNC_COMV CaNC_CORV CaNC_COMV

Time Dev. Time Dev. Time Dev. Time Dev.

1. Anneal 16.88 5.29 17.03 5.48 33.75 6.17 53.13 8.01

2. Car 15.31 4.43 15.31 4.43 14.53 4.58 17.81 5.45

3. Cmc 14.53 5.09 15.47 4.71 15.47 3.51 20.47 7.91

4. Ecoli 13.59 5.28 13.75 5.10 14.22 4.49 15.78 3.51

5. Haberman 12.81 6.03 13.75 5.57 12.81 6.03 13.75 5.10

6. Iris 13.13 5.76 14.06 5.21 14.06 5.21 13.28 6.03

7. Kdd_Synthetic_Control 21.09 7.49 23.28 7.85 35.78 7.79 131.41 12.38

8. Kr-vs-Kp 19.38 6.71 20.63 7.65 53.13 8.31 80.63 7.60

9. Lymphography 13.13 6.56 14.53 4.01 13.91 5.39 15.63 4.97

10. Molecular-Biology-Promoter 14.22 5.01 16.09 6.06 18.13 6.17 32.03 5.15

11. Nursery 26.25 8.85 26.41 8.80 35.63 7.72 59.22 8.10

12. Page-Blocks 21.72 7.66 21.88 7.69 32.34 5.09 62.81 5.87

13. Postoperatie-Patient-Data 13.28 5.61 13.13 6.17 14.38 6.91 13.28 5.61

14. Sonar 18.75 7.02 20.00 7.05 26.56 7.20 68.44 8.54

15. Spectrometer 39.22 8.74 38.75 8.15 59.69 7.81 239.38 9.65

16. Tae 13.59 6.14 13.44 5.45 13.28 5.61 13.75 5.10

17. Tic-Tac-Toe 13.91 5.39 15.63 3.14 15.31 3.13 16.88 5.29

18. Vowel 16.09 3.48 17.34 5.39 18.91 6.40 27.97 6.40

19. Waveform 31.72 3.48 31.25 6.66 93.75 8.60 383.91 19.14

20. Wine 14.53 5.09 15.16 4.13 15.78 5.66 17.97 7.15

Average 18.16 18.84 27.57 64.88
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has the particularity to construct a classification rule form the closure operator of a selected attribute. 
The proposed method suggests enlarging the application fields of Formal Concept Analysis on a type 
of data other than the binary one (i.e nominal).

In this paper, we have proposed 4 variants of our method. The CpNC which calculate only the 
closure of the pertinent attribute. The CaNC which consider all nominal attributes and calculates the 
closure associates to each one. CpNC and CaNC consider the whole of training instances and use 
nominal attributes. Each one has two ways to use the closure operator. Since a nominal attribute has 
many nominal values, we proposed the CpNC_CORV which is a classifier of pertinent nominal concept 
based on closure operator for the relevant values of the pertinent nominal attribute. Furthermore, 
CpNC_COMV has the particularity to consider a closure operator for multi-values of the pertinent 
nominal attribute. Besides, we have proposed the CpNC_CORV and CpNC_COMV which have 
the particularity to consider all the nominal concepts. The experimental results have shown that 
CpNC_CORV reduces the error rates compared to CpNC_COMV, CaNC_CORV and CaNC_COMV.

To improve the performances of our proposed approach, we use ensemble methods. Previous 
researches recommend a parallel learning by Dagging for classifiers based on Formal Concept Analysis 
instead of the sequential learning. We have presented a variant of Dagging to generate ensemble of 
classifiers based on Formal Concept Analysis. In parallel learning, few classifiers are enough to 
reach better performance. We have made an experimental study to show the interest of the Dagging 
of the proposed method by using known data sets. Dagging of CpNC_CORV reached good precision 
compared to known methods like J48 and SVM. We report that even in Dagging CpNC_CORV is 
better than other variants. Accordingly, we recommend using the closure operator on the relevant 
value of the pertinent attribute.

More experiments are possible on larger data sets with other ensemble methods, such as Random 
Forests. Many improvements on the ensemble methods can be brought. DNC has adopted majority 
vote for classifier combination. A variety of voting rules already exist. Hence, a study of these rules 
can be beneficial to improve the performance of our method.
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ENDNOTES

1 	 The data sets are selected from local copy of the sample Weka databases at http://storm.cis.fordham.
edu/~gweiss/data-mining/datasets.html

2 	 Available at http://www.cs.waikato.ac.nz/ml/Weka
3 	 weka.filters.unsupervised.attribute.Discretize
4 	 In this work, the SMO module of WEKA with a default parameter setting is used to perform classification 

via the SVM
5 	 In this work, the IBk module of WEKA with default parameter settings is used to perform classification 

via the Nearst-neighbour classifier
6 	 In this work, the J48 module of WEKA with a default parameter setting is used to perform classification 

via the C4.5
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