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ABSTRACT

The increased processing power of graphical processing units (GPUs) and the availability of large 
image datasets has fostered a renewed interest in extracting semantic information from images. 
Promising results for complex image categorization problems have been achieved using deep learning, 
with neural networks comprised of many layers. Convolutional neural networks (CNN) are one such 
architecture which provides more opportunities for image classification. Advances in CNN enable 
the development of training models using large labelled image datasets, but the hyper parameters 
need to be specified, which is challenging and complex due to the large number of parameters. A 
substantial amount of computational power and processing time is required to determine the optimal 
hyper parameters to define a model yielding good results. This article provides a survey of the hyper 
parameter search and optimization methods for CNN architectures.
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INTRODUCTION

The growth in Internet of Things (IoT) (Bubley, 2016), and emergence of social, web and mobile 
applications have provided access to large image datasets as a result of a move away from text based 
to visual communications. This coupled with the advances in storage and processing technologies has 
made it possible to progress from image processing to interpreting images for extracting contextual 
information. Artificial Intelligence (AI) aims to endow machines with similar capabilities of learning, 
perception and reasoning as that of a human. The question, ‘Can machines think?’ was posed in 1950 
(Turing, 1950) through an ‘imitation game.’ Challenges of AI remain, despite substantial progress 
in learning algorithms (Bengio, 2009). Machine learning is a sub-field of AI that makes it possible 
for computers to learn without explicitly being programmed (Neetesh, 2017). Machine learning for 
vision problems comprises techniques that can provide intelligent solutions to complex problems of 
interpreting and describing a scene, given sufficient data. Much progress has been made in this area, 
but improvements are needed. One technique that has risen to predominance recently is Artificial 
Neural Network (ANN) that was inspired by biological neuron interconnections and activations of 
human brain (Deep Learning tutorial, 2015).
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Deep learning, a branch of machine learning (Bhandare & Kaur, 2018) that derives its name 
from neural networks that comprise of many layers. Multiple layers are used to model high-level 
features from complex data, with each successive layer using the outputs from the preceding layer 
as an input (Benuwa, 2016). An overview of deep learning techniques with a focus on convolutional 
neural networks (CNNs) and deep belief networks (DBNs) is provided together with a discussion on 
sparsity and dimensionality reduction (Arel, 2010). Benuwa (2016) review deep learning techniques 
along with algorithm principles and architectures for deep learning. A review of recent advances 
in deep learning is provided in (Minar, 2018) as well as taxonomy of deep learning techniques and 
applications. A review of deep supervised learning, unsupervised learning, and reinforcement learning 
is provided in (Schmidhuber, 2015) covering developments since 1940.

The aim of training neural networks is to find weightings that achieve better classification 
accuracy (Nguyen, 2018). These networks require a lot of time, processing power, and data in order 
to be trained. After training, a neural network can be used to make better predictions on test data 
(Neetesh, 2017). Deep learning algorithms are complex to develop, train and evaluate. A neural net 
(Krizhevsky, Sutskever, & Hinton, 2012) with 60 million parameters and 650,000 neurons took a long 
time to train on ImageNet (Deng et al., 2009), in order to classify 1.2 million images. The increased 
research interest in neural networks is due to the promising results obtained for ImageNet competitions 
(Krizhevsky et al., 2012). CNN, the leading type of neural networks have been used for classifying 
large image datasets (Krizhevsky et al., 2012; Szegedy et al., 2014). The application of deep learning 
for different medical image modalities is provided in (Shen, Wu, & Suk 2017).

CNNs have also been applied for combining image information over a long duration video of up 
to two minutes (120 frames) to solve classification problem (Ng et al., 2015). A dynamically trained 
CNN was proposed for object classification in video streams (Yaseen, Anjum, Rana, & Antonopoulos 
2019). The image features from hidden layers of deep neural networks were extracted for image 
recognition in (Hayakawa, Oonuma, & Kobayashi 2017).

Although the fields of artificial intelligence and deep learning are very promising, the techniques 
are deeply rooted in probabilistic foundations. An important aspect of the neural networks performance 
is the hyper parameters or the model parameters, and their impact on results. This aspect is critical 
to designing and developing efficient models. CNN architectures are dependent on hyper parameters 
and an incorrect choice can have a huge effect on performance (Albelwi & Mahmood, 2016).

Before a neural network can be trained, hyper parameter values must be determined. The number 
of hyper parameters increases with complex deep neural networks (Ozaki, Yano, & Onishi, 2017). 
These need to be carefully fine-tuned for a particular application to yield good results (Soon, 2018). 
Deep neural networks are very sensitive to hyper parameter values (Domhan, Springenberg, & Hutter, 
2015) and may fail to train for slightly non-optimal values (Ozaki et al., 2017). Therefore, the success 
of a neural network, to a large extent, is governed by the correct values of its hyper parameters (Soon, 
2018). Hyper parameter optimization is the process of optimizing a loss function over a configuration 
space (Bergstra, Bardenet, Bengio, & Kégl, 2011). To optimise hyper parameters for a suitable CNN 
architecture is an iterative and lengthy process (Hinz, Navarro-Guerrero, Magg, & Wermter 2018).

This paper provides a survey of the techniques for determining the optimal CNN hyper parameters 
which would be helpful to a researcher and implementer in choosing the appropriate strategy depending 
on the availability of time, expertise, and processing power.

CNN ARCHITECTURES FOR DEEP LEARNING

Computer vision technologies for object recognition have undergone rapid advances, and better 
techniques with improved results have been proposed (Krizhevsky et al., 2012; Deng et al., 2009). The 
emergence of neural networks for computer vision applications can be attributed to Deng et al., (2009) 
and Lecun et al., (1989). Although biological vision systems and processes are not fully understood, the 
current method of ANNs yields promising results. The ImageNet Large Scale Recognition Challenge 
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(ILSVRC) has been running since 2009 and provides a common platform for comparing computer 
vision algorithms for object detection and classification (Russakovsky et al., 2015).

ANNs are modelled on the human nervous system (Kienzler, 2017) and need computational 
power and large volumes of data to be trained before they can be successfully used. ANNs can learn 
from any mathematical relation between the input and output (Kienzler, 2017). A large number of 
labelled true and false examples are required in supervised learning to train the ANN before good 
results can be obtained. Deep learning, a sub-field of machine learning has provided winning results 
in pattern recognition (Benuwa, 2016).

Deep learning is driver for many applications in AI (Tibbetts, 2018). Deep learning has replaced 
the use of handcrafted features through use of feature learning algorithms (Benuwa, 2016). A deep 
neural network is comprised of many layers. The layers between the input and output layers are 
termed hidden layers (Figure 1). The depth increases interconnections and complexity of nodes. 
The initial layers work on low-level features, lines, circles etc., whereas the deeper layers work on 
higher or complex features, until the whole image is recognized (Kienzler, 2017). Such systems can 
perform at the same or better levels than humans (Kienzler, 2017). Deep learning models are able to 
recognize more complex features accurately and in less time compared to a human (Tibbetts, 2018).

Of particular interest are CNNs that can process spatial data and take a fixed size input and 
generate fixed size outputs. Thus CNNs, due to their inherent nature, are more applicable for object 
recognition problems exploiting the spatial dimensions of height and width. Generally Deep Neural 
Networks (DNNs) are considered difficult to train but CNNs fare better and better generalization is 
possible by CNN architecture to vision tasks (Bengio, 2009) as CNNs are designed to work on two-
dimensional data (Arel, 2010). CNNs generally perform better at extracting important features from 
images making them well-suited for image understanding (Arel, 2010).

IMPORTANT CNN HYPER PARAMETERS

It is important to understand that there is an interplay and interdependence of hyper parameters. Saari 
(2018) found that the two chosen hyper parameters, depth of CNN and a regularization technique 
(Dataset Augmentation) affected the results such that it was concluded that instead of applying both, 
only one could be used for optimal results. In addition, the selection of the hyper parameters for tuning 
also affects the results as all hyper parameters do not have the same significance for the training or 
test accuracy of the model. A brief summary of the important hyper parameters is provided below:

1. 	 Architecture Type and Number of Hidden Layers

The number of hidden layers defines the depth of the network. The depth of the proposed 
architectures has been consistently increasing and in general was shown to yield better results. 
However, alternate architectures with less depth have also been proposed (Hasanpour, Rouhani, 
Fayyaz, & Sabokrou, 2016) that are useful for embedded systems with less processing power and 
demonstrated that a reasonably deep network can perform competitively to more deeper and therefore 
complex networks.

2. 	 Optimizers

There are many optimizers reported in the literature, but significant ones include RMSProp, 
Stochastic Gradient Descent (SGD) and Adam. These provide good results with a batch size of 32 
to 512 (Keskar, Mudigere, Nocedal, Smelyanskiy, & Tang, 2017). Keskar et al. (2017) have studied 
SGD with larger batch sizes for deep learning applications. An important and common parameter in 
all these optimizers is the learning rate. The value of the learning rate is chosen to be between 0 and 1.
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3. 	 Activation Function

Koutsoukas, Monaghan, Li and Huan (2017) compared the activation functions and found that 
ReLU provided the best results overall. More complex variants of ReLU have been proposed recently, 
that is, LeakyReLU signifying improvement in results with rectifier non-linearities as compared 
to sigmoidal ones (Maas, Hannam, & Ng, 2013) and PReLU (He, Zhang, Ren, & Sun, 2015). The 
implementations are available in Keras (Keras) as “Advanced Activations”.

4. 	 Dropout Regularization

A trained model should perform well on unseen data during testing (Deep Learning tutorial, 
2015). However, a complex model can learn the training data perfectly and then fail to generalize to 
unseen examples, a phenomenon termed as overfitting. Overfitting can be avoided by regularization 
techniques, such as Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). 
Data Augmentation is another mechanism to augment the existing data by generating new images 
through simple operations such as flip and rotation on existing data.

5. 	 Convolution Layer

A convolution layer comprises of many parameters, the important ones are the number of 
kernels applied to each layer, the height and width of each convolutional kernel, zero padding and 
stride. Without zero padding the size of the convolved image will reduce. Stride defines the amount 
of movement of the kernel after calculating a value. If it is more than one then the convolved image 
will again reduce in size.

Figure 1. Artificial Neural Network (ANN) with the number of hidden layers defining the depth of network. Each layer transforms 
its inputs through trainable parameters, that is, weights. A shallow network has fewer hidden layers compared to a deep network.
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6. 	 Dimensions of Pooling Matrices in Pooling Layers

Generally, a 2 × 2 size for the pooling is used for downsampling the image into half. A larger 
pooling matrix size would reduce the image size even further than half.

7. 	 Number of Epochs and Batch Size

An epoch consists of one pass of the entire data through the network. The data is passed through 
the network by dividing it into batches or sets. Thus, many iterations would be required to process all 
the data through the network. In general, a higher value for epoch will provide better results.

HYPER PARAMETER SEARCH METHODS

Hyper parameter optimization or tuning is a process applied to tune the model by tweaking the 
parameters for the best results. The model may be susceptible to degradation by small changes to its 
parameters. For example, the removal of one layer from the five layer convolutional model degraded 
the performance (Krizhevsky et al., 2012). Thus, a lot of mutual interdependencies might exist amongst 
the identified optimum hyper parameters. The number of training parameters to be considered for a 
deep network is large and the required time and computational resources make it infeasible to sweep 
through the entire parameter space (Benuwa, 2016).

Many different hyper parameters method have been reported in the literature. The choice of a 
particular method depends on the chosen architecture, number of selected hyper parameters to be tuned, 
availability of time and processing power. After considering the various strategies, we categorized the 
different strategies into 3 types, namely conventional, framework based, and optimization speedup. 
This categorization helps to show an evolution from earlier conventional to recent methods that are 
focussed on automated optimizations, reduction of hyper parameters, and speedup. We survey and 
provide state-of-the art techniques for hyper parameter optimizations from the research literature.

Conventional and Exhaustive Search Methods
Conventional methods either try out all the selected hyper parameters exhaustively or restrict the 
search to a chosen subset based on its significance or selection. These methods were good for simple 
networks but have limited performance for complex networks having a large number of hyper 
parameters. Various search methods are outlined below and summarised in Table 1.

Manual Search
The manual search method can have promising results in terms of time and selected hyper parameters 
because unlike the grid search, a human can rule out sub-optimum hyper parameters easily.

A manual search for DNNs is described in (Koutsoukas et al., 2017) by considering hyper 
parameters such as activation functions, learning rate, number of neurons per layer, number of hidden 
layers, and dropout regularization. The performance of DNNs were compared with some other machine 
learning techniques, such as, Naïve Bayes, k-nearest neighbour, random forests, and support vector 
machines. DNN were found to outperform the other selected algorithms.

In earlier work (Nazir, et al., 2018), a simple architecture was used to easily investigate the effect of 
parameter change on improving image classification results. One parameter at a time was investigated 
to obtain better results. However, the focus was on investigating a large selection of important hyper 
parameters for learning rates activation layer, momentum, and batch size while at the same time 
making use of regularization (dropout) (Krizhevsky et al., 2012; Srivastava et al., 2015) and batch 
normalization (Ioffe, & Szegedy 2015). Keras was used with Tensorflow (Abadi et al., 2015) (as a 
backend). CIFAR-10 (Krizhevsky et al., 2012; He et al., 2015) was also used.
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A manual process for investigating all but one fixed hyper parameter to obtain a set of hyper 
parameters is reported by Nguyen (2018), aimed at achieving hyper parameters with high classification 
accuracies and to shorten the training time. A modified CNN model based on VGG was used. The 
results were provided for CIFAR-10, CIFAR-100, GTSRB, and DSDL-DB. The hyper parameters 
investigated were learning rate, batch size, and initial weights. The weights were initialized based 
on similar network weight factors.

Characteristics of manual search:

•	 The person has insight and understanding of the relative importance of the hyper parameters 
for the given model.

•	 The expert could detect failures and terminate training at an early stage (Ozaki et al., 2017).
•	 Manual optimization is not hindered by any technical overhead (Bergstra & Bengio, 2012).

Grid Search
Grid search is a common method for hyper parameter optimization (Bergstra & Bengio, 2012). It is 
an exhaustive search for all the selected values of the hyper parameters. This is available in many 
software packages and can be easily specified by listing the values for the selected hyper parameters 
to be investigated. Under software control, it will step through all the possible combinations to 
determine the combination that yields the best results.

Grid search based methods worked well in earlier machine learning models with limited 
parameters. It is argued in (Bergstra & Bengio, 2012) that grid search may be a poor choice as it also 
considers hyper parameters which might not be important for a given dataset.

Characteristics of Grid Search

•	 Most popular method for hyper parameter optimization (Albelwi & Mahmood, 2016).
•	 Grid search implementation is simple and can be parallelized (Bergstra & Bengio, 2012).
•	 It can find better values than a purely manual search given that sufficient computing resources 

are available (Bergstra & Bengio, 2012).
•	 It can perform reliably for one and two-dimensional hyper parameter spaces (Bergstra & Bengio, 

2012).
•	 It tries all possible combinations thus having an exponential growth with an increase in the 

number of hyper parameters (Hinz et al., 2018).

Random Search
Bergstra and Bengio (2012) showed that random search can be used to search for hyper parameter 
values yielding better results compared to Grid search in higher hyper parameter spaces. Random 
search also requires less computational power. It was revealed that many datasets have only a few 
hyper parameters that are really important and that for different datasets, different hyper parameter 
configurations may be required. Random search can act as a baseline against which other optimization 
methods can be evaluated. Random search and Grid search are similar in that both can be simply 
implemented using the same tools. Random search did not perform as well as the combination of 
manual search followed by grid search, compared to an expert (Bergstra and Bengio, 2012).

Characteristics of random search:

•	 Works by drawing a random value from each parameter of interest based on given distribution 
(Hinz et al., 2018).

•	 These can also be used to investigate the effect of one hyper parameter, similar to a manual 
search (Bergstra & Bengio, 2012).
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•	 Can be parallelized (Ozaki et al., 2017).
•	 Can handle integer and categorical hyper parameters (Ozaki et al., 2017).

Bayesian Optimizations
Bayesian Optimization uses probabilistic Gaussian processes for approximating and minimizing 
the error function for hyper parameter values. However, this requires estimates of many statistics of 
the error function that can make these methods inefficient for evaluating deep neural network hyper 
parameters (Ilievski, Akhtar, Feng, & Shoemaker, 2017). Therefore, many other methods have been 
proposed, such as Gaussian Process (GP) and Tree-structured Parzen Estimator (TPE) method.

A tutorial on Bayesian optimizations is provided by Brochu et al. (2010). Bayesian optimizations 
use Bayesian techniques to get a posterior function. Two techniques, active user modelling 
and hierarchical reinforcement learning are also described therein. The limitations of Bayesian 
Optimizations such as feature selection and time-varying models are also described.

Table 1. Conventional methods for hyper parameters search

Techniques 
considered Hyper parameters Dataset Accuracy/ Benefits Reference

Manual

Activation function, 
learning rate, 
number of neurons 
per layer, dropout 
regularization, 
number of hidden 
layers

CHEMBL

ReLU activation 
function performed 
better than Sigm or 
Tanh

(Koutsoukas et al., 
2017)

Manual

Optimizer, learning 
rate, number of 
epochs and batch 
size, activation 
function

CIFAR-10 Empirical search of 
hyper parameters (Nazir et al., 2018)

Manual, Merged 
datasets

Learning rate, batch 
size,

CIFAR-10, 
CIFAR-100, GTSRB, 
DSDL-DB

Data pre-processing 
increased 
classification 
accuracies, and 
training CNN 
accelerated by 
momentum optimizer

(Nguyen, 2018)

Grid, Manual, 
Random

8 global hyper 
parameters and 8 
hyper parameters for 
each layer resulting in 
32 hyper parameters 
for a 3 layer model

MNIST

Random search is 
efficient compared to 
grid search, random 
search appropriate 
as baseline for 
performance 
comparisons

(Bergstra & Bengio, 
2012)

Bayesian 
Optimizations

Standard Bayesian 
optimization 
with standard 
hyper parameters, 
Optimization 
function and learning 
rate

CIFAR-10 and 
Caltech-101

10% better results 
than the baseline 
in transfer learning 
compared to manual 
methods

Borgli (2018)
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Bergstra et al. (2011) have considered the Bayesian optimization with a Gaussian Process based 
method, Sequential Model-Based Optimization (SMBO), and Tree-structured Parzen Estimator 
method (TPE).

Bayesian optimizations with standard parameters were used by Borgli (2018) to optimize the 
hyper parameters optimization of CNN for transfer learning for two publicly available image datasets 
for gastroenterology. It was shown that automatic hyper parameter optimization provided 10% better 
results than the baseline in transfer learning compared to manual methods.

Framework Based Methods
The limitation of conventional manual or exhaustive search methods is that they require lot of 
computation and time, and may require expert insights for optimal hyper parameter selection. On the 
other hand, automated hyper parameter optimizations can be used by non-experts. For a deep neural 
network, it could still require significant computing resources and time thus hindering its adoption 
(Domhan et al., 2015). This section describes various framework-based methods with a summary 
provided in Table 2.

Optimization Framework
An optimization framework is proposed that can automatically determine the architecture of a CNN 
for a given application (Albelwi & Mahmood, 2016). They used visualization for deconvolution 
networks and accuracy to produce better results. The computational cost was overcome using the 
Nelder-Mead algorithm. They concluded that CNN optimized hyper parameters favoured small strides 
and pooling windows, and deep networks.

Nelder-Mead is proposed for hyper parameter optimization (Ozaki et al., 2017) for character 
recognition and age/gender (CNN) classification. The authors contend that this is easier for non-
experts who may find it difficult to implement Bayesian optimization and covariance matrix adaptation 
evolution techniques that also require large computing resources. The results were better than other 
selected techniques and the Nelder-Mead method was found to perform best for hyper parameter 
optimization as it quickly converged to local optimum.

A metaheuristic optimization method, parameter-setting-free harmony search (PSF-HS) is 
proposed (Lee, 2018) to adjust the hyper parameters. The hyper parameter tuning was proposed for 
CNN in the feature extraction step. The hyper parameter to be adjusted was set as a harmony; harmony 
memory was updated based on CNN loss by generating the harmony memory after the harmony. 
Simulations were performed using CNN architectures for LeNet-5, MNIST, CifarNet and Cifar-10 
datasets. The simulation results show improved performance compared to other techniques through 
hyper parameter tuning.

Deterministic RBF Surrogates
A deterministic algorithm based on Radial Basis Function (RBF) is proposed that requires lesser 
function evaluations compared to Bayesian Optimization (Ilievski et al., 2017). The evaluations on 
MNIST and CIFAR datasets were shown to be better, that is about 6 times faster for obtaining best 
set of 19 hyper parameters, compared to Bayesian Optimizations such as GP, SMAC and TPE.

Evolutionary Based Algorithms
Genetic algorithms were used to automatically learn the CNN architecture. The network structures 
are represented using a fixed-length binary string and each generation used standard methods of 
selection, mutation, and crossover (Xie & Yuille, 2017). The genetic algorithms were used for MNIST 
and CIFAR-10, and it was shown that the automatically generated structures performed better than 
the manual ones. The structures were then used for a larger dataset, ILSVRC2012.

A genetic algorithm was proposed in (Bhandare & Kaur, 2018) for hyper parameter optimization 
on MNIST dataset. A number of hyper parameters were selected for optimizations. It was reported 
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that the accuracy was over 90% but the best run had an accuracy of 99.2%. The simulation results 
for the Genetic Algorithm based method were better than manual search methods (Loussaief & 
Abdelkrim, 2018).

An Enhanced Elite CNN Model Propagation method is proposed in (Loussaief & Abdelkrim, 
2018) that can automatically learn an optimized structure of CNN using genetic algorithm. The 
classification accuracy was found better than public CNNs using transfer learning.

An evolutionary algorithm-based framework is proposed for automatic optimizations of CNN 
hyper parameters (Bochinski, Senst, & Sikora, 2017). This framework was then extended for joint 
optimization of CNNs to provide significant improvement over state-of-the-art algorithms on MNIST 
dataset. Other techniques using committees of multiple CNNs are outlined by Bochinski, Senst, & 
Sikora (2017).

Particle swarm optimization was used to automatically select the architecture and CNN hyper 
parameters with an aim to reduce the user variability in training (Soon, 2018). With optimised hyper 
parameters, CNN architecture was trained for better convergence and classification. The proposed 
methods were applied to vehicle log images. The proposed method produced better results compared 
to other state-of-the art methods obtaining 99.1% accuracy.

Evolutionary algorithms were proposed for automatic discovery of image classifier networks 
(Real, et al., 2017). Simple evolutionary algorithms were used to discover models for CIFAR-10 and 
CIFAR-100 datasets achieving an accuracy of 94.6% although the computation costs were significant.

Reinforcement Learning
A reinforcement learning based meta-modelling algorithm that can generate better CNN architectures 
automatically is proposed in (Baker, Gupta, Naik, & Raskar 2017). CNN layers are chosen using 
Q-learning with greedy exploration strategy to train the learning agent. The agent selects higher 
performing CNN models through random exploration.

Q-learning with a greedy exploration strategy was used in (Zhong, Yan, Wei, Shao, & Liu, 2018) 
with a learning agent to choose component layers. They used a block-wise generation that provided 
better results compared to hand-crafted networks and decreased the search space. An early stopping 
strategy was also used for fast block search.

An algorithm is proposed in (Mortazi, 2018) for an automatic search of optimal hyper parameters 
for neural architecture design for medical image segmentation. The proposed method was based on 
policy gradient reinforcement learning and was computationally efficient compared to other medical 
image segmentation methods. The proposed hyper parameter search algorithm was applied on a 
proposed architecture with dense connected encoder-decoder CNN. The results with better accuracy 
were obtained for cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) 
MICCAI 2017 without any trial-and error or close supervision of hyper parameter changes as in 
other methods.

In general, the reinforcement learning techniques limit optimization to architectural hyper 
parameters and manually choose other hyper parameters like learning rate and regularization 
parameters (Hinz et al., 2018).

Hyper Parameters Optimization Speedup
The methods in this category are aimed at reducing the time taken for example, by using techniques 
to exploit the CNN architecture. This section describes various speedup approaches with a summary 
provided in Table 3.

Early Termination
A probabilistic model was used for early termination of bad runs and it was shown that the method 
provided a twofold increase compared to human experts for selected optimization methods. This 
follows the strategy used by human experts for early termination of a bad run to save time. Learning 
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Table 2. Framework-based methods

Techniques considered Hyper parameters Dataset Accuracy/ Benefits Reference

Optimization framework 
(Nelder-Mead algorithm)

Depth, number of layers, 
kernel size, number of 
pooling layers

CIFAR-10 and 
Caltech-101

Improvement in overall 
results, framework 
contributing to network 
depth, stride and pooling 
size

(Albelwi & Mahmood, 
2016)

Co-ordinate search and 
Nelder-Mead for age/
gender classification

LeNet hyper parameters 
for MNIST, iterations 
20000, batch size 50, 
learning rate decay

MNIST, age/gender

Nelder-Mead 
outperformed random 
search, Bayesian 
Optimization, CMA-ES, 
and coordinate search

(Ozaki et al., 2017)

Parameter-setting-free 
harmony search (PSF-HS)

Optimal hyper parameters 
through harmonies, kernel 
size, stride, zero padding, 
number of channels, 
kernel size and stride

LeNet-5, MNIST,﻿
CifarNet, Cifar-10

Improved 
performance(reduced 
number of weights 
and bias to be trained) 
compared to earlier CNN 
architectures

(Lee, 2018)

Deterministic RBF 
Surrogates

6, 8, 15, 19 hyper 
parameters CIFAR-10, MNIST

6 times faster than 
Bayesian Optimizations 
such as GP, SMAC and 
TPE.

(Ilievski et al., 2017)

Genetic Algorithm LeNet structure used, 
learning rate, epochs

MNIST, CIFAR10, 
ILSVRC2012

Performance of the 
generated structures was 
better than the manually 
designed structures.

(Xie & Yuille, 2017)

Genetic Algorithm

Twelve selected hyper 
parameters including 
epochs, hidden layers 
and neurons, activation 
function, optimizers

MNIST

No human intervention 
required, accuracy above 
90% and 99.2% (best of 10 
runs) for MNIST

(Bhandare & Kaur, 2018)

Genetic Algorithm 
(Enhanced Elite CNN 
Model propagation)

Chosen from AlexNet, 
normalization, pooling 
layers, ReLU optimizer

Caltech-256 Pre trained CNN accuracy 
of 98.94%

(Loussaief & Abdelkrim, 
2018)

Evolutionary Algorithm 
based framework

Hyper parameters 
describing CNN structure, 
such as layer and kernel 
size were considered

MNIST
Generic framework, 
improvements over state-
of-the-art methods

(Bochinski et al., 2017)

Particle swarm 
optimization

Training epoch, 3 
convolution layers each 
followed by ReLU, 2 
pooling layers

XMU and XMUPlus
obtaining 99.1% accuracy 
compared to other state-
of-the art methods

(Soon, 2018)

Evolutionary Algorithms
SGD with momentum of 
0.9, batch size of 50, and 
weight decay of 0.0001.

CIFAR-10 and CIFAR-100
Accuracies of 94.6%, 
no human participation 
required

Real et al. (2017)

Reinforcement learning

13 selected hyper 
parameters including 
learning rate, epochs, 
number of layers

Street View House 
numbers (SVHN), 
CIFAR-10, MNIST

MetaQNN obtained an 
error of 6.92% compared 
to 21.2% by Bergstra et 
al. (2011) on CIFAR-10, 
MetaQNN performs better 
than other meta modelling 
networks

(Baker, 2017)

Reinforcement learning

7-layer network with 
learning rates, number 
of epochs, batch size, 
optimizers

CIFAR-10

BlockQNN had 3.54% top-
1 error rate on CIFAR-10 
which was better than all 
auto-generate Networks.

(Zhong, 2018)

policy gradient 
reinforcement learning

Number of filters, filter 
height, filter width for 
each layer, type of pooling, 
total 76 parameters

ACDC- MICCAI 2017 Low computation cost, 
state of the art accuracy (Mortazi)
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curve extrapolation was used to devise an early termination criterion. The method that was used to 
investigate small and larger neural networks was independent of hyper parameter optimizer (Domhan 
et al., 2015).

Optimization of Selected Hyper Parameter
Hyper parameter optimizations have generally low effective dimensionality. Although there are a 
large number of hyper parameters, only few have a significant impact on performance (Hinz et al., 
2018). The selected hyper parameter optimization algorithms were applied to CNN hyper parameters 
for images with increasing resolutions. It was found that the same hyper parameters were relevant 
independent of the image resolution. This was used to speed up the hyper parameter optimization. 
The result was that it took less time to find significant hyper parameters and the method can also be 
applied to data other than images, if its dimensions can be reduced.

Massively Parallel Hyper Parameter Tuning
A large scale parallel hyper parameter tuning is proposed in (Li, Jamieson, Rostamizadeh, Gonina, & 
Talwalkar, 2018) to evaluate many hyper parameter configurations in parallel to reduce the training 
time significantly. They also used early stopping in conjunction with parallelism to further reduce 
time. The proposed algorithm can find optimal hyper parameters much faster than random search. 
Separate GPUs were used to train each model but obviously the speedup did not increase linearly 
due to communications cost.

POP Scheduling
A scheduling algorithm is proposed in (Rasley, He, & Yan, 2017) called POP that quickly identifies 
the promising, opportunistic, and poor hyper parameter configurations. An infrastructure was also 
proposed that could work across different scheduling algorithms. A speedup of about 6.7 times was 
reported compared to random/grid search and 2.1 compared to state-of-the-art methods.

Parameter Reduction
Hyper parameter reduction for CNN for field devices with low resources is proposed in (Atanbori, 
2018) for segmentation of plant phenotyping. The results showing trade-off between number of hyper 
parameters and obtained accuracy were obtained using four baseline neural networks by increasing 
the network depth and reducing the number of hyper parameters, termed “Lite” CNNs.

Complexity Reduction
Reduction in computation by factorization of the convolutional layer was proposed in (Wang, 2017). 
The operations in convolution layer were treated separately as spatial convolution in each channel while 
maintaining the accuracy and reducing the computations. The model’s performance was evaluated on 
ImageNet LSVRC 2012 dataset. The proposed model achieved many times less computations with 
similar performance for VGG-16, ResNet-34, ResNet-50 and ResNet-101.

Flattened convolutional neural networks are presented in (Jin, 2015) that were trained to obtain 
similar performance to conventional CNNs. For similar performance in accuracy as 3D filters, speed-up 
of about two times compared to baseline was obtained during the feedforward pass. After the model 
has been trained there is no requirement for manual tuning or post processing.

A small CNN architecture, termed SqueezeNet, requiring 50 times less parameters but achieving 
AlexNet level of accuracy was proposed in (Iandola, 2017).
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CONCLUSION

There have been many advances in the application of convolutional neural networks to image 
classification with promising results, similar to a human. The tuning of model architectures could 
be driven by intuition and experimentation resulting in the optimal values of the hyper parameters. 
This method of experimental tuning to determine the values does not scale well with the number of 
hyper parameters, which increase exponentially with the number of network layers.

The search for an optimal configuration of hyper parameters for CNNs requires computational 
power, time, and associated cost. With large numbers of hyper parameters it is critical to quickly 
converge to an optimal set from the search space.

The initial models were manually optimized by the researchers starting an era of image 
classification enabling results, comparable to humans for the first time. With the rise in the number 
of hyper parameters, research efforts were focussed on using traditional methods such as grid search 

Table 3. Optimization speedup methods

Techniques considered Hyper parameters Dataset Accuracy/ Benefits Reference

Learning curves 
Extrapolation-optimizer 
agnostic

17 selected hyper 
parameter including 
epochs, learning rate, 
batch size and optimizers

CIFAR-10, 
CIFAR-100, 
MNIST

Twofold increase in state-of-
the-art optimization methods (Domhan et al., 2015)

Early lower dimensional 
representation to identify 
promising-TPE, SMAC, 
GA

9 hyper parameters 
including learning rate, 
number of layers, number 
and size of filters, batch 
size and regularization 
parameters

CIFAR, MNIST
Use of lower dimensional data 
to speed up the optimization 
process

(Hinz et al., 2018)

Massively Parallel Hyper 
parameter Tuning

LeNet hyper parameters, 
8 hyper parameters for 
3-layer CNN including 
number of layers, batch 
size and number of filters

CIFAR-10, MNIST Order of magnitude faster 
compared to random search (Li et al., 2018)

HyperDrive, POP 
(Promising, opportunistic, 
and poor) Scheduling

learning rate and decay, 
momentum, number of 
layers,

CIFAR-10

6.7 times speedup compared to 
random/grid search, 2.1 times 
speedup compared to other 
state-of-the-art methods

(Rasley, He, & Yan, 2017)

Reduced parameter CNN 
for limited resource 
devices- Lite CNN

14.7 million parameters 
reduced to 5.3 and 0.3 
million

Oxford Flower 
dataset

Lite CNN models with 
comparable accuracy to 
baseline model

(Atanbori, 2018)

Complexity Reduction 
(factorized CNN)

Batch normalization 
after convolutional and 
before ReLU layer, 
dropout as 0.2, batch as 
256, learning rate of 0.1 
and changed by dividing 
by 10

ImageNet LSVRC 
2012, VGG-
16, ResNet-34, 
ResNet-50, 
ResNet-101

Same accuracy but with 
significantly reduced 
computations, similar 
performance to VGG-16, 
ResNet-34, ResNet-50, 
ResNet-101 with 42x, 
7.32X, 4.38X, and 5.85 less 
computation respectively

(Wang, 2017)

Flattened CNN with 
reduced CNN parameters

3 convolutional layers, 
5x5 filters, double stage 
multilayer perceptron, 
ReLU, max pooling of 
2, strides of 3, 5 dropout 
layers, initial learning 
rate of 0.1 (reduced by 
1/10 after 8 epochs) and 
momentum of 0.9

CIFAR-10, 
CIFAR-100, 
MNIST

Two times speedup during 
feedforward pass compared to 
baseline model with reduction 
of learning parameters, with 
similar accuracies

(Jin, 2015)

SqueezeNet-smaller CNN 
with same accuracy

3x3 filters replaced 
by 1x1 filters, ReLU, 
Dropout, learning rate of 
0.04, batch size

ImageNet
AlexNet accuracy with 50X 
fewer parameters, and 510X 
smaller size

(Iandola, 2017)
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wherein different sets or configurations are tried out sequentially. The need for early termination was 
initially met by a manual process and some automated processes could also terminate non-performing 
hyper parameter selection.

The choice of a particular hyper parameter optimization strategy depends on the chosen 
architecture, number of selected hyper parameters to be tuned, availability of time and processing 
power. Current research is focussed on automated optimizations, for which we provide state-of-the 
art techniques from the research literature. We have provided an overview of the hyper parameter 
optimizations techniques signifying the contribution of each method. A natural progression in the 
research methods is from simple methods to state-of-the-art techniques. Better hyper parameter 
optimizations would be aided by shallow neural networks (with results comparable to deep networks), 
parallel execution of hyper parameter configurations, and optimization frameworks that might take care 
of all the intricate optimization details for the researchers in the future. The state-of-the-art methods 
have automated the process for hyper parameter optimizations, as well as employed parallel processing 
to exploit the CNN architecture in order to save time. The future is promising for automated hyper 
parameter optimization, where the operation would not only be fully automated but would save time 
and computations in the process.
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