
DOI: 10.4018/IJDCF.2019010110

International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

﻿
Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

126

Dynamic Provable Data Possession
of Multiple Copies in Cloud Storage
Based on Full-Node of AVL Tree
Min Long, Changsha University of Science and Technology, Changsha, China

You Li, Changsha University of Science and Technology, Changsha, China

Fei Peng, Hunan University, Changsha, China

ABSTRACT

This article describes how to protect the security of cloud storage, a provable data possession scheme
based on full-nodes of an AVL tree for multiple data copies in cloud storage. In the proposed scheme,
a Henon chaotic map is first implemented for the node calculation of the AVL tree, and then the
location of the data in the cloud is verified by AVL tree. As an AVL tree can keep the balance even
with multiple dynamic operations made on the data in the cloud, it can improve the search efficiency
of the data block, and reduce the length of the authentication path. Simulation results and analysis
confirm that it can achieve good security and high efficiency.

Keywords
AVL Tree, Dynamic Operation, Information Security Integrity Verification, Multiple Copies, Provable Data
Possession

1. INTRODUCTION

Recently, cloud storage has been paid wide attention for its mass storage capability and low cost
(Li, Qiu, Qiu, Qiu & Zhao, 2016). However, the open application mode makes the security of cloud
storage face severe challenges (Feng, Zhang, Zhang & Xu, 2011). How to protect the security of cloud
storage has become an urgent problem to be resolved. Integrity verification is an important part of
the data security. Multiple data copies are often used in the cloud storage to keep the reliability and
availability. Dynamic operations are used to support data updating on the cloud platform. Thus, data
integrity verification to support multiple data copies and dynamic operation is desirable. Currently,
according to the implementation of fault-tolerance preprocessing or not, the existing data integrity
verification mechanisms are classified into proof of retrievability (PoR) (Juels & Kaliski, 2007; Yan,
2013; Zhou, Li, Guo & Jia, 2014) and provable data possession (PDP) (Ateniese, Burns, Curtmola,
Herring & Kissner, 2007; Erway, Küpçü, Papamanthou & Tamassia, 2009; Gritti, Susilo & Plantard,
2015; Curtmola, Khan, Burns & Ateniese, 2008; Barsoum & Hasan, 2010).

This article, originally published under IGI Global’s copyright on January 1, 2019 will proceed with publication as an Open Access article
starting on February 2, 2021 in the gold Open Access journal, International Journal of Digital Crime and Forensics (converted to gold Open
Access January 1, 2021), and will be distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/

licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the original work and
original publication source are properly credited.

International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

127

The remote data integrity verification is firstly realized by using HMAC hash function (Deswarte,
Quisquater & Saïdane,2004). The MAC value of data is stored in local, and all the data is needed
to retrieve from the root node to compute the MAC value during the validation. This mechanism
needs a large computation cost and communication overhead; thus, it is cannot be applied to the
integrity verification of mass data in cloud storage. After that, the conception of PDP is proposed
(Ateniese, Burns, Curtmola, Herring & Kissner, 2007). Homomorphic veritable tags are used to
inspect the sampled data in the cloud. It allows verifying data possession without having access to
the actual data file, and it achieves a low overhead, but it does not support dynamic operation to the
data. Thereafter, they proposed an improved scheme (Ateniese, Pietro, Mancini & Tsudik, 2008),
but only modification and deletion can be performed, and it cannot support insertion. Erway et al.
(Erway, Küpçü, Papamanthou & Tamassia, 2009) used the rank value of the authentication jump table
to support the dynamic operation. Gritti et al. (Gritti, Susilo & Plantard, 2015) proposed a highly
efficient scheme that supports dynamic authentication and protects user privacy. These schemes are
only designed for the verification of a single copy of data.

In order to solve the problem of data integrity authentication for multiple copies, a MR-PDP
(Multiple-Replica PDP) scheme is proposed by Curtmola et al. (Curtmola, Khan, Burns & Ateniese,
2008). It can quickly generate multiple copies and restore the damaged copies. Barsoum & Hasan
(Barsoum & Hasan, 2010) put forward a multiple copies PDP scheme for static file, but this scheme
only applies single copy PDP scheme to different copies, and the efficiency is low. Homomorphic
linear authenticator was used to identify the multiple copies data (Ateniese, Kamara & Katz, 2009).
Fu et al. (Fu, Zhang, Chen & Feng, 2014) proposed a proof of data possession scheme of multiple
copies by taking the advantages of distributed computing ability of the multiple servers, and it can
verify whether the servers hold the correct number of copies or not. However, full dynamic operations
are not always supported in these schemes.

In recent years, MHT (Merkle Hash Tree) is used to construct data integrity authentication
schemes (Barsoum & Hasan, 2011; Barsoum & Hasan, 2013; Barsoum & Hasan, 2015). Long, Li &
Peng (Long, Li & Peng, 2017) implemented spatiotemporal chaos for node calculation of the binary
tree. These schemes can achieve data dynamic operation and support multiple copies authentication
by manipulating the classic Merkle-Hash-Tree (MHT). However, if insertion is performed on the
same data block for many times, it will lead to one branch of the binary tree too long, therefore the
efficiency of verification is reduced.

In this paper, a novel integrity verification scheme for multiple data copies in cloud storage is
proposed. We try to ensure the security and efficiency by engaging the AVL tree and Henon map.
AVL tree is used to construct the authentication structure for its good balance characteristics, and
node computation is achieved by Henon map, thus the change of location and value of the data can
be quickly discovered for its good randomness and sensitivity.

2. CONCEPTS

2.1. Notations
t : the number of copy
n : the number of blocks per copy
L : the number of character per block
F : the original file, F d d dn={ , ,..., }1 2

F ' : encrypted file by encrypting F with cryptographic function Ekey ()⋅ ,F b b bn' { , ,..., }= 1 2

ri j, : random number

mi j, : the jth block on copy i , m b ri j j i j, ,� �
Fi : the ith copy, F m m mi i i i n i t� � �{ , ,..., }, , ,1 2 1

International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

128

Ai j k, , : the ASCII of kth character in the jth block on copy i
Ri : the root of binary tree of ith copy
M : metadata of the file
Filename : the name of the file stored in cloud
σ i j, : the tag of jth block on copy i

φ j : the aggregated tags of jth block of all copies
Ekey ()⋅ : encryption function
Dkey ()⋅ : decryption function

2.2. Bilinear Pairings

The bilinear map is defined as: e G G GT: � � , where G is a group of Diffie-Hellman hypotheses
and GT is the multiplicative group of prime number P. This map has the following three characteristics:

1. 	 Computability: for any h h G1 2, ∈ , there are valid methods for computing e h h(,)1 2 ;

2. 	 Bilinearity: for h h G1 2, ∈ , a b Z p, ∈ , e h h e h ha b ab(,) (,)1 2 1 2= ;
3. 	 non-degeneracy: when g is a generator of the cycle group G , e g g(,) ≠1 .

2.3. System Model
A cloud data verification system generally includes user, cloud server and TPA (Long, Li & Peng,
2017). User is the entity that possesses data/files needing to be stored in the cloud. Cloud server has
strong computing power and storage capacity, which consists of two parts: a) master server S , it is
used for communication between the users and scheduling the task for the storage servers. Master
Server has a storage directory including Filename , ωi , φ j and the serial number of the storage

server where the copies of the file are stored; b) storage server S S St1 2, ,..., , and they are mainly
used for files storage. In this scheme, each copy is stored in different storage server, and it means t
copies of the file, F F Ft1 2, ,..., stored on t different storage servers S S St1 2, ,..., , respectively.
TPA has the expertise and capabilities that users do not have. As the proposed scheme supports public
auditing, TPA has the public key and it can act as a verifier, which is helpful to reduce the calculation
burden of user. However, TPA is not necessarily to be credible.

3. FULL NODE AVL TREE BASED ON HENON CHAOTIC MAP

3.1. AVL Tree
AVL tree is a self-balanced binary tree (Sun, Ryozo & Sun, 2000), which has the following properties:

1. 	 If the left subtree is not empty, the node value on the left subtree is less than or equal to the value
of its root node;

2. 	 If the right subtree is not empty, the node value on the right subtree is greater than or equal to
the value of its root node;

3. 	 The left and right subtrees are also binary sort trees.

As shown in Figure 1, the node value on the left subtree is less than root node value and the node
value on the right subtree is greater than root node value. In this scheme, the node value represents

International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

129

the sequence number of the data blocks. AVL tree is the self-balance tree and the node balance
factor is defined as the difference between the height of the left subtree and the height of the right
subtree. If the node balance factor is 1,0 or -1, this node is a balanced node (Wei, Zhang & Chun,
2010). When some updated operations on the AVL tree make it out of balance, it will rebalance by
self-rotation. For its highly balanced characteristic, the maximum complexity of updating operations
on AVL tree is O(log n). Compared with MHT, the structure of the AVL tree will greatly improve
the search efficiency.

3.2. Henon Chaotic Map
Henon map is defined as:

X aX bXn n n� �� � �1

2

11 	 (1)

When a = 1.4 and b = 0.3, it is chaotic. Henon chaotic map has complex behavior and more abundant
characteristics: good randomness and sensitivity to initial condition, thus will improve the security.

3.3. Construction of the Full Node AVL Tree
As shown in Figure 2, each replica corresponds to a full node AVL tree, and each data block in the
replica corresponds to one node, which will greatly reduce the overhead for the authentication path
and improve the efficiency.

In this scheme, both TPA and CSP should keep AVL tree of data, but there are some difference in
the trees. Here TTree represents AVL tree kept by TPA, and CTree represents AVL tree kept by CSP.

3.3.1. TTree

In TTree, each node stores node value X mi j(), and the sequence number of the data blocks. The
value of the leaf nodes and non-leaf nodes of the binary tree are calculated by (2) and (3), respectively.

Figure 1. AVL tree

International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

130

X m
A

i j

i j k
k

L

L
(),

, ,

�
�

�
� 1

2561 	 (2)

K m aX bX

T m
A

X m aK

i j LS RS

i j

i j

i j k
k

L

L

()

()

() (

,

,

,

, ,

� � �

�
�

� �

�
�

1

1

256

1

2

1

mm bT mi j i j, ,) ()2 �

�

�

�
��

�

�
�
�

	 (3)

where XLS and XRS are the left and right child node of XF , respectively. Henon map can spread
and enlarge the change of node value. As we can see from (2) and (3), any change in the AVL tree
will bring great change in the root node value, therefore we can judge the integrity of the data.

To check multiple copies, we aggregate the root nodes of all copies of the file into metadata M
as done in (Long, Li & Peng, 2017). Metadata is calculated by

M h R R Rt� � � �(....)1 2 	 (4)

In this way, we can only check the metadata to determine the position of the data block of all
copies of the file that is changed.

Figure 2. Full node AVL tree——TTree

International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

131

3.3.2. CTree

In CTree, each node should store T mi j(), , mi j, and the sequence number of the data blocks n as
shown in Figure 3.

4. THE PROPOSED VERIFICATION SCHEME

4.1. Initialization
The initialization consists of the following three algorithms:

4.1.1. Key Generation KeyGen()⋅

KeyGen sk pkk() (,)1 → is used to generate public and secret key pairs that is run by the user.
Firstly, user chooses a random x Z p∈ and computes� � g x , then apply for a public-private key
pair (,)ssk spk from the key management center as the keys of encryption function Ekey ()⋅ and
decryption function Dkey ()⋅ , respectively. The secret key is sk x K ssk= (, ,)1 and the public key
is pk g spk� (, ,)� .

4.1.2. Replica Generation ReplicaGen()⋅
ReplicaGen t F Fi(,)→ is run by the user to produce multiple copies. Encryption function
Essk ()⋅ is firstly performed to F and get the encrypted file F b b bn' { , ,..., }= 1 2 . After that,
computes m b ri j j i j, ,� � , ri j, is a random number, and get t different f i le copies
F mi i j i t j n� � � � �{ }, ,1 1 .

Figure 3. Full node AVL tree——CTree

International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

132

4.1.3. Tag Generation TagGen()⋅
TagGen sk F Mi j(,) (,)� � is executed by user. Firstly, the user generates a set of random numbers

u G i ti � �(, , ,...,)1 2 3 and computes the tag � i j i
i jmu x G, [,]� � for each block mi j, , then

integrates these tags into aggregated tags � �j i j
i

t
G� �

�
� ,
1

. After that, the metadata M can be

acquired according to (4).
Thereafter, the user sends { , , }pk M TTree to TPA and { , , } ,F CTreei i t j nj� i 1 1� � � � to the

master server, then deletes the copies, the trees, and tags at its local storage, and only keeps (,)pk sk .

4.2. Verification
The validation includes two algorithms as follows:

4.2.1. Proof Generation GenProof ()⋅
Gen oof F chal Pi jPr (, ,)� � is performed by cloud server. TPA periodically challenges the
cloud server to determine if cloud server possesses all copies of the file. Firstly, TPA randomly selects
c elements from [1, n] to compose an integer set I l l lc={ , ,..., }1 2 (l l lc1 2≤ ≤ ≤...), and picks a
random element � j Z p� for each j I∈ , then gets the challenged information chal j v j l j lc� � �{ , }

1
,

finally sends { }chal to the master server.
After receiving { }chal , the master server computes { ()}, ,T mi j i t l j lc1 1≤ ≤ ≤ ≤ , and selects the

random numbers k Z i ti p� �(, ,...,)1 2 , then get µi
' and φ ' given by (5) and (6).

�i j i j
j l

l

i pv m k Z
c

'
,� � �

�
�

1

+ 	 (5)

� �' � �
�
� j

v

j l

l
j

c

G
1

	 (6)

Set u Ki
k

i
i = and get the verification proof P K T mi i j i j i t l j lc� � � � �{ , , ,{ (), }}' '

, , ,i � � � 1 1
, then

send it to TPA. As shown in Figure 3, where the challenged block is mi,2 , and
� � � � � �i i i i i i, , , , , ,{ , , , , }2 2 4 3 7 5� , where τ i j, is the transformation value of the node value. For
example, � i i iT m T m, , ,{ (), ()}2 2 1� and � i i i iT m T m T m, , , ,{ (), (), ()}7 7 6 8� .

4.2.2. Proof Verification Verify oofPr ()⋅

Verify oof P M False TruePr (,) (" "," ")→ is executed by TPA. After TPA receives the
proof P, the metadata M ' can be computed according to { (), }, , ,X mi j i j i t l j lc� 1 1� � � � , and then
checks if M M' = holds. If it is not true, output " "False to the user, otherwise TPA continues
to calculate:

International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

133

e K g e ui
i

t

i
i

i

t

�
� ��
�

�
�

�

�
��

�

�
�

�

�
�

�1 1

� ��
', ,

? '

	 (7)

If Equation (7) holds, TPA returns " "True to the user, otherwise returns" "False . The correctness
of the Equation (7) is verified as follows:

e K gi
i

t

�
� �
�

�
�

�

�
�

1

� ', = e u gi
k

j
v

i

t

j l

l
i j

c

�
�

�
�

�

�
�

�

�
��

�

�
��

��
�� � ,
11

= e u ui
k

i
m

l

l
i i j

c j

i t

t

j
� � ��

�
�

�

�
�

�

�
�
�

�

�
�
���

�� , ,

1

�

� 	

= e i

v m kj i j
j l

lc

i

u
i

t �
�
��

�

�
��

�

�

�
��

�

�

�
��

�

�

�
���

�
,

,1

1

+

� = e ui i
i

t
� �
'

,
�
�
�

�
�

�

�
�

1

	

5. PERFORMANCE ANALYSIS

Theorem 1. The cloud server should meet the following two points if it can pass the integrity
verification by TPA.
1. 	 The value and the position of the node in binary trees are correct.
2. 	 The cloud servers have the correct blocks.

Proof:
1. 	 During the data integrity verification, TPA first calculates the new metadata M ' and

check if M M' ≠ holds, where M is derived from the root node { }Ri i t1≤ ≤ of all copies,
a n d { }Ri i t1≤ ≤ a r e c a l c u l a t e d b y K m aX bXi j LS RS(), � � �1 2 a n d

X m aK m bT mi j i j i j() () (), , ,� � �1 2 . According to the sensitivity of the chaotic
system, any little change in AVL tree will lead to great change in the root node Ri and
the metadata M . Therefore, that M M' = can guarantee the value and position of
the node in AVL tree are correct.

2. 	 This proof is based on Discrete Logarithm (DL) problem. DL problem: given g h G, ∈
for some group G , it is hard to find x such that h g x= .

Cloud servers return the integrity evidence P K i�{ , , }' '
i � � to the TPA when TPA challenges

the cloud servers. However, malicious cloud servers may remove or tamper a part of blocks and forge
the mendacious evidence P K i�{ , , }' '

i
*� � . Supposing � �i i

* � , both P and P ' can pass the
integrity verification by TPA, then check

e K g e ui
i

t

i
i

i

t

�
� ��
�

�
�

�

�
��

�

�
�

�

�
�

�1 1

� ��
', ,

? '

	 (8)

International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

134

e K g e ui
i

t

i
i

i

t

�
� ��
�

�
�

�

�
��

�

�
�

�

�
�

�1 1

� ��
', ,

? *

	 (9)

Let �� � �i i i� � * and u g hi
i i� � � , where � �i i pZ, � . Dividing (8) by (9), then

g e t e ui i i

i

t
� � ��

�
�
�

�
�

�

�
� �

*

,
1

1 , g hi i

i

t i
� �

�

�� � �
�
�

1
1

�

, g h
i i i i

i i

t t
� � � �� �

� �
�

�
�

�
� �

1 1 1 a n d

h g
i i i i

i

t

i

t

�
��� � �
��

()/()� � � �� �
11 . The DL problem is resolved unless the denominator of

x
i i

i

t

i i
i

t
� �

�
� �

�
�

�

�
�

�

�
�

�

�
�

�

�
�� � � �� �

1 1
 is zero. However, �i pZ� , the probability of �i � 0

is only 1/ p , which is negligible. It means there is no x can be found such that h g x=
when ��i � 0 holds, that is � �i i

* � . Therefore, the cloud server can pass the
verification by TPA only when it holds the correct data blocks.

6. EFFICIENCY ANALYSIS

In this section, we compare the proposed scheme to some integrity verification schemes. As shown
in Table 1, the proposed scheme can achieve data dynmic operation and support multiple copies
authentication, and keep the binary tree balanced therefore get low complexity of updating operations.

Table 2 shows the storage cost of three integrity verification schemes. Here assume that the
number of the copies is 1, and n represents the number of blocks per copy. The size of file copies

Table 1. Complexity of updating operations

Zhang, Ni, Tao,
Wang & Yu, 2015

Barsoum &
Hasan, 2010

Li &
Wang,
2016

Zhang &
Blanton, 2013

The proposed
scheme

Multiple copies Yes Yes No No Yes

Balance No No No Yes Yes

Complexity
of updating
operations

Insertion O(n) O(n) O(n) O(log n+1) O(log n)

Deletion O(n) O(n) O(n) O(log n+1) O(log n)

Search O(n) O(n) O(n) O(log n+1) O(log n)

Table 2. Storage cost

DPDP MB-DMCPDP The proposed scheme

Copies number | |F | |F | |F

Storage in CSP 160 2 1 257()n n� � 257n 64 16n n+

Storage in TPA 160 64n 64 16 160n n+ +

International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

135

is | |F . Assume the hash function hSHA is SHA−1 , where the length of the hash value is 160 bits.
In the proposed scheme, the node in CTree stores X mi j(), and n , whose size are 64 bits and 16
bits respectively. While the node in TTree stores M with size 160 bits besides X mi j(), and n . In
DPDP (Li & Wang, 2016), CSP needs to store the binary tree, where every node in the tree store the
hash value and data tag, and the storage in CSP is 160 2 1 257()n n� � , while TPA needs only
store M and the storage in TPA is 160 bits. In MB-DMCPDP (Barsoum & Hasan, 2011), for the
updating operations are achieved by map-version, the storage in CSP is 257n and the storage in
TPA is 64n . Overall, the proposed scheme outperforms the other two schemes in terms of storage
cost as shown in Figure 4.

7. CONCLUSION

A data integrity verification scheme based on AVL tree is proposed in this paper. It supports multiple
copies with dynamic operations, and can improve efficiency. Theoretical analysis confirms the security,
and the Experimental results show that the computational overhead and storage cost of the proposed
scheme outperform those of the methods based on Merkle-Hash-Tree. It has great potential in the
application of data protection in cloud storage.

Figure 4. Comparison of storage cost

International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

136

REFERENCES

Ateniese, G., Burns, R., Curtmola, R., Herring, J., & Kissner, L. (2007). Provable data possession at untrusted
stores. In ACM Conference on Computer and Communications Security (pp. 598-609). New York, NY: ACM Press.

Ateniese, G., Kamara, S., & Katz, J. (2009). Proofs of Storage from Homomorphic Identification Protocols.
In International Conference on the Theory and Application of Cryptology and Information Security:
Advances in Cryptology (pp. 319-333). Berlin Heidelberg, Germany: Springer-Verlag. doi:10.1007/978-
3-642-10366-7_19

Ateniese, G., Pietro, R. D., Mancini, L. V., & Tsudik, G. (2008). Scalable and efficient provable data possession.
In Proceedings of the 4th international conference on Security and privacy in communication networks. New
York, NY: ACM Press.

Barsoum, A., & Hasan, A. (2013). Enabling Dynamic Data and Indirect Mutual Trust for Cloud Computing
Storage Systems. IEEE Transactions on Parallel and Distributed Systems, 24(12), 2375–2385. doi:10.1109/
TPDS.2012.337

Barsoum A. F., Hasan M. A. (2010). Provable Possession and Replication of Data over Cloud Servers. Centre
For Applied Cryptographic Research (CACR), University of Waterloo.

Barsoum, A. F., & Hasan, M. A. (2011). On Verifying Dynamic Multiple Data Copies over Cloud Servers.
Retrieved from http://www.cacr.math.uwaterloo.ca/techreports/2010/ cacr2010-32.pdf

Barsoum, A. F., & Hasan, M. A. (2015). Provable Multicopy Dynamic Data Possession in Cloud Computing
Systems. IEEE Transactions on Information Forensics and Security, 10(3), 485–497. doi:10.1109/
TIFS.2014.2384391

Curtmola, R., Khan, O., Burns, R., & Ateniese, G. (2008). MR-PDP: Multiple-Replica Provable Data
Possession. In The International Conference on Distributed Computing Systems (pp. 411-420). Piscataway,
NJ: IEEE Press.

Deswarte, Y., Quisquater, J. J., & Saïdane, A. (2004). Remote Integrity Checking. (2014). Integrity and Internal
Control in Information Systems, VI, 1–11.

Erway, C., Küpçü, A., Papamanthou, C., & Tamassia, R. (2009) Dynamic provable data possession. ACM
Conference on Computer and Communications Security pp. 213-222). New York, NY: ACM Press.

Feng, D. G., Zhang, M., Zhang, Y., & Xu, Z. (2011). Study on Cloud Computing Security. Journal of Software,
22(01), 71–83. doi:10.3724/SP.J.1001.2011.03958

Fu, Y., Zhang, M., Chen, K., & Feng, D. (2014). Proofs of data possession of multiple copies [In Chinese].
Journal of Computer Research & Development, 51(7), 1410–1416.

Gritti, C., Susilo, W., & Plantard, T. (2015). Efficient Dynamic Provable Data Possession with Public Verifiability
and Data Privacy. Information Security and Privacy (pp. 395–412). Berlin Heidelberg, Germany: Springer
International Publishing.

Juels, A., & Kaliski, B. S. (2007). Pors: proofs of retrievability for large files. In ACM Conference on Computer
and Communications Security (pp. 584-597). New York, NY: ACM Press. doi:10.1145/1315245.1315317

Li, Y., Qiu, L., Qiu, L., Qiu, M., & Zhao, H. (2016). Intelligent cryptography approach for secure distributed big
data storage in cloud computing. Information Sciences, 387, 103–115. doi:10.1016/j.ins.2016.09.005

Long, M., Li, Y., & Peng, F. (2017). Integrity Verification for Multiple Data Copies in Cloud Storage Based on
Spatiotemporal Chaos. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering,
27(4). doi:10.1142/S0218127417500547

Sun, N., Ryozo, N., & Sun, W. (2000). The average behavior of the AVL tree insertion algorithm. Journal of
the CNN [Natural Sciences Edition], 01, 31–39. (in Chinese)

Wei-Wei, D. U., Zhang, Y. Y., & Chun-Liu, Q. U. (2010). AVL Tree Design and Implementation Based on
Balancing Factor. Computer Technology & Development, 20(3), 24–27. (in Chinese)

http://dx.doi.org/10.1007/978-3-642-10366-7_19
http://dx.doi.org/10.1007/978-3-642-10366-7_19
http://dx.doi.org/10.1109/TPDS.2012.337
http://dx.doi.org/10.1109/TPDS.2012.337
http://http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr2010-32.pdf
http://dx.doi.org/10.1109/TIFS.2014.2384391
http://dx.doi.org/10.1109/TIFS.2014.2384391
http://dx.doi.org/10.3724/SP.J.1001.2011.03958
http://dx.doi.org/10.1145/1315245.1315317
http://dx.doi.org/10.1016/j.ins.2016.09.005
http://dx.doi.org/10.1142/S0218127417500547

International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

137

Yan, X. T., & Li, Y. (2013). Data Integrity Checking Approach Based on Message Authentication Function for
Cloud. Dianzi Yu Xinxi Xuebao, 35(2), 310–313. doi:10.3724/SP.J.1146.2012.00629

Zhang, Y., Ni, J., Tao, X., Wang, Y., & Yu, Y. (2015). Provable multiple replication data possession with full
dynamics for secure cloud storage. Concurrency and Computation, 28(4), 1161–1173. doi:10.1002/cpe.3573

Zhou, E., & Li, Z., GUO, H., Jia Y. L. (2014). An improved data integrity verification scheme in cloud storage
system. Tien Tzu Hsueh Pao, 42(1), 150–154. (in Chinese)

http://dx.doi.org/10.3724/SP.J.1146.2012.00629
http://dx.doi.org/10.1002/cpe.3573

