
DOI: 10.4018/IJICTE.2020040101

International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

﻿
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

1

Open Sourcing the Pedagogy to 
Activate the Learning Process
Alan Rea, Haworth College of Business, Western Michigan University, Kalamazoo, USA

Nick Yeates, UMBC, Baltimore, USA

ABSTRACT

Information systems graduates increasingly need to understand the collaborative, technology-driven 
practices inspired by open source software development that are fundamentally changing today’s 
workplace. To meet this challenge, instructors must bring open source principles and technologies to 
active learning experiences. In this paper, the authors describe how nineteen undergraduates in a web 
development and design course at a Midwest university worked collaboratively with leading open-
source software provider, Red Hat, to revamp the Teaching Open Source website. Accommodating 
this semester-length project required making significant revisions to course structure, instructional 
strategy, and assessments. The authors also describe the challenges of integrating these practices 
into the classroom and conclude with project reflections, including cautions and suggestions for 
instructors considering similar initiatives to move away from the “instructor as expert” paradigm to 
“meritocracy rule” thereby enabling students to make decisions with impacts beyond the classroom.

Keywords
Active Learning, Agile Development, Classroom Project, Collaboration, Inner Source, Open Source, Pedagogy, 
Web Development

INTRODUCTION

The information systems department offers an undergraduate web design and development class at least 
once a year. The course is a degree requirement for juniors or seniors majoring in Digital Marketing 
and an elective for Information Systems majors. Instruction focuses on client-side scripting such as 
HTML5, CSS3 and JavaScript, and web design theory.

To practice what they are learning, students typically work in small groups on a semester-length 
project to develop websites for local small businesses or nonprofit organizations. However, at the outset 
of a fall semester, an opportunity presented itself for students to collaborate on a more substantial 
project: building a website for the only billion-dollar open source company, Red Hat (redhat.com).

This paper describes how an instructor and Red Hat consultant developed a course structure 
that enabled nineteen undergraduates to use open source software (OSS) development principles and 
technologies as they redesigned, developed, and implemented the Teaching Open Source website 
(teachingopensource.org) according to Red Hat’s specifications and input. Students worked within 
an agile development environment much like they would in the real world (Turnu, et al., 2006) and 
were encouraged to make their own decisions to meet project expectations.

This article, originally published under IGI Global’s copyright on April 1, 2020 will proceed with publication as an Open Access article 
starting on January 21, 2021 in the gold Open Access journal, International Journal of Information and Communication Technology Educa-
tion (converted to gold Open Access January 1, 2021), and will be distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the 
author of the original work and original publication source are properly credited. 



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

2

In the rest of Section 2, the authors describe the project’s context and learning strategies. Section 
3 contrasts it with previous attempts at collaboration. Section 4 explains the division of labor (into 
five student groups) and the means of motivating them. Section 5 describe new processes put in 
place to ensure the students succeeded at collaboration. Section 6 summarizes how technologies 
allowing virtual collaboration were applied. Section 7 reviews overall findings, including successes 
and shortcomings, and Section 8 offers suggestions for replicating the learning experience. Finally, 
Section 9 offers conclusions and future directions.

Open Source and Inner Source Approaches
To examine how the concepts and practices that the authors used diverged from established class 
projects and pedagogies, this subsection summarizes the industry strategies and practices that the 
class employed.

Open source typically refers to how source code is distributed and shared publicly via open 
source licensing (Koohang & Harman, 2005; Kamthan, 2007; OSI, 2019). Similarly, a new business 
practice--the “open source way”--applies to the work environment the same methodologies, best 
practices, processes, tools and culture that have transformed software development. The open source 
way empowers a workforce to collaborate freely as a community of people; new priorities include 
transparency, communal work, meritocratic rewards, and rapid prototyping (Red Hat, 2009).

These methods also may be used when the code will not be released to the public, or at least 
not to more than a select few (InnerSource Commons, 2019). The InnerSource approach describes 
communal, transparent, and iterative methods applied to in-house platform development (O’Reilly, 
2000; Stol & Fitzgerald, 2015). Inner source provides the benefits of open source for circumstances in 
which company culture, technical reasons, legal uncertainties, or business secrets prevent disclosing the 
source code outside the company (Capraro & Riehle, 2016). Another instance is when a government 
has restricted the material from open source licenses.

We classify the project results as inner source because students worked with the authors in 
an online meeting space accessible only to themselves and project facilitators from Red Hat and 
the Professors Open Source Software Experience group (POSSE). The website was inner source 
because its code has not yet been released, but open source because it will be freely available after 
its completion and approval by Redhat and POSSE.

Project Origins
The authors met at a POSSE (foss2serve.org) workshop for computer science and computer information 
systems professors sponsored by Red Hat and run by POSSE member faculty with support from the 
National Science Foundation. Without participating in initiatives designed to foster partnerships 
between academia and industry, projects such as this one do not easily occur. The authors encourage 
instructors who want to implement classroom projects such as this one to attend meetings of local 
AITP chapters (aitp.org) or contact organizations looking for project assistance, such as the Free 
Software Foundation (fsf.org)

During the workshop Red Hat and POSSE spoke of an initiative to revamp the Teaching Open 
Source website. One of the authors (the instructor) saw an opportunity to engage his students in the 
redesign and offered to take on the project in the fall. After discussions with Red Hat managers and 
POSSE leadership, the instructor and Red Hat consultant left the workshop as project leaders and 
agreed that the collaboration would be:

•	 Implemented by students in a classroom project environment;
•	 Managed by Red Hat via the consultant and the university via the instructor; and
•	 Overseen by stakeholders and facilitators from Red Hat and POSSE.



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

3

Project Approach
The project would be considerably larger than the instructor’s previous web projects, which had 
small teams of three to five students using limited deliverables to design websites for local clients. 
For this more substantial undertaking, the authors agreed that the class should function as an open 
source community in which diverse people collaborate for an improved outcome (Sack, et al., 2006).

Revisions to the course structure, instructional strategy, schedule and assessments would be 
necessary. The authors first planned the project’s approach and expectations, which would take their 
cues from the IT industry’s complex and multifaceted processes both in OSS development (Stewart 
& Gosain, 2006) and recently, InnerSource development (Capraro & Riehle, 2016; Stol, Babar, 
Avgeriou, & Fitzgerald, 2011). The authors soon determined:

•	 Everyone would work on the same project;
•	 Everyone would get the same project grade;
•	 Five work groups would have three to five students each;
•	 Each group would have a subfocus;
•	 Groups would work with Red Hat to implement the website;
•	 Email responses would be expected within three days;
•	 Weekly group sprints would be a check-in with everyone;
•	 The consultant would make an in-person visit at kick-off.

Project Expectations
The student team was asked to begin the project by investigating the existing site, evaluating its content 
and writing a site analysis. The student team’s first deliverable report states:

The original Teaching Open Source website was put together to encourage students to learn about 
open source projects and software by reaching them through teachers. The site was mainly a teaching 
resource to allow teachers to view projects, recent open source events, and blogs regarding open 
source. Changes in management of the site led to lowered upkeep, whereupon spam accounts and 
poorly structured data led to most users leaving the site...[The client] looks to relaunch the website to 
better facilitate the original concept of promoting education and problem solving with open source...

After summarizing the tasks at hand, the analysis delineated objectives for each student group (as 
discussed in Section 4.1) as well as for the overall team. It also offered a preliminary timeline to meet 
the assigned delivery date. After feedback from the authors, students discussed the report at length and 
made revisions. By allowing students to set expectations and work through them with the instructor 
and consultant, the team had a sense of ownership from initial stages (Stewart & Gosain, 2006).

PREVIOUS COLLABORATION APPROACHES

Case studies have focused on team building among students pursing different college majors and with 
programming levels ranging from beginner to advanced, as were the challenges with the students. 
Sahin (2011) recommends taking students’ preferences and instructor’s considerations into account 
when forming teams for software engineering courses. Kruck & Teer (2009) advocate the use of 
interdisciplinary teams as an advantage in a group technical project and describe how a professor can 
adjust a course to accommodate it. Fortunately, the authors were able to incorporate this knowledge 
using the CATME system (CATME, 2019; Layton, Loughry, Ohland, & Ricco, 2010) for generating 
a questionnaire that classified each student’s skills and knowledge as well as attitudes toward team 
projects (catme.org).



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

4

Team building is only the first hurdle in many classroom projects; despite being part of a traditional 
in-person class, the project required online collaboration. In seeking to replicate an efficient interactive 
learning environment as outlined by Uzunboylu (Uzunboylu, Bicen, & Cavus, 2011), the authors’ 
experience was that Google Docs, Hangouts, and Sheets, as well as LucidChart and Trello were 
invaluable. The Google offerings, in particular, made the project possible (as explained in Section 6).

A final goal of student teamwork in a virtual environment is to motivate students to become 
active rather than passive learners (Pundak, Herscovitz, Shacham, & Wiser-Biton, 2009; Schiller, 
2009; Coldwell, Craig, & Goold, 2011; Drake, 2012). While sharing goals with the team during 
the semester, the authors encouraged students to determine how they would reach them, in 
particular by deciding which tools and components best fulfilled the client’s requirements (Teel, 
Schweitzer, & Fulton, 2012; Kamthan, 2007; McComb, Green, & Compton, 1999). This was 
validated when students disputed the client’s suggestions. Some, but not all, of their arguments 
were adopted. During post-project feedback, one student noted that the authors hearing and giving 
serious consideration to their ideas and suggestions during sprint meetings (explained Section 
5.3) was positive. Such support is critical to OSS development teams because it “fosters trust 
and good communication practices by encouraging behaviors and orientations that are beneficial 
to the team’s work” (Stewart & Gosain, 2006, p. 292).

Previous Classroom Attempts
Semester-length, real-world projects are core to the web design and development class and identified as 
such in the course description. However, preceding projects were smaller scoped and less complicated; 
a few students at a time had been able to manage the information architecture, design, development 
and implementation of a local organization’s website assigned to their team.

Yet, previous projects also had overly depended on self-generated initiative from both clients 
and students. Some clients had been generous--and others uncharitable--in volunteering time and 
assistance to project teams. Moreover, past projects lacked iterative deliverables or checkpoints to 
help teams stay on schedule and on task. Ultimately, these learning experiences lacked community, 
cooperation, and a strong sense of identification with the project team: three concepts essential for 
OSS development to be effective (Stewart & Gosain, 2006).

Taking this into account, the authors improved the class structure and assessments through 
smaller deliverables, planned revisions of deliverables, weekly check-ins with the client and flexible 
objectives. Many of these techniques mirror tenets of agile development in software engineering 
(Kamthan, 2007; Teel, et al., 2012). Most worked well, but Section 7.3 of this paper describes times 
when the project deviated from its goals.

Industry’s Shifting Paradigm
The course’s new strategy borrowed from the Open Source, InnerSource, Agile, and DevOps 
approaches: all new models for software development as modern IT projects get bigger and more 
complicated. Industry use of organizational and cultural practices taken from open source originated 
with the software itself in the late 1990s and became a trend along with the InnerSource model in 
the following decade (Capraro & Reihle, 2016; InnerSourcing, 2019). Written in 2001, The Agile 
Manifesto (Beck, et al., 2001) created a new trend in project management that has benefited software 
development-based organizations by promoting iterative, cooperative, and frequent feedback practices.

More recently--beginning in 2009 in Belgium (Edwards, 2012)--the rapidly-growing DevOps 
movement has helped software organizations resolve the conflict between product development 
(feature creation) and operations (systems administration) that often delays getting software to the 
marketplace. DevOps principles are being embraced by large, complex IT organizations worldwide.

Today, large industry players such as IBM, Intel, Facebook, and Microsoft are more committed 
than ever to open source software. In recent years they have begun to allow their own developers to 
share high-potential code via company-sponsored initiatives, such as IBM’s developerWorks Open, or 



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

5

by joining existing open source software communities (Capraro & Riehle, 2016). Preparing students 
to work in these new fast-paced approaches to software and system development is important for 
their continued success. However, it does require instructors to shift the overall classroom focus 
and become more of a guide rather than the sole expert. The next section outlines how the semester 
project created an environment where this could happen.

PROJECT FRAMEWORK

The semester began with forming student groups, setting up project architecture, and familiarizing 
students with the context of the project, as detailed in the following subsections.

Group Focus Within the Team
While intending to encourage the entire class to collaborate on activities such as brainstorming and 
problem solving, the authors also saw value in forming smaller groups to accomplish specific tasks. 
Therefore, by applying an accepted approach to OSS development that uses loosely prescribed roles 
(Sack, et al., 2006), the authors devised the following groups of three to five students each:

•	 Information Architecture / User Experience (IA): After first harvesting material from the old 
site, the IA group focused on content organization and usability, resulting in a new information 
structure and improved site navigation. Its members created an impressive 1,188-cell spreadsheet 
mapping old content to new, which helped the entire team rearrange the site;

•	 Project Management (PM): This group managed schedules and deliverable dates and ensured 
collaboration across groups. One of its members attended each of five sprint meetings per week, 
during which they logged progress and assisted the team with reminders and next steps;

•	 System Administration, Programming, Development (SysAdmin): This group was responsible 
for cloud infrastructure implementation, shell-level administration tasks, and verifying that the 
site was secure, robust and reliable. The group installed and tested all platforms, modules and 
plugins, and managed user roles. Moreover, the group independently learned OpenShift (openshift.
com), an open source cloud-based containerized application hosting system, and implemented 
and configured Wordpress (wordpress.org), the content management system (CMS) platform 
selected for the new site;

•	 Systems Analysis (SysAnalysis): This group researched and tested seven platforms with the 
potential to meet client requirements and worked with the authors to create a 1,640-cell spreadsheet 
analyzing these findings. After recommending a CMS, the group documented and explained 
the system to both potential system administrators and users. This accomplishment should not 
be minimized given the lack of clear documentation in many open source projects (Izquierdo-
Cortazar, González-Barahona, Robles, Deprez, & Auvray, 2012);

•	 User Interface and Design (UI): This group was responsible for design, layout and color theme, 
as well as the site achieving client standards for usability and branding. Dozens of designs 
were sketched on paper and then built in LucidChart (lucidchart.com), a collaborative online 
diagram maker similar to Microsoft Visio. Additionally, group members independently learned 
Wordpress’s theme and plugin framework to take their art from idea to implementation.

Although forming groups helped to break a complex project into more manageable pieces, 
specialized groups also risked creating a silo effect within the team. The authors avoided this by 
requiring collaboration on all documents and group reports at weekly sprints (discussed in Section 
5.3). For example, the class received proposed designs from the UI group, organizational revisions 
from the IA group, and summaries of sprints from the PM group. All of these items were presented 



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

6

to the class as a whole and could be viewed at any time in the shared project folders. Peer cooperation 
throughout the semester was a critical component to ensure collaborative work (Poindexter, 2003).

Collaboration Motivators
If the student groups failed to work in a joint-delivery environment, and siloed outputs had to be 
assembled at the project’s end, there likely would be compatibility issues (Stol, Avgeriou, Babar, 
Lucas, & Fitzgerald, 2014). Therefore, each student had to understand collaboration benefits. 
Although there were many motivational factors inherent in the course structure, the three most 
important were:

•	 Shared project grade;
•	 Shared document space; and
•	 Shared project knowledge.

Ideally, students were motivated by interests that they cared about, and not simply told to 
collaborate. Still the authors found these three shared areas to be the most important when facilitating 
open source interdependence throughout the course.

Figure 1. Old to new information architecture mapping



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

7

Shared Grade
Arguably the single most important motivator was the shared project grade. The class earned a single 
mark for the all of the project deliverables, which accounted for 50% of each student’s final grade for 
the course. Early in the process, the authors considered whether the instructor should grade separately 
on certain deliverables from each group (e.g., site hierarchy analysis by the IA group), but rejected 
this to encourage cooperation and avoid a silo effect. It worked well. Asked about the benefits of 
participating in the project, a student noted:

It was, to be blunt, scary just letting go of all control over more than half of my points [for the course] 
on this project by allowing others to work towards it instead, but it was a great learning experience.

Shared Document Space
“Default to open,” or transparency in decision-making, is a principle that Red Hat applies to its entire 
work culture. Students were strongly encouraged to work only in shared spaces. The authors told 
them, “If it is not written down for all to see, it didn’t happen.” If during sprint meetings a student 
disclosed working apart from the group, the authors asked him or her to post the work--even as a 
rough draft--in a shared space. This occurred only once or twice before all work was shared by default.

Figure 2. Content management system analysis



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

8

To enhance teamwork further, edit privileges were granted across the collaborative cloud platform. 
No one misused or abused these privileges, an issue of common concern in open source processes. 
Shared document space allowed students to follow the overall progress and find opportunities to 
contribute to content not assigned to their group (Poindexter, 2003). This permitted meritocracy, 
a unique benefit of open source communities. At any point in time a student was able to provide 
feedback on any area of the project. This leads to process openness.

Shared Knowledge
Transparency is another much-touted advantage to open source communities; it helps members 
multiply their personal skills to achieve a greater result than if they had worked separately (Stol, et 
al., 2011, 2014). Creating a culture of openness in the Red Hat project transcended students simply 
knowing what others were doing or being able to monitor real-time progress on deliverables and 
provide input. Students had to understand that helping each other was in their own personal interest 
because a better project would be the result. As the project progressed, the authors saw an increase 
in peers giving feedback on other group deliverables either via the shared space or in class sessions.

Project Processes
However, an increase in peer cooperation would not have happened without an adequate 
atmosphere to encourage collaboration (Poindexter, 2003). Without careful planning and 
facilitation, students will become frustrated and ultimately stymie the learning experience for 
all. The following subsections describe how the project was allocated adequate weekly time 
and resources to enable peer cooperation and increased collaboration beyond what students 
are accustomed in a more traditional classroom environment. Although many smaller course 
adjustments are always necessary, the authors assert that without a shift in course scope and 
weekly sprints, this project would not have been completed.

Figure 3. Proposed site designs



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

9

Class Scope
Collaboration typically requires more “overhead” efforts, such as planning and meetings, which do 
not directly result in a student’s measurable progress on a project deliverable (Pundak, et al. 2009). 
As such, the project with Red Hat required significant changes to the instructor’s strategy for the 
course, including grading procedures.

Modifying the class schedule to allow more classroom time for the project was slightly easier 
than deciding how much it should influence final grades. In previous semesters, a smaller group 
project counted for 35% of a student’s final grade with the remaining 65% comprised of exercises, 
hands-on labs, and exams. After a discussion with students that ended in a show of hands, the Red 
Hat project was adjusted to become 50% of the grading component for the course. The instructor 
accomplished this change by removing exams from the course. Ultimately this change enabled the 
authors to increase the number of iterative sub-deliverables for the project in order to commit early, 
commit often (Red Hat, 2009), as well as allocate more time to enable group peer cooperation and 
team collaboration on the project in class.

Client Visit is Critical
Because the project was to be a major class focus, a client-team meeting early in the process was 
essential. Fortunately, the consultant was able to travel on short notice and became an “executive in 
residence” for three days at the university. Besides meeting with various student groups, he led in-class 
workshops to discuss open source and Red Hat. In the Web class the authors conducted workshops 
to help students understand the project though question and answer sessions, set benchmarks, and 
help students begin to brainstorm about the project (Kamthan, 2007).

This face-to-face meeting fostered trust between the team and the consultant that would boost 
students’ motivation to collaborate throughout the semester. As Stewart & Gosain (2006) noted, 
“Affective trust stems from emotional attachment between a trustor and a trust target and may, 
therefore, be most relevant to potential developers’ psychological and emotional reasons for joining, 
staying with, and contributing to OSS teams” (p. 296).

Sprint Meetings Are Anchors
To maintain the close interaction, a weekly sprint conducted in a round robin format was scheduled 
with each group and the consultant. During the sprint, group members each shared what they worked 
on that week and what they anticipated doing the next. The consultant led the initial group sprint, 
but after the first meeting asked each group leader to take it over, thus maintaining the culture and 
pace of the weekly sprint.

During the weekly sprint, in addition to the consultant, a PM group member also was present. This 
requirement was a highly effective means to record and disseminate information among the groups 
and the team as a whole. The PM group kept a detailed log of all meetings, resulting in a virtual 
project history that would benefit anyone wanting to learn from reviewing the process (Teel, et al., 
2012). Open source culture advocates such transparency because it allows new developers, transient 
bug fixers, curiosity seekers, and researchers alike to delve deep into a project knowledge base and 
culture as if they were participants from the onset. Thus, OSS can expand beyond its progenitors 
(Stallman, 1992).

Asked at the end of the project to share what worked well, nearly every student named the 
weekly sprints:

The thing that worked well the most with this project were the weekly sprint meetings…[The sprints] 
allowed us to get feedback on our work very quickly which in turn allowed us to make decisions on 
what to do next. I have taken part in many large projects where a deliverable is given and there is 
very little to zero communication up until the day before a deliverable is due. This causes everyone to 



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

10

scramble at the very last second, which usually results in low quality work. I also believe the workshop 
days where the entire class was able to collaborate and speak to [the consultant] were equally as 
important. I also believe this more accurately represents a scenario you would face in the real world.

The consultant’s availability to each student group via its weekly sprint required him to attend 
five Google Hangouts per week, an exceptional commitment that contributed greatly to the project’s 
success. Although the authors realize a large commitment such as this may not be possible for every 
class project, it was necessary for one of this scope. However, sprint meetings could be scaled back 
depending on the client’s goals for the project.

COLLABORATIVE TECHNOLOGIES

Project commitment and open lines of communication (Stewart & Gosain, 2006) are tenets of 
successful open source projects. Collaborative technologies enabled the students to accomplish the 
latter despite most of their communication and work taking place apart from their twice weekly classes.

Cross-platform compatibility enabled students to interact using any operating system or modality, 
including Chrome OS and smartphones. The class defaulted to productivity tools offered by Google 
Apps for Education (google.com/edu) because of its availability and Google’s strong communal-
oriented creation abilities. Google enabled the students to collaborate on the same documents to 
create, share, and edit files in real-time; however, any other multifaceted development environment 
would work.

Another preference was open source platforms such as OpenShift, Git, and Wordpress. The 
following table summarizes how technologies allowing virtual collaboration were applied to the 
project. Each is rated (High, Medium, Low) in terms of importance.

Collaborative technologies allowed students to witness project elements evolve and helped 
them to contribute in real time rather than waiting for a deadline. These communal social 
motivators are critical to the success of open source and other collaborative projects (Krogh, 
Haefliger, Spaeth, & Wallin, 2012).

OVERALL PROJECT FINDINGS

Given the fluid nature of open source processes in play not only in the project components and 
interaction but also the pedagogical shifts to encourage them, we offer both the major successes 
and the shortcomings for those who might want to implement similar initiatives. In this section, the 
authors distill the primary motivators and potential sticking points in regard to replicating similar 
learning opportunities.

Instructional Shift
Collaborative and cooperative learning requires not only students but also instructors to take on 
new roles. Early in the semester the instructor abdicated power as content expert of the classroom in 
favor of becoming the designer or architect of a learning experience (Poindexter, 2003). The quality 
of the collaborative process became the instructor’s priority as he helped students make decisions 
(Lakhani & von Hippel, 2003). At times this included letting the students fail, learn how to recover, 
and return to the project’s critical path.

Even if the instructor’s hands-off instructional approach resulted in a less-than-perfect final 
project, students benefitted from having observed the ramifications of poor decision-making in a 
real-world OSS development process. Krogh, et al. (2012) note that the potential impact of the work 
is a strong motivator. As one student observed:



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

11

Table1. Collaborative technology used

Tool Explanation Importance

Google Docs

All work was to be placed in shared folders with edit/
revision privileges extended to all. This included the 
contents of group subfolders and even a folder for turning 
in specific deliverables. Because Google Docs logs edits 
with attribution, students could see who made any changes, 
including deletions. To address potential conflicts, the 
Project Management (PM) group wrote policies for handling 
revisions, code commits, and other project needs; this 
group also was responsible for quality control on all final 
submissions.

High

Google Hangouts

Weekly sprint meetings were held as group video chats on 
Google Hangouts, giving students with busy schedules the 
flexibility of attending via smartphones. For workshops 
throughout the semester, Google Hangouts allowed the 
consultant to address the class from a projection system, and 
later to move around the room on a laptop screen to meet 
with groups.

High

Google Calendar
Students could check deadlines and conveniently join 
Hangouts via links from Google Calendar. PM members and 
all group leaders had edit privileges to share dates and times.

Medium

Trello﻿
(trello.com)

Early in the semester a Trello board was useful to organize 
deliverables, group formation, and other information. Its use 
diminished as the project progressed.

Low

LucidChart﻿
(lucidchart.com)

The UI group and IA group extensively used LucidChart 
for collaboration on site schematics, theme building and 
CSS frameworks. An educational version made LucidChart 
available to students without cost to them or the university.

High (Select 
Groups [IA and 
UI])﻿
Low (Remaining 
Groups)

Git and GitHub﻿
(github.com)

All code was hosted in a private Git repository; students used 
GitHub to share code, documents and other materials. Using 
Git and GitHub was challenging for students and required 
in-class instruction using tutorials and practice exercises. 
Concepts such as fork, push, and pull denote actions that 
are confusing for first time users. GitHub recognizes the 
challenge many face and has developed detailed guides and 
tutorials at its website (education.github.com).

High﻿
(Select Groups 
[SysAdmin])

OpenShift﻿
(openshift.com)

The project’s development and production sites were housed 
by OpenShift, which is Red Hat’s open source cloud-based 
Platform as a Service (PaaS) hosting system. It provides 
quick access to a Linux shell prompt and can automatically 
set up development environments such as PHP and a MySQL 
or PostgreSQL database. Other free PaaS offerings such 
as Heroku (heroku.com) are also available. The SysAdmin 
group, in particular, used OpenShift to test multiple Content 
Management Systems (CMS), and to stand up a development 
and production copy of Wordpress for the project. OpenShift 
and other PaaSs let students access as many virtual servers as 
needed to experiment with and deploy project technologies.

High

Email All groups and the team as a whole relied on email 
sometimes to its detriment (Section 7.3). High



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

12

The most important experience of this project was the real-world work environment we participated 
in. There are not nearly enough courses that truly apply a real-world environment to the curriculum 
and this class was an exception. This project allowed us to proactively learn what working in a web 
development position would be like. … Overall this gave us valuable career applicable knowledge 
we can take with us to a professional environment.

The consultant first expected to function as “client” for the project but soon took a more 
active project manager role that added another level of real-world authenticity. In addition to being 
an open source business strategist at Red Hat, he also had previously worked on an InnerSource 
project at the Naval Air Systems Command (NAVAIR) of the U.S. Department of Defense. He 
interacted with students in a truly open source collaborative manner in which the merit of ideas 
and approaches influenced decisions (Raymond, 2001). For example, the UI group used research 
and examples to convince the consultant that the client should go with a different site design than 
the preferred one. His willingness to allow ideas to flourish contributed to student ownership and 
the project’s ultimate success.

Project Successes
From student, industry, and instructor viewpoints, the project worked well. The authors note as examples:

•	 Student ownership and excitement: Encouraged to make team decisions, listened to as valued 
team members, and trusted to proceed on their own in groups and in a team (Stewart & Gosain, 
2006), students responded by making it their mission to complete a successful project;

•	 Real world lessons and output: The project extended the relevance of doing web design and 
development well beyond the classroom, allowing students to learn course content by doing 
rather than by only reading and practicing. Although coursework besides the project included 
labs, the potential for real-world results made the OSS learning experience indelible because 
it enabled students to try diverse approaches as they engineered the product (Kamthan, 2007);

•	 More employable graduates: Completing the project gave students an industry-sponsored project 
to put on their resumes and to help build their professional identities on LinkedIn (linkedin.com). 
Long notes that OSS experience on student resumes has a major impact when students are looking 
for their first job (2009). Additionally, the consultant was asked to submit recommendations that 
led to students getting technology jobs and internships. As one student shared:

I lack internship experience and most of my job experience is in entry level service industry positions. 
Having been part of this project gives a great experience to list on my resume, something I consider 
highly important as I write this paper not a week removed from taking my walk at commencement.

•	 Benefits to client: Red Hat and POSSE received an improved product created by a team 
of nineteen aspiring professionals, any of whom could be recruited as interns or future 
employees. Red Hat also was able to encourage good software practices, a benefit to the 
entire industry (Long, 2009);

•	 Benefits to university: Well beyond a press opportunity, the project further helped to foster a 
culture of collaboration between the college and its industry technical partners beyond those in 
the local community. Additional university entrepreneurial ventures are now considering open 
source collaborations as potential venues;

•	 Proof of open source success: The authors offer this project as an example that open source, 
coupled with collaborative and peer learning, can be successful. Though a significant departure 
from traditional instruction-based classrooms, projects such as this one should be more 
commonplace on campuses wanting to prepare students for today’s workplace (Long, 2009). The 



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

13

project accomplished this while also applying the principles of OSS software development, as 
the best enterprise development organizations also do (Capraro & Riehle, 2016). The authors’ 
hope is that other instructors, familiar with this project’s success, consider the viability of open 
source in the classroom not only with technology but also with pedagogy.

Project Shortcomings
Although successes outweighed shortcomings, a few problems did impact student collaboration and 
project deliverables, as described below:

•	 Feature bloat and scope creep: In the IT industry, project management suffers when 
the product accrues too many features or changes uncontrollably. In the students’ project, 
the team wasted time studying features such as user management that were outside of the 
project scope and thus counterproductive. In hindsight, the authors should have moved 
more quickly to define the project scope rather than permit the team to promote features 
that were not required;

•	 Critical path slowdown: In feedback at the project’s conclusion, nearly every student said it 
had taken too long at the project’s outset to decide which CMS to use:

...what we could have done better was the time comparison between researching the different parts, 
especially the CMS, and actually developing the prototype...too much time was spent on it, leaving 
the [team] very little time to create and implement the actual prototype.

At the time, the authors were not aware of the slowdown and encouraged some of the research. 
Care should be taken to start work into developing technical aspects early on, versus spending too 
much time weighing which paths to go down.

•	 Group arguments: Although minimal, there were instances of group conflict. For example, 
the SysAdmin group argued for a certain CMS that the SysAnalyst group did not value from its 
research. The authors let the students work through their conflicts without interference in order 
to maintain open source governance structures (O’Mahoney & Ferraro, 2007);

•	 Email miscommunication: Students relied on Google docs to stay abreast of collaboration 
on the deliverables, perhaps to the neglect of email. Discussion lists were not created for 
each student group or for the overall class. As a result, forgetting an email address in the 
Cc: field would leave a student uniformed. Discussion lists also would have contained a 
record of communications similar to the virtual project history described in Section 5.3. 
Future replications must have robust communication systems such as email lists or newer 
technologies such as Slack (slack.com);

•	 Privacy rights / FERPA: Getting students’ consent to use personally identifiable 
information for educational or promotional purposes should not be overlooked. Consider 
checking with university counsel in terms of what FERPA items can be released or waived 
by the students. If survey instruments will be used, contact the university’s human subjects 
research board.

The overall project was successful because students learned OSS processes and techniques, 
and as well how to collaborate with a major technology company. Ultimately, the Teaching Open 
Source website the students developed was not adopted, but the students’ research, design, as well 
as deliverables influenced its re-development by Red Hat.



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

14

SUGGESTIONS FOR IMPLEMENTATION

In this section the authors offer additional considerations for instructors or partner organizations 
preparing to undertake a student learning experience that will use open or inner source 
development practices:

•	 Organization buy-in: Success at short-term projects of a semester length requires that companies 
actively embrace the opportunity for open exploration of a business challenge or problem with 
a university and its students. Instructors who are uneasy about the potential for a single client 
failure might instead consider working with an established open source project team at the Free 
Software Foundation (fsf.org/campaigns/priority-projects), Apache Foundation (www.apache.
org), or GitHub (github.com/explore);

•	 Organization active contact: Instructors should look for the client who has interest in the 
university and program. An experienced industry professional who sits on a college or program 
advisory board would be a great resource to help in the project or to refer a colleague who would 
actively engage the students as their trusted mentor;

•	 Organization time allocation: One of the most precious assets a mentor can offer students is his 
or her time. To do so, a mentor may need to relinquish or delegate other work duties. Of course, 
an ideal collaboration would let the professional volunteer a substantial amount of his or her work 
week, but this is not usually possible (as it was in our case). At a minimum, instructors should 
advocate the project as a short-term commitment allowing the company to build relationships 
and gain access to undergraduates’ talent and skills to increase company participation in projects;

•	 Organization project need: Which OSS projects should the IT industry consider appropriate 
for collaboration with university partners? The optimal scenario would be a relatively low-risk 
idea or unfinished project that has not yet warranted much corporate investment or time. If the 
students fail to deliver a result meeting all client requirements, the organization can continue with 
the next semester’s class, recruit interns from the students, or use internal resources to finish it;

•	 Course time and scope fit: Project success depends on the student team being given the time 
and resources to succeed. The aforementioned project, for example, dominated a fifteen-week 
semester and demanded half of the course evaluation. If the university calendar is short, or the 
coursework cannot accommodate a large project, the authors suggest reducing the project scope. 
Consider improving an aspect of an existing open source project. Many projects need help with 
documentation, particular feature sets, etc. SourceForge (sourceforge.net/p/forge/helpwanted/) 
provides a listing to start the process.

CONCLUSION AND FUTURE DIRECTIONS

This paper describes how student-led collaboration with a large technology provider enhanced the 
learning experience for an undergraduate web design and development class. Instead of small teams 
of students using limited deliverables to design websites for local businesses or nonprofits (as in 
previous semesters), a decision to “open source the pedagogy” challenged the class to collaborate on 
a more substantial project, building a website for an S&P 500 company.

Success, however, required major classroom changes to accommodate the open source principles 
of cooperation, collaboration, and meritocracy, as well as Agile project management. To replicate 
this active learning opportunity, instructors must be willing to shift their primary responsibility from 
presenting course content to becoming the facilitator of a learning process that may exceed their 
comfort zone. The client must be able to provide a mentor to work with students for the duration.

Similarly, students must forgo the familiarity of exams and predetermined deliverables, as well 
as their direct correlation to a final grade, while gaining considerable control of their deliverables 
and the final project outcome. Accordingly, they participate in intense teamwork, new technologies, 

http://www.apache.org
http://www.apache.org


International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

15

and daily checkpoints and communication. Students may not fully perceive the real-world benefits of 
such an undertaking until they seek internships and jobs. However, learning projects based on open 
or inner source principles do prepare students for today’s workplace.

Future collaboration between open source and academic realms is promising, and the authors 
want to see such initiatives become fundamental to undergraduate coursework. They continue to 
develop the best practices applicable to replicating the experience described herein.



International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

16

REFERENCES

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., & Thomas, D. (2001). 
Manifesto for Agile Software Development. Retrieved June 21, 2016, from http://agilemanifesto.org/

Capraro, M., & Riehle, D. (2016). Inner Source Definition, Benefits, and Challenges. ACM Computing Surveys, 
49(4), 36. doi:10.1145/2856821

CATME. (2019). Retrieved on February 13, 2019 from http://info.catme.org/

Coldwell, J., Craig, A., & Goold, A. (2011). Using eTechnologies for Active Learning. Interdisciplinary Journal 
of Information, Knowledge, and Management, 6, 95–106. doi:10.28945/1367

Drake, J. (2012). A Critical Analysis of Active Learning and an Alternative Pedagogical Framework for Introductory 
Information Systems Courses. Journal of Information Technology Education: Innovations in Practice, 39–52.

Edwards, D. (2012, September 21). The History of DevOps. Retrieved from http://itrevolution.com/the-history-of-devops/

Hat, R. (2009). The Open Source Way. Retrieved from http://www.theopensourceway.org/book/index.html

InnerSource Commons. (n.d.). Retrieved February 13, 2019, from https://paypal.github.io/InnerSourceCommons/

Innersourcing. (n.d.). Retrieved February 13, 2019 from http://www.inner-sourcing.com/

Izquierdo-Cortazar, D., González-Barahona, J., Robles, G., Deprez, J., & Auvray, V. (2012). FLOSS Communities: 
Analyzing Evolvability and Robustness from an Industrial Perspective. Retrieved from https://hal.inria.fr/file/
index/docid/1058788/filename/izquierdo-cortazar-etal.pdf

Kamthan, P. (2007). On the Prospects and Concerns of Integrating Open Source Software Environment in 
Software Engineering Education. Journal of Information Technology Education, 6, 45–64. doi:10.28945/201

Koohang, A., & Harman, K. (2005). Open Source: A Metaphor for E-Learning. Informing Science Journal, 8, 
75–86. doi:10.28945/488

Kruck, S. E., & Teer, F. P. (2009). Interdisciplinary Student Teams Projects: A Case Study. Journal of Information 
Systems Education, 20(3), 325–330.

Lakhani, K. R., & von Hippel, E. (2003). How open source software works: “free” user-to-user assistance. 
Research Policy, 32(6), 923–943. doi:10.1016/S0048-7333(02)00095-1

Layton, R. A., Loughry, M. L., Ohland, M. W., & Ricco, G. D. (2010). Design and validation of a web-based system 
for assigning members to teams using instructor-specified criteria. Advances in Engineering Education, 2(1), 1–28.

Long, J. (2009). Open Source Software Development Experiences on the Students’ Resumes: Do They Count? - Insights 
from the Employers’ Perspectives. Journal of Information Technology Education, 8, 229–242. doi:10.28945/618

McComb, S., Green, S., & Compton, W. (1999). Project goals, team performance, and shared understanding. 
Engineering Management Journal, 11(3), 7–12. doi:10.1080/10429247.1999.11415033

O’Mahony, S., & Ferraro, F. (2007). The Emergence of Governance in an Open Source Community. Academy 
of Management Journal, 50(5), 1079–1106. doi:10.5465/amj.2007.27169153

O’Reilly, T. (2000). Response to Matt Feinstein on Open Source and OpenGL. Retrieved June 25, 2016, from 
http://archive.oreilly.com/pub/a/oreilly/ask_tim/2000/opengl_1200.html

Open Source Initiative (OSI). (2019). Licenses & Standards. Retrieved January 31, 2019, from https://opensource.
org/licenses

Poindexter, S. (2003). Assessing Active Alternatives for Teaching Programming. Journal of Information 
Technology Education, 2, 257–265. doi:10.28945/326

Pundak, D., Herscovitz, O., Shacham, M., & Wiser-Biton, R. (2009). Instructors’ Attitudes toward Active 
Learning. Interdisciplinary Journal of E-Learning and Learning Objects, 5, 215–232. doi:10.28945/74

Raymond, E. S. (2001). The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental 
Revolutionary. O’Reilly Media, Inc.

http://agilemanifesto.org/
http://dx.doi.org/10.1145/2856821
http://info.catme.org/
http://dx.doi.org/10.28945/1367
http://itrevolution.com/the-history-of-devops/
http://www.theopensourceway.org/book/index.html
https://paypal.github.io/InnerSourceCommons/
http://www.inner-sourcing.com/
https://hal.inria.fr/file/index/docid/1058788/filename/izquierdo-cortazar-etal.pdf
https://hal.inria.fr/file/index/docid/1058788/filename/izquierdo-cortazar-etal.pdf
http://dx.doi.org/10.28945/201
http://dx.doi.org/10.28945/488
http://dx.doi.org/10.1016/S0048-7333(02)00095-1
http://dx.doi.org/10.28945/618
http://dx.doi.org/10.1080/10429247.1999.11415033
http://dx.doi.org/10.5465/amj.2007.27169153
http://archive.oreilly.com/pub/a/oreilly/ask_tim/2000/opengl_1200.html
https://opensource.org/licenses
https://opensource.org/licenses
http://dx.doi.org/10.28945/326
http://dx.doi.org/10.28945/74


International Journal of Information and Communication Technology Education
Volume 16 • Issue 2 • April-June 2020

17

Alan Rea is a Professor of Computer Information Systems in the Department of Business Information Systems 
at the Haworth College of Business, Western Michigan University. Teaching courses in Information Security and 
Object-Oriented Programming, Dr. Rea integrates free and open source software and whenever possible, agile 
approaches, to accommodate the dynamic environment within information systems. His research concentrates on 
secure application and system development as well as organizational information assurance and risk management 
approaches. In particular, he has examined security and privacy implications associated with developing, 
deploying, and managing web and mobile applications as well as Internet of Things devices. His research has been 
published in the Journal of Information Systems Education, International Journal of Electronic Healthcare, Journal 
of Information Systems Security, Journal of Information Privacy and Security, Journal of Computer Information 
Systems, Communications of the ACM, and Journal of Digital Forensics, Security and Law. Currently he co-directs 
a cross-disciplinary M.S. and Graduate Certificate in Information Security.

Nick Yeates is an Open Source Strategy Consultant, having recently worked at Red Hat Inc to lead their customers 
through the open source way. He is a member of the InnerSource Commons community, working to formalize 
the art, science, and psychology needed to bring open source culture into organizations. Mr. Yeates has a 
community management background, as well as technical experience from mature startups, higher education, 
and military defense agencies. At Zenoss Inc, he led their online open source community toward a distributed 
software development paradigm. At the U.S. DoD (Department of Defense), he led a program-wide InnerSource 
implementation His interests lay at the intersection of open technology, people, and business. Mr. Yeates enjoys 
bringing transparent, communal, and iterative cultures into any organization.

Sack, W., Détienne, F., Ducheneaut, N., Burkhardt, J.-M., Mahendran, D., & Barcellini, F. (2006). A 
Methodological Framework for Socio-Cognitive Analyses of Collaborative Design of Open Source Software. 
Computer Supported Cooperative Work, 15(2-3), 229–250. doi:10.1007/s10606-006-9020-5

Sahin, Y. (2011). A team building model for software engineering courses term projects. Computers & Education, 
56(3), 916–922. doi:10.1016/j.compedu.2010.11.006

Schiller, S. Z. (2009). Practicing Learner-Centered Teaching: Pedagogical Design and Assessment of a Second 
Life Project. Journal of Information Systems Education, 20(3), 369–381.

Stallman, R. (1992). Why Software Should Be Free - GNU Project - Free Software Foundation. Retrieved June 
11, 2016, from https://www.gnu.org/philosophy/shouldbefree.html

Stewart, K. J., & Gosain, S. (2006). The Impact of Ideology on Effectiveness in Open Source Software 
Development Teams. Management Information Systems Quarterly, 30(2), 291–314. doi:10.2307/25148732

Stol, K. J., Avgeriou, P., Babar, M. A., Lucas, Y., & Fitzgerald, B. (2014). Key factors for adopting inner source. 
ACM Transactions on Software Engineering and Methodology, 23(2), 1–35. doi:10.1145/2533685

Stol, K. J., Babar, M. A., Avgeriou, P., & Fitzgerald, B. (2011). A comparative study of challenges in integrating 
Open Source Software and Inner Source Software. Information and Software Technology, 53(12), 1319–1336. 
doi:10.1016/j.infsof.2011.06.007

Stol, K. J., & Fitzgerald, B. (2015). Inner Source–Adopting Open Source Development Practices in Organizations: 
A Tutorial. IEEE Software, 32(4), 60–67. doi:10.1109/MS.2014.77

Teel, S., Schweitzer, D., & Fulton, S. (2012). Teaching Undergraduate Software Engineering Using Open Source 
Development Tools. Issues in Informing Science and Information Technology, 9, 63–73. doi:10.28945/1604

Turnu, I., Melis, M., Cau, A., Setzu, A., Concas, G., & Mannaro, K. (2006). Modeling and simulation of open source 
development using an agile practice. Journal of Systems Architecture, 52(11), 610–618. doi:10.1016/j.sysarc.2006.06.005

Uzunboylu, H., Bicen, H., & Cavus, N. (2011). The efficient virtual learning environment: A case study of web 
2.0 tools and Windows live spaces. Computers & Education, 56(3), 720–726. doi:10.1016/j.compedu.2010.10.014

von Krogh, G., Haefliger, S., Spaeth, S., & Wallin, M. W. (2012). Carrots and Rainbows: Motivation and Social Practice in 
Open Source Software Development. Management Information Systems Quarterly, 36(2), 649–676. doi:10.2307/41703471

http://dx.doi.org/10.1007/s10606-006-9020-5
http://dx.doi.org/10.1016/j.compedu.2010.11.006
https://www.gnu.org/philosophy/shouldbefree.html
http://dx.doi.org/10.2307/25148732
http://dx.doi.org/10.1145/2533685
http://dx.doi.org/10.1016/j.infsof.2011.06.007
http://dx.doi.org/10.1109/MS.2014.77
http://dx.doi.org/10.28945/1604
http://dx.doi.org/10.1016/j.sysarc.2006.06.005
http://dx.doi.org/10.1016/j.compedu.2010.10.014
http://dx.doi.org/10.2307/41703471

