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ABSTRACT

The electric network frequency (ENF) is recorded in the videos taken under the lights powered by 
grid and can be used for digital forensics. However, due to the lack of data caused by the low frame 
rate of the video, the ENF-based forensics methods always need a reference signal extracted from 
the grid, which limits the practical application of these methods. In this article, a new ENF-based 
time domain video forgery detection algorithm is proposed to solve the problem of data lack. The 
cubic spline interpolation is used to generate suitable data points of the ENF signal, and the detection 
sequence generated based on the correlation coefficient between data points in adjacent periods is used 
to catch the phase continuity interruption of the ENF signal and detect the exact position of forgery. 
The proposed algorithm can be used independently without any reference signals. The experimental 
results show that the proposed algorithm has good performance in detecting forgery videos with 
varying degrees of deletion, duplication and insertion of frames.
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1. INTRODUCTION

The electric network frequency (ENF) is the frequency of the power distribution networks. The 
nominal value of the frequency is 50 Hz or 60 Hz, and it usually fluctuates around the nominal value 
because of the changing load in the grid. A research pointed out that the range of the fluctuation is 
±0.6 Hz (Grigoras, 2005). The ENF signal would affect all devices connecting to the grid, and the 
effect has a high degree of uniformity within the same grid (Sanders, 2008).

The ENF signal has been used in audio forensics in the latest years. The sound recording 
equipment powered by the grid will record the ENF signal in the audio file, and this signal can be 
used as evidence for audio forensics. One approach of ENF based audio forensic algorithms is to 
compare the ENF signal extracted from the audio with the signal extracted from the grid to identify 
the generation time and location of the sound recording and to detect any tampering in the audio 
(Brixen, 2008; Cooper, 2008; Hajj-Ahmad et al., 2005; Hajj-Ahmad et al., 2013; Huijbregtse et al., 
2009; Kajstura et al., 2005). In order to use these algorithms, the ENF signals reference databases 
need to be built (Elmesalawy et al., 2014; Liu et al., 2012). There are also some algorithms using the 
continuity of the ENF signal to detect forgery in the audio (Nicolalde et al., 2009; Rodríguez et al., 
2010). These algorithms are independent of the reference signal and more flexible to use.
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The ENF signal has also been used in video forensics. In earlier work, the ENF signal for video 
forensics was extracted from the audio recorded during video shooting (Cooper, 2011; Grigoras, 
2007; Grigoras, 2009), while these methods cannot be used when the video does not contain audio 
track. Later, some video forensic algorithms based on the ENF signal extracted from video had been 
proposed (Garg et al., 2011; Garg et al., 2013; Su et al., 2014a). These algorithms need to match 
the ENF signal from a video to a ENF reference database, and recent research effort has focused on 
finding new methods for rapid and accurate matching (Su et al., 2014b; Hajj-Ahmad et al., 2016). 
However, the reference ENF signal extracted from the power grid directly is hard to be satisfied in 
most of the time. As a result, the mentioned methods have serious limitation in practice.

It is natural to consider using the continuity of the ENF signal to detect video forgery. However, 
it is very difficult to use the continuity of ENF signal extracted from video since the sampling rate of 
data points is not high enough. The frame rate of the video is always not more than 30fps, which leads 
to the lack of the data points. In order to solve this problem, we analyze the ENF signal from video 
and employ a special method for ENF signal interpolation. As a result, we can use the reconstructed 
ENF signal to detect forgery without relying on a reference ENF database.

The proposed method focuses on detecting the inter-frame video forgery, which tampers the 
whole frame instead of the region in the frame. Frame deletion, duplication and insertion are three 
of the most common used inter-frame video forgery methods, so this paper mainly investigates the 
detection algorithm to these three forgery methods. The main contribution of this paper is an ENF 
based inter-frame video forgery detection method which does not need the reference ENF signal 
and can be used to detect the accurate forgery position in the surveillance video with static scene. 
The proposed method is much more practical than other existing ENF based video forgery detection 
methods in practice.

The rest of this paper is organized as follows. Section 2 describes the principle and implementation 
of our algorithm. Section 3 discusses the practical problems in the algorithm. Section 4 analyses the 
experimental results. Section 5 concludes the paper.

2. THE PROPOSED ALGORITHM

2.1 Reconstruction of ENF Signal
The main source of the ENF signal in video is the flicker of the lighting. In one period of the ENF 
signal, the voltage amplitude will reach its maximum value twice, which makes the frequency of the 
flicker twice the power grid frequency. As mentioned above, the nominal value of the ENF frequency 
is commonly 50 or 60 Hz, so the flicker frequency will be 100 Hz or 120 Hz. The flicker cannot be 
noticed by human because of its frequency, but it could be recorded in the videos taken under lighting.

Each frame in the video is a sample of the flicker signal. The sampling rate (the same as the video 
frame rate) is usually no more than 30Hz, which is lower than the flicker frequency. Fortunately, 
both the ENF signal and the flicker signal are narrowband. According to the sampling theorem, the 
sampling rate fs can be used to capture all the information from a narrowband signal if it satisfies 
the condition below:
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where B denotes the bandwidth of the narrowband signal, fH denotes the high frequency boundary 
of the signal, ⌊fH/B⌋ denotes the integer part of fH/B, which is a positive integer, and fH/B-⌊fH/B⌋ denotes 
the decimal part of fH/B, and its range is [0, 1). The bandwidth of the flicker signal is usually very 
narrow, while the sampling rate of the video is usually not lower than 24.98 Hz, which makes the 
accurate extraction of flicker signal from the video possible. A sequence y(n), where n∈[0, N-1], and N 
denotes the total number of frames in the video, can be obtained by calculating the average luminance 
of each frame. A suitable bandpass filter can then be used to extract the flicker signal from y(n).

One of the key procedures to design a suitable band pass filter is to determine the center frequency. 
When the flicker signal with frequency fLight is sampled by the video with frame rate fs, it will have 
periodic tiling in the frequency domain. In this situation, the center frequency f0 is given by:
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In addition, the second harmonic of the flicker signal also needs to be considered, while the higher 
harmonics can be ignored due to their low energy. The center frequency of the second harmonic, 
denoted by f0

’, is given by:
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The frequencies of the fundamental tone and the second harmonic in videos with different frame 
rates affected by the power grid are shown in Table 1.

The frame rate of the video can be extracted from the video header, and the ENF can be confirmed 
by checking the video shooting location. Moreover, as the ENF only has two possible values, it is 
fairly easy to design the bandpass filter using a range of frequencies and then select the one with the 
best performance. The bandwidth of the band pass filter is also an important factor to consider, and 
we will discuss it in detail in Section 3. Another key point of filter design is that the filter should 
be zero-phase, because the phase of the signal extracted from video is very important for forensics.

After band pass filtering, the next problem needs to be solved is the lack of data points in the 
extracted signal. One of the effective solutions is interpolation. There are different interpolation 

Table 1. The fundamental tone frequency and second harmonic frequency of the ENF signal in videos with different frame rate 
and power grid frequency

Power grid frequency 
(Hz) Video frame rate (fps) Fundamental tone 

frequency (Hz)
Second harmonic 

frequency (Hz)

50 24.98 0.08 0.16

50 25 0 0

50 29.97 10.09 9.79

50 30 10 10

60 24.98 4.9 9.8

60 25 5 10

60 29.97 0.12 0.24

60 30 0 0
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methods, and we experimentally evaluate their effects. We use a Cannon A620 digital camera to 
shoot a 30 minutes video indoor with fluorescent light. The camera is fixed in location to simulate a 
surveillance camera and generates a video with static scene. The frame rate of the video is 30fps, the 
total frames number is 54000. By calculating the average luminance of each frame, we can obtain the 
average luminance vector y(n), where n∈[0, 53999]. The ENF in the shooting location has a frequency 
of 50Hz, and from Table 1 we can see that the center frequency of the band pass filter should be 10 
Hz. In this experiment we select a 0.6 Hz pass band to filter y(n) and then use linear interpolation, 
nearest-neighbor interpolation and cubic spline interpolation to generate new data. The results are 
shown in Figure 1. In the figure, the solid dots are the original data points, and the dotted lines are 
the generated curves.

The ENF signal should be close to a sine wave. Comparing the results in Figure 1, we can find 
that the curve generated by cubic spline interpolation is smooth and is most similar to a sinusoidal 
wave. Therefore, using cubic spline interpolation will provide more accurate results and help the 
subsequent video forensics task. For this reason, we choose cubic spline interpolation in the remaining 
experiments.

Cubic spline interpolation uses the piecewise third-degree polynomial functions to fit the original 
curve. For the data points {(xi, yi) | i=0, 1, 2, …}, each curve between adjacent two points is:

S x a x b x c x d
i i i i i i i i i i, , , , ,+ + + + +( ) = + + +

1 1
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1 1
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Figure 1. The curves reconstructed by (a) linear interpolation; (b) nearest- neighbor interpolation; and (c) cubic spline interpolation
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where Si,i+1(x) denotes the cubic polynomial function between the data points (xi, yi) and (xi+1, 
yi+1), and ai,i+1, bi,i+1, ci,i+1, di,i+1 are the coefficients of the function that need to be determined.

Using {(xi, yi) | i=0, 1, 2, …, n} to denote the set of data points, the n+1 data points will generate 
n curves. In (4) there are 4n unknown coefficients. From the continuity and smoothness conditions 
of the entire curve, we can obtain the following simultaneous equations:
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where S’
i,i+1 and S’’

i,i+1 are the first and second derivative of Si,i+1 respectively. The simultaneous 
equations in (5) have 4n-2 equations in total, and two more equations are needed to calculate the 4n 
coefficients. We use the not-a-knot end conditions to get the remaining two equations since the third 
derivative of the function should also be continuous (a sine wave has third derivative continuity), 
and we have:
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Using (5) and (6), the 4n coefficients can be determined.

2.2 Influence of Temporal Video Forgery to ENF
Videos with large part of static content such as surveillance videos have very high similarity between 
adjacent frames. When this kind of video is altered with inter-frame forgery methods it is very difficult 
for the naked eyes to discover the abnormity. Moreover, because of the static content, the forgery 
detection algorithms based on video content cannot have good performance either. However, when 
the video is tampered, the continuity of the ENF signal will be broken, which indicates the forgery 
position.

We delete 10 frames (from 20001st frame to 20010th frame) from the video mentioned in Section 
2.1 to generate a tampered video, and use the method mentioned in Section 2.1 to reconstruct the 
ENF signals. The ENF signals in the original video and tampered video are shown in Figure 2, and 
the forgery position is between the 20000th and 20001st frame.

From Figure 2 we can see that in several periods near the forgery position, the amplitude of the 
curves is significantly different between the normal and tampered videos, while the phase of the two 
signals are still closed. However, the difference of phase between the two signals increases suddenly 
in the period including the forgery position. The phase in the normal signal should be continuous, 
and the figure indicates that temporal forgery will interrupt the continuity of the phase. Therefore, 
using the continuity of phase in the extracted ENF signal to detect temporal forgery is a reasonable 
and effective method.

In order to detect the change in continuity of the phase and prevent the false alarm caused by the 
amplitude of the signal at the same time, correlation coefficient is used as a measure. Assume that 
two adjacent periods in the reconstructed ENF signal are S1(n) and S2(n) respectively, each period 
contains N0 data points, the correlation R(S1,S2) between the two periods can be calculated as follows:
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As the sine wave is a good approximation of the ENF signal, we can assume that the amplitude 
of S1(n) and S2(n) are A1 and A2, the angular frequencies are ω1 and ω2, and the phases are φ1 and φ2 
respectively. In this case, (7) can be rewritten as follows:

R S S A n A n
AA

n

N

1 2 1 1 1 2 2 2
1

1 2
1 2

0

2
, sin sin cos( ) = +( ) +( ) = − +( )

=
∑ ω ϕ ω ϕ ω ω nn

n

N

+ +





=
∑ ϕ ϕ

1 2
1

0

                                                              + −( ) + −





=

AA
n

n

N
1 2

1 2 1 2
12

0

cos ω ω ϕ ϕ∑∑
	

(8)

Because S1(n) and S2(n) are contiguous, their angular frequencies are approximately equal. 
Substitute ω1≈ω2 into (8) we have:
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Equation (9) shows that the correlations between adjacent periods in ENF signal are related to 
the difference of phase between them. The smaller the phase difference is, the higher the correlation 
will be, and vice versa. Therefore, the correlation between adjacent periods in ENF signal can be 
used to detect the interruption of the phase continuity.

In (9), the amplitude A1 and A2 still affect the value of correlation, while Figure 2 shows that 
accurate detection needs to avoid the influence of amplitude. For this reason, we use Pearson correlation 
coefficient to measure the correlation. The Pearson correlation coefficient is calculated as follows:

Figure 2. Comparison of ENF signals at frame deletion position
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where E1 and E2 denote the mean of the data points in S1(n) and S2(n), respectively, that is:
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By using the Pearson correlation coefficient, the phase continuity interruption can be detected 
effectively without being affected by the amplitude of the signal. Using the tampered video sample 
mentioned above, we interpolate 4 data points between each two original data points. That means 
each period in the ENF signal has 15 data points. We calculate the Pearson correlation coefficient 
between each pair of adjacent periods, the result is shown in Figure 3.

From Figure 3 we can see that most of the correlation coefficients are above 0.99, while at the 
forgery position the coefficient decreases to below 0.96 suddenly, which is significantly different 

Figure 3. Correlation coefficients between adjacent periods of data in the ENF signal extracted from a forgery video
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from nearby coefficients. This example shows that Pearson correlation coefficient can be used to 
detect forgery.

In Figure 3 the decrease of the correlation coefficients at the beginning and the end of the signal 
are also significant. We investigate the ENF signal at the beginning and the end of the video. The 
reconstructed signal is shown in Figure 4.

From Figure 4 we can see that the phase of the ENF signal also changes at the beginning and the 
end of the video. The reason for this phenomenon is that the filtering at the boundary of the finite 
signal is always inaccurate due to windowing effect. In actual computation, the finite signal needs 
to be padded at the beginning and end when being filtered, and the padding data points are always 
different from the actual ones, which are not available in practice. In this situation, the ENF signal 
extracted by the filtering method will inevitably also have several incorrect periods at the beginning 
and the end. Fortunately, the surveillance video always has long duration, and the suspicious forgery 
position is limited. We can divide the surveillance video into subsequences with 50% overlap to 
cover the suspicious forgery position, which ensures the boundary errors in one subsequence will 
be handled by its adjacent subsequences. For this reason, we do not need to deal with the boundary 
errors in practice.

On the other hand, some fluctuations of the coefficient value can also be observed in Figure 3, 
though the coefficients are still above 0.99. The fluctuations are caused by frequency fluctuation of 
the ENF signal, and we will analyze it in detail in Section 3.

2.3 The Detection Algorithm
The procedure of the temporal forgery detection algorithm for indoor surveillance video is as follows:

Figure 4. The reconstructed curves of the ENF signal at the (a) beginning; and (b) end of the video
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First, divide the long duration surveillance video into subsequences with 50% overlap, and divide 
each frame into non-overlapping, same size blocks bn,i,j, which denotes the block located at position 
(i, j) of frame n. To a video with N frames, n∈[0,N-1]. Calculate the average luminance of the block 
yb

n,i,j. For all N blocks in the same position, find the minimal value yi,j
min and maximum value yi,j

max, i.e.
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In digital video, the luminance of a pixel is between 0 and 255. When the original luminance is 
close to 0 or 255, the fluctuation of luminance may be limited. In order to ensure the accuracy, these 
blocks should not be used in forgery detection. On the other hand, the movements of objects will 
also cause luminance change and reduce the reliability of the detection algorithm, so we will only 
use the static blocks to extract ENF signal. We set a high luminance threshold ThH, a low luminance 
threshold ThL, and a difference threshold ThD. The blocks that are used in ENF signal reconstruction 
should meet the following conditions:
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All blocks used to extract ENF signal in one frame constitute a set B, and the number of elements 
in B is NB. The average luminance of the nth frame y(n) is calculated as follows:

y n
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After obtaining the average luminance of all frames, a zero-phase FIR band pass filter is designed 
according to the frame rate and power grid frequency as mentioned in Section 2.1, and the filter will 
be used to extract the ENF signal.

Then, cubic spline interpolation is used to interpolate n0 new data points between each two 
adjacent original data points. After interpolation, each period of signal has N0 data points, and
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where f0 denotes the center frequency of the filter and fs denotes the frame rate of the video.
Assume that the interpolated ENF signal is S(n), where n∈[0, Ntotal-1], and Ntotal is the total number 

of data points in the interpolated signal. The Pearson correlation coefficient of each two adjacent 
periods is computed to get a correlation coefficient sequence, that is:
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where C(i) denotes the Pearson correlation coefficient between the data points of the ith and the 
i+1th period in the ENF signal and Ei denotes the mean of the data points in the ith period which can 
be calculated as follows:
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When the total number of data points in the ENF signal is not divisible by N0, considering the 
boundary errors mentioned in Section 2.2, we can just discard the excess data points at the end of 
the signal, and the range of i should be:
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Meanwhile, because of the boundary errors, we set two discarding threshold Thfront and Thback. 
The C(i) will be used for forgery detection only when i satisfies the following condition:

Th i Th
front back
< < 	 (19)

The C(i) obtained from the procedure above is between -1 and 1, and the normal value should 
be close to 1. For convenience, we introduce a detection sequence Ct(i), and let

C i C i
t ( ) = − ( )1 	 (20)

The Ct(i) is in the range of [0,2]. It will be close to 0 in normal position and will increase 
significantly at the position of sudden phase change.

Next, we set a threshold Th1 according to the mean of Ct(i) as follows:
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where a1 is a positive number greater than 1 selected as needed. When the value of Ct(i) is greater 
than Th1, it can be considered as a candidate of forgery position and will be investigated further.

The fluctuations in Figure 3 must be processed in further detection. Assume that the forgery 
candidate is Ct(Icheck), in order to prevent false alarm caused by fluctuations, we select Ncheck elements 
before and after the Icheck

th element, and set the other threshold Th2 based on the mean of the selected 
elements as follows:
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where a2 is also a positive number greater than 1. When Ct(Icheck) is greater than Th2 at the same 
time, it can be asserted that the abnormal value of Ct(Icheck) is caused by temporal forgery.

After that, we need to determine which period the forgery position is located in. Considering that 
two forgery positions should not be very close in practice, we can assume that among the selected 
2Ncheck+1 elements there is only one forgery position. The forgery position period can be obtained by 
comparing the value of the two elements beside the peak Ct(Icheck). Assume that the forgery position 
is in the Iforgery

th period, the relation between Iforgery and Icheck is:
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In practice, there may be more than one forgery in one video, so we discard the 2Ncheck+1 elements 
which have been used to determine a forgery position, and then use the remaining ements to repeat 
the procedure above, until all the forgery periods have been found.

After confirming the forgery position is in period Iforgery, we can verify that the forgery position 
is in the range of [N0×Iforgery, N0×(Iforgery+1)-1] to the data points of the interpolated ENF signal. 
According to the interpolation method mentioned above, considering that the precise location of the 
forgery should be between two adjacent frames, the forgery position n in the original video will be 
in the range of
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By (24) we can obtain the range of the final forgery position in original video. The precision of 
the detection result is based on the frame rate of the video and the power grid frequency. When the 
power grid frequency is 50Hz and the frame rate is 30fps, the precision of the detection result will 
be 3 frames, or 0.1 seconds.

3. PRACTICAL PROBLEMS AND ANALYSIS

In Section 2, we analyzed the influence of temporal forgery on the ENF signal and proposed a forgery 
detection algorithm. However, we also observe some phenomenon that may weaken the performance 
of the algorithm, such as the fluctuations of the coefficients mentioned earlier. It is necessary to 
analyze these phenomena in order to minimize detection failure. In this section, we will analyze 
some phenomena which have significant impact on the detection results and describe how they can 
be addressed.

3.1 Influence of ENF Frequency Shifting
Consider the video taken by Canon A620 camera mentioned above as an example. We use the 
proposed algorithm to detect the forgery, and the Pearson correlation coefficients of the ENF signal 
are shown in Figure 5.

In order to show the relation between the values of the correlation coefficient and the frequency of 
the ENF signal, we use the ENF signal without interpolation to calculate its instantaneous frequency. 
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We use a window with a length of 480 to select data points from the ENF signal which has 54000 
data points in total. We calculate the Fourier transform of the 480 data points using a sliding window 
with a stride of 240, and obtain the approximate instantaneous frequency. The result is shown in 
Figure 6. In Figure 6, the lighter color represents higher value, and we can see that the instantaneous 
frequency of the ENF signal waves is around 10 Hz.

Compare Figure 6 with Figure 5, the correlation between coefficients value fluctuation and ENF 
frequency shifting is obvious. When the frequency of ENF signal is close to 10 Hz, the coefficient 
value is close to 1, whereas the coefficient value reduces when the frequency deviates from 10 Hz.

In practice, all signals processed in the proposed algorithm are discrete, and the picket fence effect 
cannot be avoided. In the example above, the center frequency of the filter is 10 Hz. It will extract 
the ENF signal more accurately when the instantaneous frequency of ENF signal is close to 10 Hz 
and is less accurate when the frequency shifts. The less accurate data points in the signal will have 
lower correlation with the data points in adjacent period. On the other hand, the frequency shifting 
also means the change in instantaneous phase, which will also reduce the value of the correlation 
coefficient. Because of these reasons, the correlation coefficient fluctuates in value. Fu et al. (2013) 
proposed a method to obtain accurate spectrum, but the method will also smooth the change caused 
by forgery and therefore is not suitable for our proposed forgery detection algorithm.

Compare Figure 5 with Figure 3, we can see that the change in value caused by ENF frequency 
shifting is much smaller than the one caused by forgery. Moreover, this kind of change in value is 
always continuous in a period of time, while the one caused by forgery is always abrupt. For these 
reasons, we can use the two step detection mentioned in Section 2.3 to handle this problem and avoid 
false alarm.

Figure 5. Correlation coefficients between adjacent periods of data in the ENF signal extracted from an original video
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3.2 Influence of Frame Dropping
In Figure 5 there is an abnormal decrease of coefficient value near the 11000th element, which is 
different from the change caused by frequency shifting. We examine the data and found that the exact 
position of this abnormal change occurs at the 11101th element. According to the number of data 
points in each period, it can be inferred that the abnormal position is between the 33301th and the 
33306th data point. We check the average luminance sequence around the suspicious position, and 
the value of the data points are shown in Figure 7.

In Figure 7 it can be observed that every three data points compose one period approximately, and 
it is also consistent with the frame rate of the video and the frequency of the ENF signal. However, the 
33305th data point does not satisfy this pattern. By analyzing the trend of the data points, we can infer 
that the original 33305th frame has been dropped. The frame drop undermines the periodicity of the 
average luminance sequence and changes the phase of the ENF signal extracted from the sequence at 
the corresponding position, which causes the abnormal decrease of the coefficient value in Figure 5.

Because of the limitation of the environment and hardware, the frame dropping problem cannot 
be completely avoided. The actual effect of frame dropping is similar to the frame deleting forgery, 
and both of them will interrupt the continuity of the video. Fortunately, frame dropping only involves 
a few frames, while the frame deleting forgery will delete a considerable number of frames. For this 
reason, this abnormal value change can be handled by setting suitable thresholds in the algorithm.

3.3 Influence of Filter Bandwidth
When using the band pass filter to extract the ENF signal, the bandwidth of the filter has a significant 
influence on the result. Using the video taken by Canon A620 camera mentioned above, changing the 
bandwidth of the band pass filter from 0.6 Hz to 1.2 Hz, and keeping the other parameters constant, 
we obtain the correlation coefficient values as shown in Figure 8.

Figure 6. The spectrum of ENF signal extracted from an original video
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In Figure 8, we can observe that the reduction of coefficient value caused by frame dropping 
mentioned in Section 3.2 becomes quite significant and is close to the situation caused by inter-frame 
forgery shown in Figure 3. We can also find that the change in value caused by frequency shifting is 
bigger than the one mentioned in Section 3.1. Both of the phenomena will bring deterioration to the 
performance of the proposed detection algorithm and may give rise to false alarm.

As analyzed above, the direct cause of reduction in correlation coefficient value is the phase 
difference between the adjacent periods in the ENF signal. When the difference increases, the reduction 
in coefficient value will become more significant. Moreover, the difference of phase always means 
the difference of instantaneous frequency. Assume that the ENF signal is S(t) = Acos(2πf0t+φ), and 
to account for the fact that the phase of the signal will change slowly with time, i.e. the phase of the 
signal is a function of time, the ENF signal can be rewritten as follows:

S t A f t t( ) = + ( )



cos 2

0
π ϕ 	 (25)

Let Φ(t)=2πf0t+φ(t), the instantaneous frequency of the ENF signal can be calculated as follows:
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In normal situation, the phase changes with time very slowly and the derivative φ’(t) is close to 
0, and the instantaneous frequency of the signal is close to the centre frequency of the filter. In this 
situation, the correlation coefficient value will not change significantly when the filter bandwidth 
is increased. When frequency shifting happens, the phase change will become faster with time and 
the derivative is greater than 0, which causes the instantaneous frequency to deviate from the centre 
frequency. When the filter bandwidth becomes wider, more energy in the signal with phase change 

Figure 7. The average luminance sequence around the suspicious position
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will be kept, and the correlation coefficient will decrease correspondingly. Moreover, at the position of 
frame dropping, the decrease in value will become much more serious. The frame dropping will bring 
sudden change to the phase of the signal and makes the derivative φ’(t) large. When the bandwidth of 
the filter becomes wider, more energy from the signal with phase change will be kept, and the energy 
will be much stronger than the one caused by frequency shifting, which leads to a sudden reduction 
in peak similar to the situation of forgery. In summary, in order to avoid the false alarm and improve 
the performance of the proposed detection algorithm, a pass band with narrow bandwidth should be 
selected when designing the filter for ENF signal extraction.

4. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the performance of the proposed algorithm, we use fixed digital cameras to shoot videos 
indoor under fluorescent light and obtain the videos which can simulate the surveillance videos. 
Surveillance video forgery detection is one of the most important applications of our proposed 
algorithm. The original videos are altered with frame deletion, duplication and insertion to generate 
the forged videos. Then the proposed algorithm is used to detect the positions of forgery. There are 
no other ENF based inter-frame forgery detection methods using ENF signal independently, so we 
compare our method with two state-of-the-art inter-frame forgery detection methods based on velocity 
field estimation and variation of prediction footprint (Huang et al., 2017) and multi-level subtraction 
(Sitara et al., 2017). We abbreviate the two methods to VFE-VPF and MLS for short. The setting of 
the experiments and the analysis of the results will be elaborated on in the following sub-sections.

Figure 8. Correlation coefficients between adjacent periods of data in the ENF signal extracted from an original video by a band 
pass filter with 1.2 Hz pass band
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4.1 Settings of the Experiments
The cameras used in the experiments include Canon A620, Canon A710 and Canon G12. The power 
grid frequency of the shooting location is 50 Hz. The frame rate of the videos is 30fps, and the 
resolution is 320×240. All the original videos are cut to 30 minutes, contains 54000 frames in total. 
During the detection of static area in the video, the block size is set to 4×4. The small block size will 
allow us to extract static area more accurately. According to the general condition of the videos, the 
thresholds in (13) are set to ThH = 235, ThL = 20 and ThD = 40.

According to the power grid frequency, the frame rate of the video, and the analysis in Section 
3.3, we design a band pass filter with centre frequency of 10 Hz and bandwidth of 0.6 Hz to extract 
the ENF signal from the videos. This filter can prevent false alarm caused by frequency shifting and 
frame dropping during detection effectively.

Cubic spline interpolation is applied to interpolate 4 data points between each two adjacent original 
data points. In order to avoid the boundary error shown in Figure 4, we control the forgery position 
and ensure the forgery position will not be located at the first or the last second of the video. In the 
experiments, 1 second contains 10 periods of ENF signal, and the range of i in Ct(i) is [0,17997]. We 
set the discarding thresholds to Thfront = 9 and Thback = 17988. Based on the investigation of numerous 
forgery videos, the Ncheck used for further detection is set to 10.

When calculating the thresholds Th1and Th2, the selection of a1 and a2 is very important and will 
affect the performance of the algorithm directly. In order to evaluate the overall performance of the 
algorithm, we fine tune a1 and a2 to get different false positive rates and true positive rates, and plot 
the ROC curve of the algorithm.

To the two algorithms for comparison, all the parameters except thresholds are set following 
the references. The thresholds in the two algorithms will be changed in steps in order to get different 
false positive rates and true positive rates and plot the ROC curve.

4.2 Detection of Frame Deletion Forgery
For video with large part of static scene, the frame deletion forgery can hardly be noticed by the 
naked eye. However, the detection algorithm based on ENF signal can solve this problem. In this 
experiment, the 30-minute videos will be deleted 10, 100 or 500 frames at random position between 
01:00 and 29:00 of the video to generate forgery videos. Then the proposed algorithm is used to 
detect the forgery location in the videos.

First, we will examine a specific example. We select a forgery video taken by Canon A620 
and delete the 20001st to 20010th frames in the video. The forgery position in this video is between 
the 20000th and the 20001st frame. Using the proposed detection algorithm, we have the detection 
sequence Ct(i) shown in Figure 9(a). By checking the position of the peak in Figure 9(a), we obtain 
the detection result shown in Figure 9(b). In Figure 9(b), the solid line represents the actual position 
of forgery and the dotted lines mark the range of the detection result. In this example, the detection 
range is (19997, 20001), which includes the actual position of forgery. It indicates that the proposed 
algorithm is effective in this example.

Then we change the parameters a1 and a2 to calculate the thresholds Th1 and Th2 and use different 
thresholds to detect the videos in batch. In the experiment, the range including the actual forgery 
position will be considered as a positive sample, and the other part of the video will be considered 
as a negative sample. When the algorithm detects a positive sample successfully, the number of true 
positive samples increases by 1. When the algorithm detects a negative sample as forgery position 
wrongly, the number of false positive samples increases by 1. The number of true positive samples 
divided by the number of positive samples is the true positive rate, and the number of false positive 
samples divided by the number of negative samples is the false positive rate. For different a1 and a2 
we will have different true positive rates and false positive rates, and the ROC curve can be obtained. 
The ROC curves for different length of deleted frame are shown in Figure 10 (a).
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From Figure 10 (a) it can be observed that when the false positive rate is low, the true positive 
rate of 10 frames deletion forgery videos is the lowest among the three situations. The reason is that 
when the number of deleted frames is small, the difference between the frames at the forgery position 
is also small, and the sudden change of phase in the signal is not as significant as when the number 
of deleted frames is large. As a result, the peak in Ct(i) is lower when the number of frame deletion 
is small. Low false positive rate means having a high detection threshold, and the peak in Ct(i) of the 
10 frames deletion forgery videos may not be detected by using these thresholds, so the true positive 
rate of 10 frames deletion forgery videos is the lowest in this situation.

Compare 100 frames deletion forgery videos and 500 frames deletion forgery videos, Figure 10 
(a) shows that the performance of the proposed detection algorithm to 100 frames deletion forgery is 
better than the performance to the 500 frames deletion forgery. The reason for this phenomenon is the 
accumulation of phase change. As the analysis in Section 3.1 showed, the frequency shift will cause 
the phase to change faster than normal. Although the proposed algorithm can avoid the false alarm 
caused by frequency shift, the abnormal change of phase cannot be eliminated and will accumulate 
along the time. The longer the deleted sequence is, the higher the chance that the difference of phase 
at the forgery position is close to 2π. When the difference of the phase is close to 2π, the correlation 
coefficient value between the two periods will be close to 1, and the peak in Ct(i) would disappear, 
which makes it impossible to detect the forgery. For this reason, the proposed algorithm has better 
performance for the 100 frames deletion forgery videos than the 500 frames.

With the increase of the false positive rate, the true positive rate of the 10 frames deletion forgery 
videos grows much faster than the other two forgery videos. This is also caused by the accumulation 
of phase change. When the length of the deleted sequence is short, the difference of the phase at the 
forgery position will be far from 2π. The peaks in Ct(i) may not be very high due to the short deletion 
length, but they will not decrease to 0 either. When the false positive rate increases, the detection 
threshold decreases, and more peaks will be detected by our algorithm. On the other hand, when the 
peaks in Ct(i) disappear because of the phase change accumulation, the forgery will not be detected 
no matter what the thresholds are set. For this reason, the performance of the 10 frames deletion 
forgery videos becomes the best with the increase of the false positive rate.

In summary, when the length of the deleted sequence is short, the phase difference of the periods 
at the forgery position is not very big, and the corresponding peak in Ct(i) is not very high, which 
will reduce the true positive rate when the false positive rate is low. On the other hand, the short 
length of the deletion sequence will not produce a phase difference of 2π. In contrast, a long-deleted 
sequence will give a high peak in Ct(i), but will also increase the possibility of peak disappearance 

Figure 9. (a) The detection sequence used in the frame deletion forgery example; (b) the forgery position detection result of this 
example.
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caused by phase change accumulation. Overall, the proposed algorithm is effective to detect frame 
deletion forgery.

We also compare the performances of the proposed algorithm on the three camera models. To 
the 100 frames deletion forgery videos, the ROC curves for different camera models are shown in 
Figure 10 (b). From Figure 10 (b) it can be observed that the proposed method has very close detection 
ability to the forgery videos taken by the three different camera models. That is to say, the proposed 
method has robustness to different camera models.

To compare our algorithm with VFE-VPF and MSL, we use the three methods to detect the same 
videos with 100 frames deletion forgery and get the ROC curves. The results are shown in Figure 10 
(c). The figure indicates that the proposed algorithm has much better performance than the other two 
algorithms when detecting the forgery in surveillance videos with a large part of static scene. The 
VFE-VPF algorithm tries to detect the abnormal motions in the video, so its performance decreases 
seriously when most of the frames in video are static. The MSL algorithm uses the luminance difference 
between frames to detect the forgery, so it can catch the fluctuation of ENF signal to some degree and 
has better performance than VFE-VPF. However, the static content covers the weak ENF signal most 
of the time, and MLS cannot work well in this situation. On the other hand, the proposed algorithm 
extracts the ENF signal and eliminates the interference of content, so its performance exceeds the 
other two’s significantly.

Figure 10. (a) The ROC curves of forgery videos deleted different number of frames; (b) the ROC curves of 100 frames deletion 
forgery videos taken by different camera models; (c) the ROC curves of 100 frames deletion forgery videos detected by different 
methods.
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4.3 Detection of Frame Duplication Forgery
The frame duplication forgery only involves one video, which is similar to the frame deletion forgery. 
When the video has a large part of static scene, the frame duplication forgery is also hard to be noticed 
by the naked eye. In this situation, the proposed algorithm based on ENF signal will be effective to 
detect the forgery. In this experiment, a sequence of 100 frames, 500 frames or 1000 frames will be 
selected at a random position between 01:00 and 29:00 of a 30 minutes video. The selected sequence 
will be copied and used to replace another sequence at another random position to generate the forgery 
video. The two sequences do not have any overlap. We have several original videos, and each of them 
can be used to generate several forgery videos. The proposed detection algorithm is used to detect 
the forgery locations of the forgery videos.

We select a video taken by Canon A620 and generate a forgery video by copying its 10001th 
to 10100th frames to replace its 40001th to 40100th frames. In this forgery video with 100 frames 
duplication there are two forgery positions, one is between the 40000th and the 40001st frame, i.e. at 
the start of the duplication, and the other is between the 40100th and the 40101th frame, at the end of 
the duplication. Using the proposed detection algorithm, we have the detection sequence Ct(i) shown 
in Figure 11(a). By checking the positions of the peak in Figure 11(a), we have the detection result 
shown in Figure 11(b). The lines in Figure 11(b) have the same meaning as the ones in Figure 9(b). In 
this example, the detection ranges are (39998, 40002) and (40097, 40101), and both of them include 
the actual position of forgery. It shows the effectiveness of the proposed algorithm in detecting frame 
duplication forgery.

Then the thresholds are changed to calculate different true positive rates and false positive rates 
to generate the ROC curve. It should be noted that in a frame duplication forgery video there are two 
forgery positions, so the number of positive samples is twice the number of negative samples, and 
it must be considered during the calculation of true positive rates and false positive rates. The ROC 
curves for different length of duplicated sequence are shown in Figure 12 (a).

Compare Figure 12 (a) with Figure 10 (a), it can be observed that the performance of the 
proposed detection algorithm to frame duplication forgery videos is similar to the performance for 
the frame deletion forgery videos with long deleted sequence, and their ROC curves have similar 
shape. The reason for this is related to the process of frame duplication forgery. An example of frame 
duplication forgery is shown in Figure 13. The source sequence contains K frames and begins from 
the IC

th frame in the video, and the replaced sequence begins from the IP
th frame. In this situation, the 

two forgery positions in the video are between the IP-1th and the IP
th frame, the IP+K-1th and the IP+Kth 

frame respectively. We assume IC> IP+K-1 in this example. For the first forgery position, the frame 
behind it is the IC

th frame from the same video, so the situation of this forgery position is the same 
as deleting the sequence from the IP

th frame to the IC-1th frame. The situation of the second forgery 
position is similar, and the frames beside it are the IP+Kth frame and the IC+K-1th frame in the video. 
Because the frame duplication forgery only involves one video, its forgery positions always have the 
same situation as the forgery position in frame deletion forgery, so the performance of the proposed 
algorithm for frame duplication forgery can be analyzed in the same way as in Section 4.2.

Most of the time the number of frames between the IP
th and the IC

th frame is much larger than 
K, so the performance for frame duplication forgery is similar to the performance for frame deletion 
forgery with long deleted sequence. The true positive rate reaches a certain level when the false 
positive rate is low and increases slowly with the rise of the false positive rate. In a few cases the 
positions of the source and replaced sequence are close, and the difference between IP and IC is close 
to K. In this situation the number of duplicated frames will begin to affect the detection performance. 
When K is large, the detection result has higher probability of been affected by the accumulation of 
phase change. So it can be seen in Figure 12 (a) that the proposed algorithm has better performance 
for the 100 frames duplication forgery than the other two situations. Overall, the proposed algorithm 
is effective to detect frame duplication forgery.
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Similar to Section 4.2, we compare the performances of the proposed algorithm to the 100 frames 
duplication forgery videos taken by the three camera models and give the ROC curves for different 
camera models in Figure 12 (b). The figure also shows the robustness to different camera models 
when using the proposed algorithm to detect frame duplication forgery. The 100 frames duplication 
forgery videos are also used for comparison of the three algorithms, and the ROC curves are shown 
in Figure 12 (c). Compare Figure 12 (c) with Figure 10 (c), the proposed algorithm still has a great 
advantage in detection performance, and the MLS algorithm has a little better performance than the 
VFE-VPF algorithm. The reason to this phenomenon is discussed in Section 4.2. Moreover, as we 
analyzed in this section earlier, both the VFE-VPF method and MLS method have similar performance 
when detecting 100 frames duplication forgery and 100 frames deletion forgery.

4.4 Detection of Frame Insertion Forgery
The frame insertion forgery involves at least two videos, so it is generally easier to be detected than the 
frame deletion and duplication forgery. However, when the videos are shot at the same place and have 
a large part of static scene, the forgery is also hard to be noticed by the naked eye, and the proposed 
algorithm based on ENF signal will be useful in this situation. In this experiment, several videos are 
selected as the fundamental videos. For each fundamental video, another video with similar content 
is selected as a material video. A random sequence is copied from the material video and inserted 
into the fundamental video at a random position between 01:00 and 29:00 of the 30 minutes video 
to generate the forgery video. The length of the inserted sequence can be 100 frames, 500 frames 

Figure 11. (a) The detection sequence used in the frame duplication forgery example; (b) the forgery position detection result 
of this example
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or 1000 frames, one fundamental video can generate several forgery videos using different material 
videos. Then the proposed detection algorithm is used to detect the forgery locations.

Once again, we will examine a specific example. We select a video taken by Canon A620 as a 
fundamental video, and select a video taken by the same camera at the same place but at a different 
date as a material video. A sequence from the 10001st to the 10100th frame in the material video is 
copied and inserted into the fundamental video after the 10000th frame to generate a forgery video. In 
this forgery video there are two forgery positions, one is between the 10000th and the 10001st frame, 
the other is between the 10100th and the 10101th frame. Using the proposed detection algorithm, we 

Figure 12. (a) The ROC curves of forgery videos with different number of duplicated frames; (b) the ROC curves of 100 frames 
duplication forgery videos taken by different camera models; (c) the ROC curves of 100 frames duplication forgery videos 
detected by different methods

Figure 13. A frame duplication forgery example
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have the detection sequence Ct(i) as shown in Figure 14(a). By checking the positions of the peak 
in Figure 14(a), we have the detection result as shown in Figure 14(b). The lines in Figure 14(b) 
also have the same meaning as the ones in Figure 9(b). In this example, the detection ranges are 
(10019,10023) and (10082,10086), which deviate by nearly 20 frames from the actual position of 
forgery. In summary, the proposed algorithm can detect the existence of frame insertion forgery but 
gives some deviation in the detection of forgery positions.

The reason for the deviation is that the average luminance of the fundamental video and the 
material video are significantly different, which can be observed in Figure 14(b). The sudden change of 
the average luminance can be considered as a step signal superposed on the original signal. Because of 
the significant difference, the accuracy of ENF signal extracted by the band pass filter will be reduced 
at the boundary of the step signal, and the additional data points generated by cubic spline interpolation 
will also be less accurate. As a result, the correlation coefficients value will also be incorrect. The 
boundary of the step signal is always at the forgery position, so the incorrectly extracted ENF signal 
will cause the deviation when detecting the forgery position. Although the forgery positions detected 
by the proposed algorithm are nearly 20 frames away from the actual positions, the algorithm can still 
detect the existence of the forgery. In other words, the proposed algorithm can be used to confirm 
the authenticity of the videos for frame insertion forgery.

Similar to the two experiments mentioned above, the thresholds are also changed to calculate 
different true positive rates and false positive rates and to generate the ROC curve. As in frame 
duplication forgery, in frame insertion forgery there are also two forgery positions in the forgery video, 
so the number of positive samples is also twice the number of negative samples. On the other hand, 
considering the deviation caused by the step signal effect, the detection range should be extended. 

Figure 14. (a) The detection sequence used in the frame insertion forgery example; (b) the forgery position detection result of 
this example
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Based on the experiment results, we find that the deviation will not exceed 30 frames, which is 1 
second in time, so we extend 30 frames before and after the detected range respectively. The ROC 
curves for different length of inserted sequence are shown in Figure 15 (a).

Compare Figure 15 (a) with Figure 12 (a), it can be observed that the shape of the ROC curves of 
the proposed detection algorithm for frame insertion forgery videos is similar to the frame duplication 
forgery videos. Moreover, because the inserted video sequence is from another video, the difference 
between the frames at both sides of the forgery position is more significant than that in the frame 
duplication forgery videos, so the true positive rate is higher for the frame insertion forgery videos. 
The ENF signal is always associated with time, so even though the fundamental video and the material 
video are taken by the same camera and at the same place, the different shooting time will produce 
different ENF signals. When the fundamental video and the material video are taken by the same 
camera at the same position, such as in surveillance videos, the frames beside the forgery position have 
similar characteristics as the very long sequence deletion forgery, so their properties can be analyzed 
in the same way. Similar to the situation in frame duplication forgery videos, the true positive rate is 
high when the false positive rate is low, but increases slowly with the rise of the false positive rate. 
The length of the inserted sequence also has the same influence as analyzed earlier. The more frames 

Figure 15. (a) The ROC curves of forgery videos with different number of inserted frames; (b) the ROC curves of 100 frames 
insertion forgery videos taken by different camera models; (c) the ROC curves of 100 frames insertion forgery videos detected 
by different methods
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are inserted, the higher the probability the performance will decline because of the accumulation of 
phase change. The peak in the detection sequence Ct(i) will decrease because of the accumulation, 
which has negative impact on the true positive rate. For this reason, it can be observed from Figure 
15 (a) that the performance of the proposed algorithm to the 100 frames insertion forgery videos is 
better than the performance of the 500 frames and 1000 frames insertion. The performance of the 
proposed algorithm is also affected by the fluctuation of ENF signal in the fundamental and material 
videos, and the performance has some randomness when the forgery videos are generated randomly. 
However, Figure 15 shows that the overall performance of the proposed algorithm is still good and 
is effective for frame insertion forgery detection.

Figure 15 (b) shows the ROC curves of the proposed algorithm detecting the 100 frames insertion 
forgery videos taken by the three different camera models, and it indicates the robustness of the 
proposed algorithm to different camera models again. We also use the methods for comparison to detect 
the 100 frames insertion forgery videos, and the ROC curves are shown in Figure 15 (c). Because of 
the more significant difference between the frames at both sides of the forgery position in the frame 
insertion forgery videos mentioned earlier in the section, the VFE-VPF and MLS also have much 
better performance when detection frame insertion forgery. However, as we analyzed in Section 4.2 
and 4.3, the proposed algorithm still has the best detection performance to frame insertion forgery.

5. CONCLUSION

An inter-frame video forgery detection algorithm is proposed in this paper. The algorithm extracts 
the ENF signal from the suspected video by band pass filtering and uses cubic spline interpolation 
to handle the problem of lack of data. In the proposed algorithm, the correlation coefficient between 
each pair of adjacent periods in the interpolated ENF signal is first obtained, and the sudden decrease 
in the correlation coefficient value is used to detect the existence and the exact position of the forgery. 
Different from other ENF signal based detection algorithms, the proposed algorithm uses only the 
extracted ENF signal for forgery detection and does not need a reference ENF signal from the power 
grid. Nowadays, there are few ENF signal databases available, and this situation makes the reference 
needed forgery detection algorithms unable to be used most of the time. Moreover, building an ENF 
database will cost a lot of resources. The proposed reference free algorithm can overcome these 
shortcomings and is more convenient to be used in practice. The results of the experiments show that 
the proposed algorithm has good performance for inter-frame video forgery detection, such as frame 
deletion, frame duplication, and frame insertion. The experiments also indicate that the proposed 
algorithm has superior performance compared with some state-of-the-art inter-frame forgery detection 
algorithms when detecting the surveillance videos with static scenes. In future research, we will 
extend the application scope to other type of video forgery.

ACKNOWLEDGMENT

This work was partially supported by Guangzhou City Science and Technology Foundation (Project 
No. 201510010275), Science and Technology Foundation of Guangdong Province (Project No. 
2017A050501002), Sino-Singapore International Joint Research Institute (Project No. 206-A017023 
and 206-A018001), and EU Horizon 2020 project under Grant 690907.



International Journal of Digital Crime and Forensics
Volume 12 • Issue 1 • January-March 2020

155

REFERENCES

Brixen, E. B. (2008). ENF; Quantification of the magnetic field. In Audio Engineering Society Conference: 33rd 
International Conference: Audio Forensics-Theory and Practice. Audio Engineering Society.

Cooper, A. J. (2008). The electric network frequency (ENF) as an aid to authenticating forensic digital audio 
recordings–an automated approach. In Audio Engineering Society Conference: 33rd International Conference: 
Audio Forensics-Theory and Practice. Audio Engineering Society.

Cooper, A. J. (2011). Further considerations for the analysis of ENF data for forensic audio and video applications. 
International Journal of Speech Language and the Law, 18(1), 99–120. doi:10.1558/ijsll.v18i1.99

Elmesalawy, M. M., & Eissa, M. M. (2014). New forensic ENF reference database for media recording 
authentication based on harmony search technique using GIS and wide area frequency measurements. IEEE 
Transactions on Information Forensics and Security, 9(4), 633–644. doi:10.1109/TIFS.2014.2304838

Fu, L., Markham, P. N., Conners, R. W., & Liu, Y. (2013). An improved discrete fourier transform-based 
algorithm for electric network frequency extraction. IEEE Transactions on Information Forensics and Security, 
8(7), 1173–1181. doi:10.1109/TIFS.2013.2265088

Garg, R., Varna, A. L., Hajj-Ahmad, A., & Wu, M. (2013). “Seeing” ENF: Power-signature-based timestamp 
for digital multimedia via optical sensing and signal processing. IEEE Transactions on Information Forensics 
and Security, 8(9), 1417–1432. doi:10.1109/TIFS.2013.2272217

Garg, R., Varna, A. L., & Wu, M. (2011). Seeing ENF: natural time stamp for digital video via optical sensing 
and signal processing. In Proceedings of the 19th ACM international conference on Multimedia (pp. 23-32). 
ACM. doi:10.1145/2072298.2072303

Grigoras, C. (2005). Digital audio recording analysis–the electric network frequency criterion. International 
Journal of Speech Language and the Law, 12(1), 63–76. doi:10.1558/sll.2005.12.1.63

Grigoras, C. (2007). Applications of ENF criterion in forensic audio, video, computer and telecommunication 
analysis. Forensic Science International, 167(2), 136–145. doi:10.1016/j.forsciint.2006.06.033 PMID:16884872

Grigoras, C. (2009). Applications of ENF analysis in forensic authentication of digital audio and video recordings. 
Journal of the Audio Engineering Society, 57(9), 643–661.

Hajj-Ahmad, A., Berkovich, A., & Wu, M. (2016). Exploiting power signatures for camera forensics. IEEE 
Signal Processing Letters, 23(5), 713–717. doi:10.1109/LSP.2016.2537201

Hajj-Ahmad, A., Garg, R., & Wu, M. (2013). ENF based location classification of sensor recordings. In 
Proceedings of the 2013 IEEE International Workshop on Information Forensics and Security (WIFS) (pp. 
138-143). IEEE. doi:10.1109/WIFS.2013.6707808

Hajj-Ahmad, A., Garg, R., & Wu, M. (2015). ENF-based region-of-recording identification for media signals. 
IEEE Transactions on Information Forensics and Security, 10(6), 1125–1136. doi:10.1109/TIFS.2015.2398367

Huang, C. C., Zhang, Y., & Thing, V. L. L. (2017). Inter-frame video forgery detection based on multi-level 
subtraction approach for realistic video forensic applications. In Proceedings of the 2017 IEEE International 
Conference on Signal and Image Processing (ICSIP) (pp. 20-24). IEEE. doi:10.1109/SIPROCESS.2017.8124498

Huijbregtse, M., & Geradts, Z. (2009, August). Using the ENF criterion for determining the time of recording 
of short digital audio recordings. In Proceedings of the International Workshop on Computational Forensics 
(pp. 116-124). Springer. doi:10.1007/978-3-642-03521-0_11

Kajstura, M., Trawinska, A., & Hebenstreit, J. (2005). Application of the electrical network frequency (ENF) 
criterion: A case of a digital recording. Forensic Science International, 155(2), 165–171. doi:10.1016/j.
forsciint.2004.11.015 PMID:16226153

Liu, Y., Yuan, Z., Markham, P. N., Conners, R. W., & Liu, Y. (2012). Application of power system frequency 
for digital audio authentication. IEEE Transactions on Power Delivery, 27(4), 1820–1828. doi:10.1109/
TPWRD.2012.2198892

http://dx.doi.org/10.1558/ijsll.v18i1.99
http://dx.doi.org/10.1109/TIFS.2014.2304838
http://dx.doi.org/10.1109/TIFS.2013.2265088
http://dx.doi.org/10.1109/TIFS.2013.2272217
http://dx.doi.org/10.1145/2072298.2072303
http://dx.doi.org/10.1558/sll.2005.12.1.63
http://dx.doi.org/10.1016/j.forsciint.2006.06.033
http://www.ncbi.nlm.nih.gov/pubmed/16884872
http://dx.doi.org/10.1109/LSP.2016.2537201
http://dx.doi.org/10.1109/WIFS.2013.6707808
http://dx.doi.org/10.1109/TIFS.2015.2398367
http://dx.doi.org/10.1109/SIPROCESS.2017.8124498
http://dx.doi.org/10.1007/978-3-642-03521-0_11
http://dx.doi.org/10.1016/j.forsciint.2004.11.015
http://dx.doi.org/10.1016/j.forsciint.2004.11.015
http://www.ncbi.nlm.nih.gov/pubmed/16226153
http://dx.doi.org/10.1109/TPWRD.2012.2198892
http://dx.doi.org/10.1109/TPWRD.2012.2198892


International Journal of Digital Crime and Forensics
Volume 12 • Issue 1 • January-March 2020

156

Yufei Wang received a B.E. degree in information engineering from South China University of Technology in 2010. 
Currently, he is a Ph.D. candidate in School of Electronic and Information Engineering at South China University 
of Technology. His research interests include information forensics, steganography and steganalysis, computer 
vision, and machine learning.

Yongjian Hu received a Ph.D. degree in communication and information systems from South China University of 
Technology in 2002. He is a professor with the School of Electronic and Information Engineering, South China 
University of Technology. Dr. Hu is also a senior member of Chinese Institute of Electronics (CIE) and a senior 
member of China Computer Federation (CCF). He has published more than 60 peer reviewed papers since 2000. 
His research interests include information hiding, multimedia security and machine learning.

Alan Wee-Chung Liew is currently an Associate Professor with the School of Information and Communication 
Technology, Griffith University, Australia. Previously, he has been an Assistant Professor in the Department of 
Computer Science and Engineering at The Chinese University of Hong Kong, and a senior research fellow in the 
Department of Electronic Engineering at the City University of Hong Kong. His research interests include pattern 
recognition and machine learning, medical imaging, computer vision, and bioinformatics.

Chang-Tsun Li received the BEng degree in electrical engineering from National Defence University (NDU), 
Taiwan, in 1987, the MSc degree in computer science from U.S. Naval Postgraduate School, USA, in 1992, and 
the PhD degree in computer science from the University of Warwick, UK, in 1998. He was an associate professor 
of the Department of Electrical Engineering at NDU during 1998-2002 and a visiting professor of the Department 
of Computer Science at U.S. Naval Postgraduate School in the second half of 2001. He was a professor of the 
Department of Computer Science at the University of Warwick, UK, until Dec 2016. He is currently Professor of 
Cyber Security at Deakin University, Australia. His research interests include multimedia forensics and security, 
biometrics, data mining, machine learning, data analytics, computer vision, image processing, pattern recognition, 
bioinformatics, and content-based image retrieval. He is currently Associate Editor of the EURASIP Journal of Image 
and Video Processing (JIVP) and Associate of Editor of IET Biometrics. He has been involved in the organisation 
of a number of international conferences and workshops and also served as member of the international program 
committees for several international conferences. He was the Lead and PI of the international joint project entitled 
Digital Image and Video Forensics (acronym: DIVEFOR) funded through the Marie Curie Action under the EU’s 
Seventh Framework Programme (FP7) from June 2010 to May 2014. He is currently the Lead and PI of the EU 
Horizon 2020 project, entitled Computer Vision Enabled Multimedia Forensics and People Identification (acronym: 
IDENTITY).

Nicolalde, D. P., & Apolinario, J. A. (2009). Evaluating digital audio authenticity with spectral distances and 
ENF phase change. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal 
Processing ICASSP 2009 (pp. 1417-1420). IEEE. doi:10.1109/ICASSP.2009.4959859

Rodríguez, D. P. N., Apolinário, J. A., & Biscainho, L. W. P. (2010). Audio authenticity: Detecting ENF 
discontinuity with high precision phase analysis. IEEE Transactions on Information Forensics and Security, 
5(3), 534–543. doi:10.1109/TIFS.2010.2051270

Sanders, R. W. (2008). Digital audio authenticity using the electric network frequency. In Audio Engineering 
Society Conference: 33rd International Conference: Audio Forensics-Theory and Practice. Audio Engineering 
Society.

Sitara, K., & Mehtre, B. M. (2017). A comprehensive approach for exposing inter-frame video forgeries. In 
Proceedings of the 2017 IEEE Colloquium on Signal Processing & its Applications (CSPA) (pp. 73-78). IEEE. 
doi:10.1109/CSPA.2017.8064927

Su, H., Hajj-Ahmad, A., Garg, R., & Wu, M. (2014a). Exploiting rolling shutter for ENF signal extraction from 
video. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP) (pp. 5367-5371). 
IEEE. doi:10.1109/ICIP.2014.7026086

Su, H., Hajj-Ahmad, A., Wu, M., & Oard, D. W. (2014b). Exploring the use of ENF for multimedia 
synchronization. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), (pp. 4613-4617). IEEE. doi:10.1109/ICASSP.2014.6854476

http://dx.doi.org/10.1109/ICASSP.2009.4959859
http://dx.doi.org/10.1109/TIFS.2010.2051270
http://dx.doi.org/10.1109/CSPA.2017.8064927
http://dx.doi.org/10.1109/ICIP.2014.7026086
http://dx.doi.org/10.1109/ICASSP.2014.6854476

