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ABSTRACT

Charge of a piezoelectric actuator is proportional to its displacement for a wide area of operating. 
Hence, a charge estimator can estimate displacement for such actuators. However, existing charge 
estimators take a sizable portion of the excitation voltage, i.e. voltage drop. Digital charge estimators 
have presented the smallest voltage drop. This article first investigates digital charge estimators and 
suggests a design guideline to (i) maximise accuracy and (ii) minimise the voltage drop. Digital 
charge estimators have a sensing resistor; an estimator with a constant resistance is shown to violate 
the design guideline; while, all existing digital charge estimators use one or a few intuitively chosen 
resistors. That is, existing estimators witness unnecessarily large inaccuracy and/or voltage drop. This 
research develops charge estimators with varying resistors, fulfilling the design guideline. Several 
methods are tested to estimates the sensing resistance based on operating conditions, and radial basis 
function networks models excel in terms of accuracy.
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INTRODUCTION

Nano-positioning is an important area of nanotechnology, aiming at control of motion at nanometre 
scale. This area of technology has different applications such as scanning probe microscopy (Clayton, 
Tien, Leang, Zou, & Devasia, 2009) (including atomic force microscopy (Teh, 2015)), ultra-fine 
machining (Tang, Zeng, Gao, & Zhang, 2015) and medical engineering (including cell manipulation (Li 
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& Cheah, 2015) and robotic surgery (Saedi, Mirbagheri, Jafari, & Farahmand, 2014)). Various actuators 
have been used in nano/micropositioning e.g. worm gears (Protopopov, 2014) and magnetostrictive 
actuators (Ghodsi et al., 2016). Amongst all, piezoelectric actuators have the smallest size and the 
highest precision (Mohammadzaheri & AlQallaf, 2017). These actuators are the foremost actuators 
of nano-positioning at the moment and are likely to maintain this status for years (Moheimani, 2008).

Position control of (unfixed point(s)/surface(s) of) a piezoelectric actuator is the key task in 
piezo-actuated nano-positioning (Bazghaleh, Grainger, & Mohammadzaheri, 2018). Experiments 
have shown that charge of a piezoelectric actuator is proportional to its position/displacement for an 
extensive area of operating (Bazghaleh, Grainger, Cazzolato, & Lu, 2010; M. Bazghaleh, S. Grainger, 
M. Mohammadzaheri, B. Cazzolato, & T. Lu, 2013; Minase, Lu, Cazzolato, & Grainger, 2010; Yi 
& Veillette, 2005). This fact is the key motivation for design of charge estimators for piezoelectric 
actuators (Liu, Yen, & Wang, 2018; Mohammadzaheri & AlQallaf, 2017; Yang, Li, & Zhao, 2017).

All existing charge estimators need electrical element(s) (e.g. resistor(s) or capacitor(s)) in 
series with the piezoelectric actuator (Bazghaleh et al., 2018). The voltage across the aforementioned 
elements is not utilised to expand/contract the actuator; therefore, it should be minimised. This wasted 
voltage is called ‘voltage drop’ (Minase et al., 2010). Bazghaleh et al, showed that digital charge 
estimators cause less voltage drop than other existing charge estimators for piezoelectric actuators 
(M Bazghaleh et al., 2013).

However, as detailed in Problem Statement, design of existing digital charge estimators is partly 
intuitive. These inflexible and intuitively-designed estimators are shown to face a significant voltage 
drop or impreciseness if the area of operating is wide. This research addresses the aforesaid issue 
through development of intelligent charge estimators for piezoelectric actuators with varying resistors.

DIGITAL CHARGE ESTIMATORS

Figure 1 is a schematic of a digital charge estimator, used in this research. The estimator comprises 
of (i) a digital part, within the computer, (ii) an I/O card including analogue to digital (A/D) and 
digital to analogue (A/D) units, and (iii) analogue parts including the actuator, a voltage amplifier 
and a sensing resistor.

VS, the voltage across the sensing resistor, is called the ‘sensing voltage’. VS is almost proportional 
to the current passing the actuator, iP, and most of iP passes through the grounded sensing resistor, RS:

Figure 1. A schematic of the experimental setup used in this research
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Integral of iP equals charge of the actuator; thus, theoretically, charge can be estimated with 
use of VS.

However, integration of iP is problematic. In practice, the analogue to digital converter, shown 
as A/D in Figure 1, is not ideal and has a minute offset voltage. This voltage together with dielectric 
leakage of the piezoelectric actuator generate a low frequency (almost constant) small bias voltage, 
Vb, which enters A/D along with VS. This tiny bias voltage is accumulated through integration by the 
computer (left side of Equation (2)). Therefore, the calculated charge ( q̂

P
) does not equal the real 

charge across the actuator (qp):
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This phenomenon is called drift (Bazghaleh, Mohammadzaheri, Grainger, Cazzolato, & Lu, 
2013). The high pass filter, shown in Figure 1, supresses the low frequency bias voltage and prevents 
drift. Detrimentally, the high pass filter also suppresses low frequency components of VS. As a result, 
a digital charge estimator does not suit low frequency operating areas.

PROBLEM STATEMENT

In this research, two rough design objectives of O1 and O2 are considered for digital charge estimators 
in the order of priority:

O1: High precision
O2: Low voltage drop

Resolution and input voltage range of A/D units of an I/O card play the major role in precision. 
Each A/D unit has n bits (resolution) and one or a number of range(s) for input voltage. For instance, 
an A/D may have 12 bits and its input range could be chosen from three options of ±0.625 V, ±2.5 
V and ±10 V. Then, 2n digital numbers is allocated to the input range of choice (Gray, 2006). The 
larger portion of the range covered by the input voltage (signal), the more digital numbers used to 
quantify the input signal, the higher precision. Hence, for a given resolution, maximum precision is 
achieved if input range of an A/D is fully used. VS is the input to the A/D in digital charge estimators 
as depicted in Figure 1. Therefore, to achieve the highest precision, the range of VS should be equal 
to an input range to the A/D of the I/O card; as a guideline to achieve O1.

Voltage drop, the portion of Ve not used for actuation, equals VS. Thus, VS can replace voltage 
drop in O2. Hence, VS should be as small as possible, as a guideline to attain O1.

In summary, for a given I/O card, design objectives of O1 and O2 result in following 
design guidelines:

G1: The range of VS should be equal to an input range of the I/O card.
G2: VS should be as small as possible.
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For a given I/O card, considering the higher priority of G1, both G1 and G2 can be combined 
as «Design Guideline: the range of VS should be equal to the smallest input range of the I/O card».

This guideline guarantees the maximum precision at the smallest possible voltage drop. With a 
given excitation voltage (which depends on the required displacement) and I/O card, RS, in Figure 1, 
is the only variable to tune VS and meet the aforementioned guideline. However, experiments showed 
that a single value of RS cannot satisfy the guideline across a wide area of operation. Figure 2 depicts VS 
for the estimator of Figure 1 with a 5×5× 36 mm Piezo Stack of SA050536 type made by PiezoDrive 
Company (PiezoDrive, 2018) and RS=100Ω for two excitation voltages 10sin(20×2πt)+10 V and 
10sin(50×2πt)+10 V with a phase of -90°. The minimum input range of the I/O card is ±0.625 V. 
At the excitation frequency of 50 Hz, the selected value of RS leads to use of a large portion of the 
input range and nearly fulfils the guideline. However, at 10 Hz, 55% of input range is left unused 
and the guideline is not met.

Figure 2 shows that a digital estimator with a single value of RS does not suit a wide range of 
piezoelectric actuators’ operation. However, all reported digital charge estimators of piezo-actuated 
nano-positioning systems have either a single value (M. Bazghaleh, S. Grainger, M. Mohammadzaheri, 
B. Cazzolato, & T.-F. Lu, 2013; Mohsen Bazghaleh, Morteza Mohammadzaheri, et al., 2013) or 
only a few instinctively chosen values of RS (M Bazghaleh et al., 2013). This research proposes 
charge estimators with an adaptive RS. An adaptive charge estimator, with a given I/O card, requires 
a mathematical model (F in Equation (3)) to determine the right RS at any operating condition so as 
to fulfil the design guideline:

RS =F (operating conditions)	 (3)

where operating conditions are waveform, amplitude (in V) and frequency (in Hz) of excitation 
voltage (Ve in Figure 1).

This research only deals with sinusoidal excitation voltages. Thus, the operating conditions are 
limited to amplitude (Ae) and frequency (f) of excitation voltage:

RS = F(Ae, f)	 (4)

Figure 2. The range of sensing voltage for same excitation amplitude of 10 V and different excitation frequencies of 10 and 50 Hz. 
The actuator is PZT with dimensions of 5×5× 36 mm.
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After identification of F, Equation (3) (or Equation (4)) will tune RS to realise an adaptive charge 
estimator. Next two sections aim at identification of F using approximate analytical models and radial 
basis function networks, respectively.

EXPERIMENTATION

Figure 3 depicts the experimental setup, which is the implementation of Figure 1. The digital controller 
is a personal computer equipped with MATLAB 7.10 /Simulink 7.5 software including Simulink 
Real-Time Desktop Toolbox 3.5. The actuator is a 5×5×10 mm piezo stack, and the amplifier is 
MX-200, both made by made by PiezoDrive Company (PiezoDrive, 2018). A multifunctional card 
of Advantech PCI-1710U was employed to connect the computer and analogue parts. This card has a 
resolution of 12 bits and five optional ranges for analogue inputs ±10, ±5, ±2.5, ±1.25 and ±0.625 V.

In order to assess/develop mathematical models, which play the role of F in Equation (4), 35 
series of experiments were performed. In all experiments, sinusoidal excitation voltages (Ve) with 
frequency of f (in Hz) and identical amplitude and bias of Ae (in V) were used:

Ve = Ae sin(f×2πt) + Ae	 (5)

where t is time in s. The values of 5, 10, 20, 30 or 40 V and 20, 30, 40, 50, 60, 70 or 80 Hz were used 
for Ae and f, respectively. In every experiment, the sensing resistance, RS, was tuned so that the sensing 
voltage touches the range of ±0.625 V, minimum input range of the I/O card, then RS was recorded. 
In other words, the value of RS, with best matching to the design guideline, for each combination 
of excitation amplitude and frequency was experimentally found. The output of F in Equation (4) 
should ideally equal these results.

APPROXIMATE ANALYTICAL MODEL OF THE SENSING RESISTANCE

The purpose of this section is to analytically approximate F, presented in Equation (4). To do so, 
the piezoelectric actuator is approximated with a capacitor, CP (M Bazghaleh et al., 2013), and tiny 

Figure 3. Experimental setup
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current entering the A/D card is neglected. Then, using Figure 3, combination of the actuator and 
the sensing resistor can be shown as Figure 4 (Mohammadzaheri et al., 2019).

For such an approximate system, in Laplace domain:
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Consequently, the transfer function between the sensing voltage, VS, and the excitation 
voltage, Ve, is:
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Model for Excitations Without Bias
For the approximate linear system presented by Equation (6), a sinusoidal excitation voltage without 
a bias, Ve= Ae sinωt, leads to a sensing voltage of VS= AS sinωt, where ω is frequency in rad/s, and 
the amplitude of AS and Ae have the following relationship (Mohammadzaheri et al., 2019):
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where index A stands for analytically estimated. Considering the facts that (i) the smallest input range 
of the I/O card is ±0.625 V; that is, AS = 0.625 V to meet the guideline detailed in Problem Statement, 
(ii) for the investigated actuator, CP = 1.046 μF. Therefore:

Figure 4. Schematics of a resistor in series with a piezoelectric actuator which is assumed equivalent of a capacitor
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where the unit for RS is Ω. For Ae>>1 and change of the unit of frequency from rad/s to Hz:
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Equation (9) is comparable with Equation (4).

Bias Effect
From Equation (8), Ve= Vewb+ B. With use of superposition, the sensing voltage can be assumed as 
sum of two components influenced by Vewb and B (bias) excitations.

A component of VS which is only influenced by B is presented as VSB. Final value of VSB is shown 
to be zero:
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That is, the effect of bias disappears shortly; hence, bias has no enduring influence; thus, Equations 
(8) and (9) are still valid for excitations with a bias.

RBFN MODELS OF THE SENSING RESISTANCE

Radial basis function networks (RBFNs) were employed to approximate F in Equation (4). RBFNs 
are universal approximators with mathematically proven modelling capabilities (Mohammadzaheri, 
Chen, & Grainger, 2012; Mohammadzaheri, Ghodsi, & AlQallaf, 2018). In order to develop RBFNs, 
two separate series of data were employed: modelling and test data. Test data were not involved 
in identification of the model and merely used to cross-validate the RBFN models. Experiments 
provide 35 sets of data; each set includes two inputs (Ae and f) and a single output of RS. The data 
with following couples of Ae (in V) and f (in Hz) were used for test: (10 70), (20 60), (30 50), (40 40) 
and (50 30). The rest of data, 30 sets, were used for modelling.

An RBFN has a two-layer mathematical structure, the first layer receives inputs array (U) and 
produces the ‘layer output’ (O). In this research, each column of U is [Ae f ]

T, where T stands for 
transpose. The second layer receives O and produces the ‘network output’ (Y). In this problem, Y is 
a row in which its elements are RS.

The first layer has an array of weights, W, and a scalar namely spread, S. The components of 
layer output, O, are calculated as following:
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The second layer has two arrays of weights, X, and biases, B. The output array is calculated 
as following:

Ŷ = X ×O +B	 (12)

Combination of Equations (11) and (12) is the RBFN; the next task is to identify unknown 
parameters of W, S, X and B using the modelling data, consisting of input and output arrays of U2×30 
and Y1×30. There are two approaches to accomplish this task ‘exact’ and ‘efficient’ RBFN modelling.

Exact RBFN Modelling
Equation (11) indicates that greater components of O are more influential on the network’s 
output. In addition, Equation (12) shows that (i) the range of O components is [0 1] and (ii) 
if the ith row of W is identical to the kth column of U, then Oik will be maximum, 1. In exact 
RBFN modelling, it was considered that W=UT; as a result, if the inputs of modelling data 
are given to such an RBFN, all elements of O are 1. With the aforementioned assumption, 
the only remaining unknown of the exact RBFN are X and B. With use a known O and the 
modelling data, Equation (12) in the form of Equation (13) could be solved to obtain B and 
X and fully identify the model:

Y X B
O

I1 30 1 60
60 30

× ×
×

= 


















	 (13)

where I is a unique matrix with size of 30×30.
In the case inputs of the modelling data are fed to the exact RBFN, the model produces the exact 

outputs of the modelling data, regardless of the value of S in Equation (11). This is the reason behind 
the title of ‘exact’ for such an RBFN. However, a serious concern about exact RBFNs is inaccuracy 
of estimation outside the modelling data. A large spread (S) can smoothen and generalise the network 
(Beale, Hagan, & Demuth, 2017).

Here is a pseudo-algorithm of exact RBFN modelling (to find W, X, B and S using the input and 
out arrays of the modelling data, U2×30 and Y1×30):

1. 	 Set W30×2 = UT
2×30;

2. 	 Set O30×30 = ones (30×30);
3. 	 Form Equation (13) with Y1×30 and O from step 2 and solve it to find X1×30 and B1×30;
4. 	 Choose a large S (198 in this research) to generalise the developed RBFN.

Maximum number of data sets which can be fed into the developed RBFN is 30, for smaller 
inputs some elements of B are not used.

Exact RBFNs advantageously has a straightforward non-iterative parameter identification 
algorithm. However, this method creates models with too many parameters, 121 in this research, 
where only 30 modelling data sets, in total 90 pieces of input/output data, are available. Excessive 
number of parameters and focus of the algorithm on exact fitting to the modelling data increase the 
risk of ‘overfitting’ or lack of generality (Cawley & Talbot, 2010; Mohammadzaheri, Mirsepahi, 
Asef-afshar, & Koohi, 2007). Concerns have been raised on sufficiency of spread (S) to adequately 
generalise the area of validity of the exact RBFNs outside the operating areas where the modelling 
data have been collected from (Cawley & Talbot, 2010).
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Efficient RBFN Modelling
An alternative to exact RBFN modelling is efficient modelling which may produce RBFNs with fewer 
parameters than exact RBFNs. In spite of exact RBFNs which employ the transpose of input array 
of modelling data, UT, as the weight array, W, in efficient RBFN modelling, some columns of U are 
selected and transposed to form W. Thus, W is often smaller than U (Mohammadzaheri et al., 2018).

In order to select U columns to be used as W rows, first, every single column of U is transposed 
and tried as a single-row W. Then, its corresponding X and B are calculated using Equation (18), 
and an RBFN is created. The column of U leading to the smallest modelling error (ME) is selected, 
transposed and used as the first row of W, where:

ME Y Y
i i

i

= −( )
=
∑1

30 1

30 2

ˆ 	 (14)

Afterwards, remaining columns of U are tested to find the one in which addition of its transpose 
to W leads to the largest drop in the modelling error. Transposed of such a column is added to W. This 
continues till the number of W rows (R) reaches its pre-defined maximum (Rmax=30 in this research) 
or the modelling error reaches its predefined target (Et=1.7 Ω2 in this research); targeting a too small 
modelling error (e.g. 0) rises the chance of overfitting.

Here is a pseudo-algorithm of efficient RBFN modelling:

1. 	 W = null, Urem = U, Uopt = null, E = 1000 (a large number), TW = null (temporary weight matrix);
2. 	 Choose a large S (126 in this research) to generalise the developed RBFN;
3. 	 Choose Rmax (30 in this research) and target modelling error, Et (1.7 in this research);
4. 	 Set R = 1;
5. 	 Set k = 1;
6. 	 Add transpose of kth column of Urem to W to form TW;
7. 	 Calculate O from Equation (11) with U2×30 from the modelling data and TWR×2 and S defined in 

steps 6 and 2;

8. 	 Solve Y X B
O
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 to find X1×R and B1×30 (Y and O are available from the 

modelling data and step 7);
9. 	 Find the Modelling Error (ME)s from comparison of Ŷ  (calculated from Equations (11) and 

(12)) and Y, with use of Equation (14);
10. 	if ME < E, then E = ME and Uopt = Uk;
11. 	k = k + 1;
12. 	if k ≤ 30-R then go to 6;
13. 	Remove Uopt from Urem and add it to W;
14. 	R = R+1;
15. 	if R ≤ Rmax and E >Et then go to 5.

RESULTS AND DISCUSSION

Assessment of Approximate Analytical Model
Figure 5 compares analytically approximated and experimental sensing resistances for the whole 
experiments. It is obvious that analytical models overestimate the resistance, particularly at low 
frequencies. These too high sensing resistances, if implemented, would lead to too high sensing 
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voltages, surpassing the selected input voltage range of the A/D, i.e. ±0.625 V. As a result, the sensing 
voltage would be saturated and charge estimation cannot be performed in full. As an alternative, a 
below 1 factor should be multiplied by analytically estimated sensing resistances to avoid saturation 
of the sensing voltage.

Comparison of Analytical and RBFN Models and Other Data-Based Methods
Using the algorithms presented in RBFN modelling section and the modelling data presented 
Experimentation section, an exact and an efficient RBFN were developed. The exact RBFN has an 
S = 198 and for the efficient one S = 126, both values of S were obtained with trial and error. In 
order to develop the efficient RBFN, the target modelling error = 1.7 Ω2, leading to a network with 
R = 22. The data of RBFN models have not been fitted into Figure 5, because for the modelling 
data (30 sets detailed), RBFNs inherently present extremely high accuracy which cannot be trusted 
for cross-validation. Only five sets of test data, detailed in RBFN modelling section, were used for 
cross-valuation of RBFNs. Estimated values by the developed RBFNs for the test data and their 
comparison with experimental and analytically approximated sensing resistances is presented in Table 
1. Resistances estimated through data interpolation and averaging have been also presented in the 
table. Different interpolation algorithms were tried, and cubic outperformed others and was opted.

Figure 5. Experimental vs analytically approximated sensing resistance

Table 1. Estimated sensing resistances by different models versus experimental values

Excitation 
Voltage (V)

Experimental 
RS (Ω)

Estimated RS (Ω)

Analytical 
Model

Exact 
RBFN

Efficient 
RBFN

Cubic 
Interpolation Averaging

5 sin (2π×70t) 267.9 273.9 266.2 265.8 275.7 198.4

10 sin (2π×60t) 142.5 158.8 150.8 147.7 207.5 182.5

20 sin (2π×50t) 78.5 95.1 76.7 77.4 81.2 106.2

30 sin (2π×40t) 66.4 79.3 67.9 65.2 67.6 75.8

40 sin (2π×30t) 67.2 79.3 59.3 67.7 70.2 84.8
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Data interpolation results in fairly high accuracy at low frequencies, and a very bad estimation 
at the amplitude of 10 V and frequency of 60 Hz. Such an inaccurate estimation convinced authors to 
exclude interpolation from reliable estimation methods in this area of research. Averaging of available 
resistances of the immediate neighbouring operating areas did not result in accurate results as well. 
These show that data-based methods based on the data of adjacent operating areas cannot lead to 
accurate results, and techniques, such as RBFNs, which employ the whole data, are far more trustable.

Mean of absolute test error percentage, according to Equation (15), is 1.66%, 4.88%, 14.44%, 
11.64% and 25.93% for efficient and exact and RBFNs, analytical model, interpolation and averaging, 
respectively. The mean of absolute test error is 2.01 Ω, 4.41 Ω, 12.77 Ω, 15.93 Ω and 32.84 Ω. 
Percentage-wise, interpolation presents better accuracy than the analytical model, due to better 
performance at lower sensing resistances. Furthermore, the efficient RBFN presents better estimation 
than the exact one in spite of having fewer parameters. For all test data sets, RBFNs outperform 
the analytical model. However, it should be noted that exact and efficient RBFNs have 121 and 97 
parameters, respectively, while the analytical model has a single parameter:

test error percent=
−

×
Experimental R Estimated R

Experimental R
S S

S

1100 	 (15)

CONCLUSION

This article started with a critical review of digital charge estimators for piezoelectric actuators. Based 
on this review, a design guideline was suggested for such estimators: for given excitation voltage and 
I/O card, the range of the sensing voltage should be equal to the smallest input range of the I/O card. 
Then, it was experimentally shown that an estimator with a fixed sensing resistor cannot satisfy the 
aforementioned guideline. However, all reported digital charge estimators of piezoelectric actuators 
use one or a few intuitively selected values for sensing resistance. Consequently, these estimators 
witness avertible accuracy loss and/or voltage drop. This research focuses to address this issue with 
use of variable resistance, determined with radial basis fountain models, in charge estimators.

A variety of methods were employed to estimate the sensing resistance so as the estimator meets 
the guidelines: (i) approximate analytical modelling, based on that assumption that a piezoelectric 
actuator behaves like a capacitor, (ii) radial basis function network (RBFN) modelling, a method of 
artificial intelligence, and (iii and iv) interpolation and averaging of experimentally-found sensing 
resistances around the operating area. RBFN provided models with highly accurate estimation. The 
best RBFN has an absolute maximum test error of 3.65% and mean of absolute error of 1.66%. 
Approximate analytical model always overestimates the resistance; however, the analytical model needs 
no experimental data and has only 1 parameters, while RBFN models have 97 and 121 parameters.
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