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ABSTRACT

In previous studies of synthetic speech detection (SSD), the most widely used features are based on 
a linear power spectrum. Different from conventional methods, this article proposes a new feature 
extraction method for SSD from octave power spectrum which is obtained from constant-Q transform 
(CQT). By combining CQT, block transform (BT) and discrete cosine transform (DCT), a new feature 
is obtained, namely, constant-Q block coefficients (CBC). In which, CQT is used to transform speech 
from the time domain into the frequency domain, BT is used to segment octave power spectrum into 
many blocks and DCT is used to extract principal information of every block. The experimental 
results on ASVspoof 2015 corpus shows that CBC is superior to other front-ends features that have 
been benchmarked on ASVspoof 2015 evaluation set in terms of equal error rate (EER).
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INTRODUCTION

Automatic speaker verification (ASV) is the task to accept or reject an identity claim based on a 
person’s speech sample (Kinnunen & Li, 2008), which has received wide spread attention over the 
recent 30 years. Most ASV systems assume natural human speech as input. However, ASV systems are 
often attacked by synthetic speech (Wu, et al, 2016), which is usually obtained by speech synthesis (SS) 
and voice conversation (VC) (Wu & Li, 2014). In order to protect ASV systems safe, it is necessary 
to detect synthetic speech from input speech. In addition, in the field of criminal investigators for 
forensics, SSD is helpful.

Generally speaking, there are two types of countermeasures for SSD: front-end feature and 
back-end model.

In terms of feature, features based on power spectrum, combining magnitude with phase and so on. 
The most widely used features based on power spectrum in SSD are mel-frequency cepstral coefficients 
(MFCC) (Sahidullah, Kinnunen & Hanilci, 2015) and constant-Q cepstral coefficients (CQCC) 
(Todisco, Delgado & Evans, 2016). In 2017, Paul et al. proposed several types of transformation 
for SSD in (Paul, Pal & Saha, 2017), they are speech-signal frequency cepstral coefficients (SFCC), 
mel-warped overlapped block transformation (MOBT), speech-signal-based overlapped block 
transformation (SOBT), inverted speech-signal frequency cepstral coefficients (ISFCC), inverted 
mel-warped overlapped block transformation (IMOBT). In addition, inverted mel frequency cepstral 
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coefficients (IMFCC) (Chakroborty, Roy & Saha, 2007) is also used in (Sahidullah, Kinnunen & 
Hanilci, 2015). However, those features are all based on linear power spectrum that every frequency 
bin has the same frequency region.

Phase features were often combined with magnitude features in SSD because the performance of 
phase features is usually worse than commonly used features based on power spectrum. For example, 
In 2015, Xiao et al. used logarithm magnitude spectrum (LMS) + residual logarithm magnitude 
spectrum (RLMS) + group delay (GD) + modified group delay (MGD) + instantaneous frequency 
(IF) + baseband phase difference (BPD) + pitch synchronous phase (PSP) in (Xiao, Tian, Du, et 
al, 2015), Novoselov et al. used modified group delay cepstral coefficients (MGDCC) + MFCC + 
Mel-frequency principal coefficients (MFPC) in (Novoselov, Kozlov, et al, 2016).

In addition, there are some other features used in SSD. For example, Zhang et al. employed 
Teager energy operator critical band autocorrelation envelope plus perceptual minimum variance 
distortionless response (TCAEP) and spectrogram in SSD (Zhang, Ranjan, Nandwana, et al, 2016, 
Zhang,Yu, & Hansen, 2017). Sriskandaraja et al. proposed scattering cepstal coefficients (SCC) 
(Sriskandaraja, Sethu, Ambikairajah & Li, 2017) in SSD, respectively. Patel and Patil proposed 
to use fundamental frequency, strength of excitation and cochlear filter cepatral coefficients and 
instantaneous frequency (CFCC-IF) (Patel & Patil, 2015, Patel & Patil, 2016) in SSD. In (Sahidullah, 
Kinnunen & Hanilci, 2015), a series of features were compared in SSD by Md Sahidullah et al. 
They are rectangular filter cepstral coefficients (RFCC) (Hasen, Sadjadi, Liu, Shokouhi, Boril, & 
Hansen, 2013), linear frequency cepstral coefficients (LFCC) (Alegre, Amehraye, & Evans, 2013), 
linear prediction cepstral coefficients (LPCC) (Furui, 1981), perception linear prediction cepstral 
coefficients (PLPCC) (Hermansky, 1990), subband spectral fux coefficients (SSFC) (Scheirer & 
Slaney, 1997), spectral centroid magnitude coefficients (SCMC) (Kua, Thiruvaran, Nosratighods, 
Ambikairajah, Epps, 2010), subband centroid frequency coefficients (SCFC) (Kua, Thiruvaran, 
Nosratighods, Ambikairajah, Epps, 2010).

Gaussian mixture model (GMM), support virtual machine (SVM) and deep learning based are 
often used as classifier in SSD. In the previous study, GMM is the most widely used model in SSD. 
For example, CQCC is followed by GMM in (Todisco, Delgado & Evans, 2016), in (Sriskandaraja, 
Sethu, Ambikairajah & Li, 2017), the authors also used GMM to model SCC. In addition, (Hasen, 
Sadjadi, Liu, Shokouhi, Boril, & Hansen, 2013, Todisco, Delgado & Evans, 2016, Patel & Patil, 
2016) all used GMM as classifier. Some classifiers based on deep learning were employed in SSD, for 
example, multilayer perceptron neural network (MLPNN) was used in (Xiao, Tian, Du, et al, 2015). 
In addition, convolutional neural network (CNN) plus recurrent neural network (RNN) were used in 
(Zhang, Yu, & Hansen, 2017), in which CNN was used to learn feature and RNN was used as classifier.

Since the work in (Todisco, Delgado & Evans, 2016) has shown that more gains can be obtained 
from feature rather than model. So we only focus feature level in this work.

As mentioned above, there is no report about how to extract discriminative information from 
octave power spectrum in previous SSD study, in which full frequency-band is segmented into 
several octaves and different frequency bins have different frequency region in the same or different 
octaves. We want to explore a new feature from octave power spectrum in this study. In addition, in 
order to capture more discriminative information from octave power spectrum, block transform (BT) 
is firstly used to segment logarithm octave power spectrum (LOPS) into many blocks and discrete 
cosine transform (DCT) is applied to extract principal information of every block, which is main 
contribution of the work.

In addition, because constant-Q transform (CQT) (Youngberg & Boll, 1978) has high frequency 
resolution and it can capture more detail of frequency, so CQT is combined with BT and DCT to extract 
a discriminative feature for SSD. We name the new feature as constant-Q block coefficients (CBC).

Because DNN not only has classifier function but also has feature learning ability (Seide, Li, et al, 
2011), in order to make CBC detect synthetic speech better, DNN is utilized as classifier in this work.
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The remainder of the paper is organized as follows. CBC extraction is introduced in Section 2. 
Section 3 gives the experimental results and analysis of ASVspoof 2015 using CBC. Section 4 gives 
the conclusion.

CBC EXTRACTION

In this section, how to extract CBC is introduced. An illustrative block diagram of the proposed 
feature is shown in Figure 1. From Figure 1, we can see that there are five modules in CBC extraction: 
CQT, power spectrum, Log, BT and DCT. In which, the module of CQT is used to transform speech 
from the time domain into the frequency domain, power spectrum is used to obtained octave power 
spectrum, log is used to obtain LOPS, BT is used to segment LOPS into many blocks and DCT is used 
to extract principal information of every block. A detailed description of each module is as following.

Constant-Q Transform
CQT was proposed in (Youngberg & Boll, 1978) and (Brown,1991). In which, Q is defined as the 
ratio of center frequency to bandwidth, which is as following:
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f
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Figure 1. Schematic diagram of CBC extraction
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From Formula (2) and (3), we can see that the more k , the more f
k

 and δf .

Power Spectrum and Log
The module of power spectrum is used to obtained octave power spectrum. Now we introduce how 
to calculate octave power spectrum:

M ms ms ms ms
Y K K
= −{ , ,..., , }

1 2 1
	 (7)

where M
Y

 represents for magnitude spectrum of Y k n( , ) , ms
k

 represents for k th-  frequency bin 
and k  is from 1 to K :
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where O
Y

 represents for octave power spectrum of Y k n( , ) , os
k

 represents for k th-  frequency bin 
and k  is from 1 to K . In addition:
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The module of Log is used to obtain octave power spectrum in log-scale, which is as following:
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where LO
Y

 represents for O
Y

 in log-scale and log( )⋅  is used to calculate value in log-scale.
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Block Transform and Discrete Cosine Transform
In order to extract more discriminative information from LOPS, BT is used here to segment LOPS, 
then LOPS is segmented into many blocks by BT. In order to make blocks continuous, there is 
overlapping frequency bins between neighboring blocks.

After LOPS is segmented into blocks, DCT is applied on every block to extract principal 
information of every block, then the former R coefficients obtained from DCT are selected as the 
feature for every block, finally, the R coefficients obtained from every DCT is concatenated to form 
final feature. Figure 2 shows the detail of back-step feature extraction by using BT for LOPS, DCT 
for blocks and concatenation.

From Figure 2, we can see that LOPS is segmented into many blocks using BT, which is as 
following:

LOPS Block Block Block Block
N N

=
1 2 1
, ,..., ,−





 	 (11)

In addition, there is overlapping frequency bins (red part in Figure 2) between neighboring blocks. 
DCT is supplied on every block, final feature can be obtained by concatenating the former R  
coefficients obtained from every DCT.

Supposing the dimension number of every block is M , CBC can be calculated as following:

CBC r C C r C C r C C r C C
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Figure 2. BT for LOPS, DCT for every block and concatenation
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where r  represents r th-  DCT coefficients, and r  is from 1 to R-1 , R  represents principal 
coefficients of DCT and:
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In addition, in order to study the role of the module of BT in feature extraction, we can suppose 
the module of BT is removed from Figure 1 and the obtained feature can named as constant-Q 
coefficients (CQC).

EXPERIMENTS AND ANALSIS

Experimental Data
ASVspoof 2015 corpus is constituted by three subsets: training data, development data and evaluation 
data, every part consists of human and spoofed speech that spoofed speech is generated from original 
genuine speech with different VC and SS algorithms. Table 1 gives some detail of every subset. In 
addition, all the data in ASVspoof 2015 is sampled at 16KHz and saved as mono channel wav formats. 
Totally, there are total ten spoofing-attack types speech (name as S1 to S10) in ASVspoof 2015 (Wu, 
et al., 2016). In addition, all the three subsets contain spoofing type S1-S5, which are denoted as 
known attack while S6 -S10 only appear in the evaluation subset and denoted as unknown attack.

Experiment
In CQT, there are several important parameters, which will affect the final performance. They are B 
which is number of bins in an octave, octave number, sampling period, gamma, respectively. In our 
experiments, the same as (Todisco, Delgado & Evans, 2016), B is set as 96, octave number is set as 
9, sampling period is set as 16 and gamma is set as 3.3026.

After DCT on every block, the former 12-dimension coefficients are used as feature and the other 
dimension coefficients are discarded, in other words, R is set as 12 in the experiments. According to 
ASVspoof 2015 challenge rule, 16,375 utterances in training set is used to train model, which can 
be used to evaluate the performance of the proposed feature on ASVspoof 2015 development and 
evaluation set.
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A type of classifier with six-layer DNN is trained, which has four hidden layers with 512 nodes 
at every layer and output layer with 2 nodes.

In BT, overlapping length of block is set as a half of block length. In addition, equal error rate 
(EER) and average equal error rate (AEER) are used as evaluation metrics.

Since the work in (Todisco, Delgado & Evans, 2016) has shown static features degrade the 
performance, CBC-DA is used as feature to evaluate CBC performance on ASVspoof 2015 corpus. 
In which D and A stands for delta and acceleration, respectively.

Experimental Results on ASVspoof 2015 Development Set Using CBC and CQC
Table 2 gives the experimental results on ASVspoof 2015 development set using CBC-DA and CQC-
DA under different block length and CQC.

From Table 2, several conclusions can be obtained:

1. 	 For CBC-DA, when block length is 144, its performance is very bad, the reason may be that 
there is only a little discriminative information is extracted;

2. 	 For CBC-DA, when block length is less than 144, its performance is satisfied, however, when 
block length is 84, its performance will degrade;

3. 	 Compared with the performance of CQC-DA and CBC-DA on ASVspoof 2015 development 
set, it can be shown that CBC-DA performs much better than CQC-DA at most situations except 
when block length is 144, which means that more discriminative information is obtained by using 
BT for CBC-DA extraction.

Experiment Result on ASVspoof 2015 Evaluation Set Using CBC-DA and CQC-DA
In ASVspoof 2015 evaluation set, there are five known attacks (S1-S5) and five unknown attacks 
(S6-S10), AEER of the ten attacks can be used as evaluation metric. Figure 3 gives the relationship 
between block length and average equal error rate (AEER) on ASVspoof 2015 evaluation set using 
CBC-DA.

From Figure 3, it can be seen that: AEER increases continuously when block length decreased 
from 132 to 84, especially when block length decreases from 96 to 84, the trend is very vast, AEER 
reach its minimal when block length equals 132, which means that discriminative information obtained 
is less when block length declines from 132 to 84.

Figure 4 shows AEER comparison between CBC-DA and CQC-DA on ASVspoof 2015 evaluation 
set.

From Figure 4, it can be seen that the performance of CBC-DA is much better than CQC-DA 
on ASVspoof 2015 evaluation set, the reason may be that there is more discriminative information 
extracted by using BT in CBC extraction. It confirms that our idea is correct.

Table 1. The detail of ASVspoof 2015 corpus

Subset Number

Male Female Genuine Spoofed

Training 10 15 3,750 12,625

Development 15 20 3,497 48,875

Evaluation 20 26 9,404 184,000
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Comparison With Some Other Systems
Table 3 gives the comparison with some other known systems on ASVspoof 2015 evaluation set in 
terms of EER.

From Table 3, two conclusions can be obtained: (1) In terms of average EER, for known spoofing 
type, IFCC-IF performs the worst, then MFCC and SSFC; for unknown spoofing type, magnitude + 
phase features give the worst performance, then SOBT, MOBT and ISOBT. (2) The system based on 
CBC-DA, outperformed all previously reported systems not only on known attack but also on unknown 
attack type. The reason may be that CQT can supply more frequency detail, BT can supply the base to 
obtain more discriminative information and DCT is used to extract information to form final feature.

Table 2. Experimental result (EER(%)) on ASVspoof 2015 development set using CBC-DA under different block length and 
CQC-DA

Feature Block 
Length

Overlapping 
Length

EER

S1 S2 S3 S4 S5 Ave.

CQC-DA 0.0090 0.0197 0 0.0148 0.2898 0.0667

CBC-DA 144 72 13.5548 29.5388 2.1397 1.9013 37.6657 16.9813

132 66 0 0.0148 0 0 0.0474 0.0125

120 60 0 0.0085 0 0 0.0539 0.0125

108 54 0 0 0 0 0.0217 0.0043

96 48 0 0 0 0 0.0236 0.0047

84 42 0 0.0147 0 0 0.1580 0.0345

Figure 3. The relationship between AEER and block length on ASVspoof 2015 evaluation set using CBC-DA
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CONCLUSION

In pursuit of capturing discriminative information from octave power spectrum and seeking an effective 
feature to detect synthetic speech, CBC, a new feature is proposed in this paper, which is based on 
CQT, BT and DCT. In which CQT is used to generate octave power spectrum, BT is used to supply 
the base to obtain more discriminative information and DCT is used to extract information to form 
final feature. Then the proposed feature is evaluated with ASVspoof 2015 corpus.

Figure 4. AEER (%) comparison between CBC-DA and CQC-DA on ASVspoof2015 evaluation set

Table 3. Comparison with some other systems on ASVspoof 2015 evaluation set in terms of EER (%)

System Known Unknown Ave.

CFCC-IF (Patel & Patil, 2015) 0.41 2.01 1.21

MGDCC+MFC+MFPC (Novoselov, Kozlov, et al, 2016) 0.00 3.92 1.97

Magnitude + phase features (Xiao, Tian, Du, et al, 2015) 0.00 5.22 2.61

RFCC (Sahidullah, Kinnunen & Hanilci, 2015) 0.12 1.92 1.02

LFCC (Sahidullah, Kinnunen & Hanilci, 2015) 0.11 1.67 0.89

MFCC (Sahidullah, Kinnunen & Hanilci, 2015) 0.39 3.84 2.12

IMFCC (Sahidullah, Kinnunen & Hanilci, 2015) 0.15 1.86 1.01

LPCC (Sahidullah, Kinnunen & Hanilci, 2015) 0.11 2.31 1.21

SSFC (Sahidullah, Kinnunen & Hanilci, 2015) 0.30 1.96 1.13

SCFC (Sahidullah, Kinnunen & Hanilci, 2015) 0.07 8.84 4.46

SCMC (Sahidullah, Kinnunen & Hanilci, 2015) 0.17 1.71 0.94

APGDF (Sahidullah, Kinnunen & Hanilci, 2015) 0.16 2.34 1.25

TCAEP (Zhang,Yu, & Hansen, 2017). 0.27 2.66 1.47

SFCC (Paul, Pal & Saha, 2017) 0.15 1.83 1.05

MOBT (Paul, Pal & Saha, 2017) 0.08 3.72 1.85

SOBT (Paul, Pal & Saha, 2017) 0.28 4.48 2.49

ISFCC (Paul, Pal & Saha, 2017) 0.05 1.63 0.86

IMOBT (Paul, Pal & Saha, 2017) 0.01 2.87 1.46

CQCC (Todisco, Delgado & Evans, 2016) 0.05 0.46 0.26

SCC (Sriskandaraja, Sethu, Ambikairajah & Li, 2017) 0.02 0.33 0.18

CBC-DA 0.01 0.22 0.11
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Experimental results showed that the proposed approach can achieve encouraging result. EER can 
reach 0.11%, which indicates that CBC-DA performs much better than some commonly used features 
and outperforms all previously reported systems not only on known attack but also on unknown attack 
type on ASVspoof 2015 evaluation set in terms of EER.

Though the result is encouraged, there is still room to improve. For example, 1) CBC is obtained 
from octave power spectrum obtained from CQT, there are too more frequency bins to describe 
low frequency bins and too fewer frequency bins to describe high frequency bins in octave power 
spectrum. If we can seek a method to transform octave power spectrum into linear power spectrum, 
there is gain that can be obtained because there are enough frequency bins to describe high frequency 
information. 2) After DCT on every block, only the former 12-dimension coefficients are selected as 
feature in our experiments, if much or less dimensions coefficients are selected as final features, how 
will affect the final performance. These can be our study directions in the near future.
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