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ABSTRACT

This article describes how to protect the security of cloud storage, a provable data possession scheme 
based on full-nodes of an AVL tree for multiple data copies in cloud storage. In the proposed scheme, 
a Henon chaotic map is first implemented for the node calculation of the AVL tree, and then the 
location of the data in the cloud is verified by AVL tree. As an AVL tree can keep the balance even 
with multiple dynamic operations made on the data in the cloud, it can improve the search efficiency 
of the data block, and reduce the length of the authentication path. Simulation results and analysis 
confirm that it can achieve good security and high efficiency.
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1. INTRODUCTION

Recently, cloud storage has been paid wide attention for its mass storage capability and low cost 
(Li, Qiu, Qiu, Qiu & Zhao, 2016). However, the open application mode makes the security of cloud 
storage face severe challenges (Feng, Zhang, Zhang & Xu, 2011). How to protect the security of cloud 
storage has become an urgent problem to be resolved. Integrity verification is an important part of 
the data security. Multiple data copies are often used in the cloud storage to keep the reliability and 
availability. Dynamic operations are used to support data updating on the cloud platform. Thus, data 
integrity verification to support multiple data copies and dynamic operation is desirable. Currently, 
according to the implementation of fault-tolerance preprocessing or not, the existing data integrity 
verification mechanisms are classified into proof of retrievability (PoR) (Juels & Kaliski, 2007; Yan, 
2013; Zhou, Li, Guo & Jia, 2014) and provable data possession (PDP) (Ateniese, Burns, Curtmola, 
Herring & Kissner, 2007; Erway, Küpçü, Papamanthou & Tamassia, 2009; Gritti, Susilo & Plantard, 
2015; Curtmola, Khan, Burns & Ateniese, 2008; Barsoum & Hasan, 2010).
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licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the original work and 
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The remote data integrity verification is firstly realized by using HMAC hash function (Deswarte, 
Quisquater & Saïdane,2004). The MAC value of data is stored in local, and all the data is needed 
to retrieve from the root node to compute the MAC value during the validation. This mechanism 
needs a large computation cost and communication overhead; thus, it is cannot be applied to the 
integrity verification of mass data in cloud storage. After that, the conception of PDP is proposed 
(Ateniese, Burns, Curtmola, Herring & Kissner, 2007). Homomorphic veritable tags are used to 
inspect the sampled data in the cloud. It allows verifying data possession without having access to 
the actual data file, and it achieves a low overhead, but it does not support dynamic operation to the 
data. Thereafter, they proposed an improved scheme (Ateniese, Pietro, Mancini & Tsudik, 2008), 
but only modification and deletion can be performed, and it cannot support insertion. Erway et al. 
(Erway, Küpçü, Papamanthou & Tamassia, 2009) used the rank value of the authentication jump table 
to support the dynamic operation. Gritti et al. (Gritti, Susilo & Plantard, 2015) proposed a highly 
efficient scheme that supports dynamic authentication and protects user privacy. These schemes are 
only designed for the verification of a single copy of data.

In order to solve the problem of data integrity authentication for multiple copies, a MR-PDP 
(Multiple-Replica PDP) scheme is proposed by Curtmola et al. (Curtmola, Khan, Burns & Ateniese, 
2008). It can quickly generate multiple copies and restore the damaged copies. Barsoum & Hasan 
(Barsoum & Hasan, 2010) put forward a multiple copies PDP scheme for static file, but this scheme 
only applies single copy PDP scheme to different copies, and the efficiency is low. Homomorphic 
linear authenticator was used to identify the multiple copies data (Ateniese, Kamara & Katz, 2009). 
Fu et al. (Fu, Zhang, Chen & Feng, 2014) proposed a proof of data possession scheme of multiple 
copies by taking the advantages of distributed computing ability of the multiple servers, and it can 
verify whether the servers hold the correct number of copies or not. However, full dynamic operations 
are not always supported in these schemes.

In recent years, MHT (Merkle Hash Tree) is used to construct data integrity authentication 
schemes (Barsoum & Hasan, 2011; Barsoum & Hasan, 2013; Barsoum & Hasan, 2015). Long, Li & 
Peng (Long, Li & Peng, 2017) implemented spatiotemporal chaos for node calculation of the binary 
tree. These schemes can achieve data dynamic operation and support multiple copies authentication 
by manipulating the classic Merkle-Hash-Tree (MHT). However, if insertion is performed on the 
same data block for many times, it will lead to one branch of the binary tree too long, therefore the 
efficiency of verification is reduced.

In this paper, a novel integrity verification scheme for multiple data copies in cloud storage is 
proposed. We try to ensure the security and efficiency by engaging the AVL tree and Henon map. 
AVL tree is used to construct the authentication structure for its good balance characteristics, and 
node computation is achieved by Henon map, thus the change of location and value of the data can 
be quickly discovered for its good randomness and sensitivity.

2. CONCEPTS

2.1. Notations
t : the number of copy
n : the number of blocks per copy
L : the number of character per block
F : the original file, F d d dn={ , ,..., }1 2

F ' : encrypted file by encrypting F with cryptographic function Ekey ( )⋅ ,F b b bn' { , ,..., }= 1 2

ri j, : random number

mi j, : the jth  block on copy i , m b ri j j i j, ,� �
Fi : the ith  copy, F m m mi i i i n i t� � �{ , ,..., }, , ,1 2 1
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Ai j k, , : the ASCII of kth  character in the jth  block on copy i
Ri : the root of binary tree of ith  copy
M : metadata of the file
Filename : the name of the file stored in cloud
σ i j, : the tag of jth  block on copy i

φ j : the aggregated tags of jth block of all copies
Ekey ( )⋅ : encryption function
Dkey ( )⋅ : decryption function

2.2. Bilinear Pairings

The bilinear map is defined as: e G G GT: � � , where G  is a group of Diffie-Hellman hypotheses 
and GT  is the multiplicative group of prime number P. This map has the following three characteristics:

1. 	 Computability: for any h h G1 2, ∈ , there are valid methods for computing e h h( , )1 2 ;

2. 	 Bilinearity: for h h G1 2, ∈ , a b Z p, ∈ , e h h e h ha b ab( , ) ( , )1 2 1 2= ;
3. 	 non-degeneracy: when g  is a generator of the cycle group G , e g g( , ) ≠1 .

2.3. System Model
A cloud data verification system generally includes user, cloud server and TPA (Long, Li & Peng, 
2017). User is the entity that possesses data/files needing to be stored in the cloud. Cloud server has 
strong computing power and storage capacity, which consists of two parts: a) master server S , it is 
used for communication between the users and scheduling the task for the storage servers. Master 
Server has a storage directory including Filename , ωi , φ j  and the serial number of the storage 

server where the copies of the file are stored; b) storage server S S St1 2, ,..., , and they are mainly 
used for files storage. In this scheme, each copy is stored in different storage server, and it means t  
copies of the file, F F Ft1 2, ,...,  stored on t  different storage servers S S St1 2, ,..., , respectively. 
TPA has the expertise and capabilities that users do not have. As the proposed scheme supports public 
auditing, TPA has the public key and it can act as a verifier, which is helpful to reduce the calculation 
burden of user. However, TPA is not necessarily to be credible.

3. FULL NODE AVL TREE BASED ON HENON CHAOTIC MAP

3.1. AVL Tree
AVL tree is a self-balanced binary tree (Sun, Ryozo & Sun, 2000), which has the following properties:

1. 	 If the left subtree is not empty, the node value on the left subtree is less than or equal to the value 
of its root node;

2. 	 If the right subtree is not empty, the node value on the right subtree is greater than or equal to 
the value of its root node;

3. 	 The left and right subtrees are also binary sort trees.

As shown in Figure 1, the node value on the left subtree is less than root node value and the node 
value on the right subtree is greater than root node value. In this scheme, the node value represents 
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the sequence number of the data blocks. AVL tree is the self-balance tree and the node balance 
factor is defined as the difference between the height of the left subtree and the height of the right 
subtree. If the node balance factor is 1,0 or -1, this node is a balanced node (Wei, Zhang & Chun, 
2010). When some updated operations on the AVL tree make it out of balance, it will rebalance by 
self-rotation. For its highly balanced characteristic, the maximum complexity of updating operations 
on AVL tree is O(log n). Compared with MHT, the structure of the AVL tree will greatly improve 
the search efficiency.

3.2. Henon Chaotic Map
Henon map is defined as:

X aX bXn n n� �� � �1

2

11 	 (1)

When a = 1.4 and b = 0.3, it is chaotic. Henon chaotic map has complex behavior and more abundant 
characteristics: good randomness and sensitivity to initial condition, thus will improve the security.

3.3. Construction of the Full Node AVL Tree
As shown in Figure 2, each replica corresponds to a full node AVL tree, and each data block in the 
replica corresponds to one node, which will greatly reduce the overhead for the authentication path 
and improve the efficiency.

In this scheme, both TPA and CSP should keep AVL tree of data, but there are some difference in 
the trees. Here TTree represents AVL tree kept by TPA, and CTree represents AVL tree kept by CSP.

3.3.1. TTree

In TTree, each node stores node value X mi j( ), and the sequence number of the data blocks. The 
value of the leaf nodes and non-leaf nodes of the binary tree are calculated by (2) and (3), respectively.
 

Figure 1. AVL tree
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where XLS  and XRS  are the left and right child node of XF , respectively. Henon map can spread 
and enlarge the change of node value. As we can see from (2) and (3), any change in the AVL tree 
will bring great change in the root node value, therefore we can judge the integrity of the data.

To check multiple copies, we aggregate the root nodes of all copies of the file into metadata M  
as done in (Long, Li & Peng, 2017). Metadata is calculated by

M h R R Rt� � � �( .... )1 2 	 (4)

In this way, we can only check the metadata to determine the position of the data block of all 
copies of the file that is changed.

Figure 2. Full node AVL tree——TTree
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3.3.2. CTree

In CTree, each node should store T mi j( ), , mi j,  and the sequence number of the data blocks n as 
shown in Figure 3.

4. THE PROPOSED VERIFICATION SCHEME

4.1. Initialization
The initialization consists of the following three algorithms:

4.1.1. Key Generation KeyGen( )⋅

KeyGen sk pkk( ) ( , )1 →  is used to generate public and secret key pairs that is run by the user. 
Firstly, user chooses a random x Z p∈  and computes� � g x , then apply for a public-private key 
pair ( , )ssk spk  from the key management center as the keys of encryption function Ekey ( )⋅  and 
decryption function Dkey ( )⋅ , respectively. The secret key is sk x K ssk= ( , , )1  and the public key 
is pk g spk� ( , , )� .

4.1.2. Replica Generation ReplicaGen( )⋅
ReplicaGen t F Fi( , )→  is run by the user to produce multiple copies. Encryption function 
Essk ( )⋅ is firstly performed to F  and get the encrypted file F b b bn' { , ,..., }= 1 2 . After that, 
computes m b ri j j i j, ,� � ,  ri j, is a random number, and get t  different f i le copies 
F mi i j i t j n� � � � �{ }, ,1 1 .

Figure 3. Full node AVL tree——CTree
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4.1.3. Tag Generation TagGen( )⋅
TagGen sk F Mi j( , ) ( , )� �  is executed by user. Firstly, the user generates a set of random numbers 

u G i ti � �( , , ,..., )1 2 3  and computes the tag � i j i
i jmu x G, [ , ]� �  for each block mi j, , then 

integrates these tags into aggregated tags � �j i j
i

t
G� �

�
� ,
1

. After that, the metadata M  can be 

acquired according to (4).
Thereafter, the user sends { , , }pk M TTree  to TPA and { , , } ,F CTreei i t j nj� i 1 1� � � �  to the 

master server, then deletes the copies, the trees, and tags at its local storage, and only keeps ( , )pk sk .

4.2. Verification
The validation includes two algorithms as follows:

4.2.1. Proof Generation GenProof ( )⋅
Gen oof F chal Pi jPr ( , , )� �  is performed by cloud server. TPA periodically challenges the 
cloud server to determine if cloud server possesses all copies of the file. Firstly, TPA randomly selects 
c  elements from [1, n] to compose an integer set I l l lc={ , ,..., }1 2 ( l l lc1 2≤ ≤ ≤... ), and picks a 
random element � j Z p�  for each j I∈ , then gets the challenged information chal j v j l j lc� � �{ , }

1
, 

finally sends { }chal  to the master server.
After receiving { }chal , the master server computes { ( )}, ,T mi j i t l j lc1 1≤ ≤ ≤ ≤ , and selects the 

random numbers k Z i ti p� �( , ,..., )1 2 , then get µi
'  and φ '  given by (5) and (6).

�i j i j
j l

l

i pv m k Z
c
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,� � �
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+ 	 (5)
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� j

v
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Set u Ki
k

i
i =  and get the verification proof P K T mi i j i j i t l j lc� � � � �{ , , ,{ ( ), }}' '

, , ,i � � � 1 1
, then 

send it to TPA. As shown in Figure 3, where the challenged block is mi,2 ,  and
� � � � � �i i i i i i, , , , , ,{ , , , , }2 2 4 3 7 5� , where τ i j,  is the transformation value of the node value. For 
example, � i i iT m T m, , ,{ ( ), ( )}2 2 1� and � i i i iT m T m T m, , , ,{ ( ), ( ), ( )}7 7 6 8� .

4.2.2. Proof Verification Verify oofPr ( )⋅

Verify oof P M False TruePr ( , ) (" "," ")→  is executed by TPA. After TPA receives the 
proof P, the metadata M ' can be computed according to { ( ), }, , ,X mi j i j i t l j lc� 1 1� � � � , and then 
checks if M M' = holds. If it is not true, output " "False  to the user, otherwise TPA continues 
to calculate:
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If Equation (7) holds, TPA returns " "True  to the user, otherwise returns" "False . The correctness 
of the Equation (7) is verified as follows:
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5. PERFORMANCE ANALYSIS

Theorem 1. The cloud server should meet the following two points if it can pass the integrity 
verification by TPA.
1. 	 The value and the position of the node in binary trees are correct.
2. 	 The cloud servers have the correct blocks.

Proof:
1. 	 During the data integrity verification, TPA first calculates the new metadata M '  and 

check if M M' ≠ holds, where M  is derived from the root node { }Ri i t1≤ ≤  of all copies, 
a n d  { }Ri i t1≤ ≤  a r e  c a l c u l a t e d  b y  K m aX bXi j LS RS( ), � � �1 2  a n d 

X m aK m bT mi j i j i j( ) ( ) ( ), , ,� � �1 2 . According to the sensitivity of the chaotic 
system, any little change in AVL tree will lead to great change in the root node Ri  and 
the metadata M . Therefore, that M M' =  can guarantee the value and position of 
the node in AVL tree are correct.

2. 	 This proof is based on Discrete Logarithm (DL) problem. DL problem: given g h G, ∈  
for some group G , it is hard to find x  such that h g x= .

Cloud servers return the integrity evidence P K i�{ , , }' '
i � �  to the TPA when TPA challenges 

the cloud servers. However, malicious cloud servers may remove or tamper a part of blocks and forge 
the mendacious evidence P K i�{ , , }' '

i
*� � . Supposing � �i i

* � , both P  and P '  can pass the 
integrity verification by TPA, then check
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i i� � � , where � �i i pZ, � . Dividing (8) by (9), then 

g e t  e ui i i

i

t
� � ��

�
�
�

�
�

�

�
� �

*

,
1

1 ,  g hi i

i

t i
� �

�

�� � �
�
�

1
1

�

,  g h
i i i i

i i

t t
� � � �� �

� �
�

�
�

�
� �

1 1 1  a n d 

h g
i i i i

i

t

i

t

�
��� � �
��

( )/( )� � � �� �
11 .  The DL problem is resolved unless the denominator of 

x
i i

i

t

i i
i

t
� �

�
� �

�
�

�

�
�

�

�
�

�

�
�

�

�
�� � � �� �

1 1
 is zero. However, �i pZ� , the probability of �i � 0  

is only 1/ p , which is negligible. It means there is no x  can be found such that h g x=  
when ��i � 0  holds,  that  is  � �i i

* � .  Therefore,  the cloud server can pass the 
verification by TPA only when it holds the correct data blocks.

6. EFFICIENCY ANALYSIS

In this section, we compare the proposed scheme to some integrity verification schemes. As shown 
in Table 1, the proposed scheme can achieve data dynmic operation and support multiple copies 
authentication, and keep the binary tree balanced therefore get low complexity of updating operations.

Table 2 shows the storage cost of three integrity verification schemes. Here assume that the 
number of the copies is 1, and n  represents the number of blocks per copy. The size of file copies 

Table 1. Complexity of updating operations

Zhang, Ni, Tao, 
Wang & Yu, 2015

Barsoum & 
Hasan, 2010

Li & 
Wang, 
2016

Zhang & 
Blanton, 2013

The proposed 
scheme

Multiple copies Yes Yes No No Yes

Balance No No No Yes Yes

Complexity 
of updating 
operations

Insertion O(n) O(n) O(n) O(log n+1) O(log n)

Deletion O(n) O(n) O(n) O(log n+1) O(log n)

Search O(n) O(n) O(n) O(log n+1) O(log n)

Table 2. Storage cost

DPDP MB-DMCPDP The proposed scheme

Copies number | |F | |F | |F

Storage in CSP 160 2 1 257( )n n� � 257n 64 16n n+

Storage in TPA 160 64n 64 16 160n n+ +
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is | |F . Assume the hash function hSHA  is SHA−1 , where the length of the hash value is 160 bits. 
In the proposed scheme, the node in CTree stores X mi j( ),  and n , whose size are 64 bits and 16 
bits respectively. While the node in TTree stores M  with size 160 bits besides X mi j( ),  and n . In 
DPDP (Li & Wang, 2016), CSP needs to store the binary tree, where every node in the tree store the 
hash value and data tag, and the storage in CSP is 160 2 1 257( )n n� � , while TPA needs only 
store M  and the storage in TPA is 160 bits. In MB-DMCPDP (Barsoum & Hasan, 2011), for the 
updating operations are achieved by map-version, the storage in CSP is 257n  and the storage in 
TPA is 64n . Overall, the proposed scheme outperforms the other two schemes in terms of storage 
cost as shown in Figure 4.

7. CONCLUSION

A data integrity verification scheme based on AVL tree is proposed in this paper. It supports multiple 
copies with dynamic operations, and can improve efficiency. Theoretical analysis confirms the security, 
and the Experimental results show that the computational overhead and storage cost of the proposed 
scheme outperform those of the methods based on Merkle-Hash-Tree. It has great potential in the 
application of data protection in cloud storage.

Figure 4. Comparison of storage cost
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