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ABSTRACT

Disciplinarily-integrated games represent a generalizable genre and template for designing games to 
support science learning with a focus on bridging across formal and phenomenological representations 
of core science relationships (Clark, Sengupta, Brady, Martinez-Garza, and Killingsworth, 2015; Clark, 
Sengupta, & Virk, 2016; Sengupta & Clark, 2016). By definition, disciplinarily-integrated games 
(DIGs) are therefore multirepresentational systems with the affordances and challenges associated 
with that medium. The current paper analyzes the DIG structure through the focal parameters framed 
by the DeFT framework (Ainsworth, 2006) to synthesize effective design considerations for DIGs in 
terms of the specific design and intended functions of the representations themselves as well as the 
overarching environment and activity structures. The authors leverage the literatures on embodied 
cognition, adaptive scaffolding, representations in science education, and learning from dynamic 
visualizations to address the challenges, tradeoffs, and questions highlighted by the framework. 
They apply these research-derived design considerations to an existing DIG (SURGE Symbolic) and 
to hypothetical examples of other DIGs in other domains to explore generalizability of the design 
considerations and the genre.
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INTRODUCTION

Clark et al. (2015) propose an approach for leveraging digital games as a medium to support the 
development of scientific modeling in K-12 classrooms based on the Science as Practice perspective 
(Pickering, 1995; Lehrer & Schauble, 2006). Clark et al. (2015) refer to this approach as disciplinary 
integration. Disciplinarily-integrated games (DIGs) represent a generalizable genre and template for 
designing games to support science learning in order to bridge across formal and phenomenological 
representations of core science relationships. Therefore, by definition, DIGs are multirepresentational 
systems with the affordances and challenges associated with that medium.

Ainsworth (2014) highlights the importance of articulating broader theoretical frameworks 
to investigate how multiple representations improve learning and under what conditions. She also 
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highlights the importance of explicitness in articulating the design and function of representations in 
multirepresentational systems so that research across the field can move beyond simplistic comparisons 
to instead drill deeper into how specific design decisions affect learning processes in light of specific 
intended functions of the multirepresentational system.

More specifically, this paper seeks to analyze the DIG genre and template through the focal 
parameters framed by the DeFT framework (Ainsworth, 2006) to synthesize effective design 
considerations for DIGs in terms of the specific design and intended functions of the representations 
themselves as well as the overarching environment and activity structures. We leverage the literatures 
on embodied cognition, adaptive scaffolding, representations in science education, and learning 
from dynamic visualizations to address the challenges, tradeoffs, and questions that the framework 
highlights. We apply these research-derived design considerations to an existing DIG (SURGE 
Symbolic) and to hypothetical examples of DIGs in other domains to investigate the generalizability 
of the design considerations and the genre.

DISCIPLINARY INTEGRATION

As we have asserted in our earlier papers (Clark et al., 2015; Sengupta & Clark, 2016), modeling 
is generally recognized as the core disciplinary practice in science (Lehrer & Schauble, 2002; 
Nercessian, 2008; Pickering, 1995). Science and math education research shows that engaging learners 
in modeling and progressively refining representations can contribute to a deeper understanding of 
mathematical and scientific knowledge and practices (Gravemeijer, Cobb, Bowers, & Whitenack, 
2000; Hall & Stevens, 1995; Lehrer & Schauble, 2009). Clark et al. (2015) and Sengupta and Clark 
(2016) suggest that DIGs are a generalizable genre and template for supporting players in interpreting, 
manipulating, and translating across phenomenological and formal representations in support of a 
Science as Practice perspective.

Disciplinary integration can be conceptualized in terms of Allan Collins’s analyses of “model 
types” and “modeling strategies” (Collins, 2017), which Collins and colleagues have termed “epistemic 
forms” and “epistemic games” in earlier work (Collins, 2011; Collins & Ferguson, 1993; Morrison 
& Collins, 1995). They argue that scientists’ professional work can be understood in terms of model 
types (epistemic forms) that are the target structures guiding scientific inquiry and modeling strategies 
(epistemic games) that are the sets of rules and strategies for creating, manipulating, and refining those 
model types. While Collins and colleagues did not write with the intention of influencing the design 
of actual digital games (they used the term “game” as a metaphor), DIGs can leverage the ideas of 
Collins and colleagues by structuring digital game play around modeling strategies (epistemic games) 
of designing and manipulating formal disciplinary model types (epistemic forms). More specifically, 
the puzzles and game-play mechanics of disciplinarily-integrated games distill model types and the 
modeling strategies for navigating and working with those models.

As Clark et al. (2015) discuss, this specific emphasis on modeling as game play around disciplinary 
model types stands in contrast to engaging in “inquiry” more broadly, as is common in 3D virtual 
worlds (e.g., Quest Atlantis, River City, or Crystal Island). Essentially, whereas 3D virtual inquiry 
worlds typically cast players as scientists investigating a phenomenon at the level of overarching 
inquiry, DIGs do not attempt the depth of immersion, identity-building, and role-playing of virtual 
inquiry worlds (and do not dispute their importance or value). Instead, DIGs are designed to engage 
players deeply in the specific modeling and representational practices of developing, interpreting, 
manipulating and translating across specific model types. This focus allows DIGs to iteratively deepen 
the puzzle at the heart of the game and, more broadly, all elements of the game to emphasize that puzzle.

Throughout this paper, we will discuss SURGE Symbolic as an example of a DIG (Figure 1, 
http://www.surgeuniverse.com), but we will also explore generalizability to hypothetical DIGs for 
other disciplinary topics. We describe the design evolution leading to SURGE Symbolic in Clark, 
Virk, Sengupta et al. (2016). As described in Clark, Virk, Sengupta, et al. (2016), in addition to the 
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theoretical foundations discussed above, SURGE Symbolic also contributes to research on teaching 
with simulations and motion sensors (e.g., Brasell, 1987; Mokros & Tinker, 1987), in general, and 
research on SimCalc (Kaput, 1992; Hegedus & Roschelle, 2013), in particular. For example, students 
are often challenged to replicate or create graphs of position or velocity using various control schemes 
(e.g., a motion sensor). Similarly, learners have been tasked with interpreting a dot trace representation 
overlaid on a phenomenological view in terms of a graph. SimCalc supported learners’ integration 
and differentiation between and across Cartesian graphs of position, velocity, and acceleration by 
dynamically linking across representations (Kaput, 1992; Hegedus & Roschelle, 2013).

DIGs extend this seminal research in the context of Cartesian graphs of change over time 
by pushing more deeply on approaches for leveraging formal representations as the means of 
communicating challenges to players as well as pushing more deeply on formal representations as 
the players’ tools for control over the game. Furthermore, DIGs reach and generalize well beyond 
time-series analyses and Cartesian graphs of change over time.

DIGs, by definition, use formal representations to communicate challenges and opportunities to the 
player (Communication Representations), and DIGs use formal representations as the medium through 
which the player implements strategies and exerts control over the game (Control Representations). 

Figure 1. SURGE Symbolic
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Some DIGs may use the same representation for both control and communication, while other DIGs 
may use one or more formal representations for communication and one or more other representations 
for control. All DIGs include a phenomenological representation that would most likely be the primary 
focus in traditional digital games. DIG game mechanics and goals concentrate on interpreting, creating, 
modifying, and translating across these formal and phenomenological representations. Finally, DIGs 
embed the multirepresentational system within an central game narrative and dialog to scaffold 
translation across representations (Figure 2).

The template for SURGE Symbolic, for example, features the phenomenological representation 
(which we refer to as “the world” or “world view”) on the left side of Figure 1. The phenomenological 
representation (or “world view”) is the focus of most recreational games. It is where the player’s avatar 
in the game moves around and engages in the game. It is the game “world.” In SURGE Symbolic, the 
phenomenological representation portrays the heroine, Surge, on her hoverboard moving forward and 
backward along a game map. The formal Cartesian graphs on the right side act as the communication 
and control representations. The position graph in Figure 1, for example, can communicate information 
about the specific regions of the game-world that will be affected by dangerous electrical storms 
at given times, as well as the locations where rewards or allies will rendezvous with Surge. For 
example, if the player marks a path of four meters upwards over four seconds on this graph, Surge 
will consequently move four meters upward in four seconds in the animated world view. As a result 
of this design approach, the Cartesian space emerges as a set of scientific instruments for the player, 
and communicates data about the game world that are not available through other means. Figure 1 
shows an example where the challenges and opportunities are communicated through the position 
graph, but the velocity and force/acceleration graphs can also serve this role. Simultaneously, the 
Cartesian graphs also act as an instrument panel or mission planner, offering fine-grained control 
over the movement of the Surge spacecraft. In Figure 1, for example, the player can control SURGE’s 
movement by placing forces of various magnitudes and durations and different times in the force 
graph. Alternatively, the player can exert control through the other graphs depending on the specific 
game level’s settings.

The proposed specific template and broader DIG genre must be generalizable to be valuable. To 
explore this claim of generalizability, the following paragraphs suggest other hypothetical examples of 

Figure 2. Dialog system supports translation across representations with explanation prompts
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DIGs in physics, biology, chemistry, and the social sciences. These paragraphs build upon expand our 
earlier book chapter that explored generalizability of the DIG genre (Clark, Sengupta, & Virk, 2016).

The nearest transfer of the DIG template is to other topics focusing on time-series analyses 
where Cartesian graphs of change over time remain the main formal representations. In these cases, 
the template outlined above transfers relatively directly. This is because the DIG template remains 
essentially identical to time series analyses as the modeling strategy and Cartesian representations 
of change over time as the model type.

One example would be exploring predator-prey relationships in population ecology. The time-
series analysis of the populations could concentrate on the formal representation of population 
versus time, which depict the classic Lotka-Volterra equation relationships (Figure 3). Perhaps 
the phenomenological representation depicts predator and prey within a given area moving 
and reproducing, eating, and being eaten. The phenomenological and formal representations 
could be bridged by an intermediate representation that aggregates, or stacks, the animals in the 
phenomenological representation to clearly communicate population levels. In terms of narrative, 
the game might be called Alien Zookeeper, and position the player as an alien zookeeper who needs 
to manage populations within the zoo. Perhaps the zookeeper can adjust temperature and irrigation 
in the zoo. As per the DIG template, the challenges and opportunities in a game level are presented 
within the formal representation itself, perhaps as target levels for various populations at various times 
to avoid or attain as part of the narrative. Also in line with the DIG template, the player outlines her 
strategy in another formal representation, perhaps temperature and irrigation levels over time, which 
impact plant growth and activity levels of predator and prey.

Figure 3. Classic Lotka-Volterra predator-prey population graph
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In terms of other possible topics, the phenomenological view in a DIG for teaching chemical 
reaction kinetics might involve a cylinder with various reactant molecules combining to create products. 
In terms of narrative, the player might need to create a certain number of products by a certain time 
because the cylinder is being used to create a series of pills to help cure a disease. In a DIG about the 
action potential, players may need to generate the specific membrane potential-over-time graph in 
question because they are trying to remotely control an alien organism they have engineered and set 
loose on a foreign planet. All of these proposed DIGs focus on time-series analyses with Cartesian 
formal representations, so all would use a very similar design template. Essentially, the game would 
communicate challenges and opportunities to the player through the formal representations, and 
the player would manipulate and create her strategy and actions through the formal representations.

How about generalizing beyond Cartesian time-series analyses? We propose that the next 
most proximal category of DIGs concentrates on the constraint systems that include Cartesian 
representations with axes other than time. Collins and colleagues outline constraint systems as 
process/behavioral analyses where: (a) the model type is the equation (or equations) describing the 
steady state of the system and (b) the most common modeling strategy is the controlling variables 
game where one variable is manipulated while all others are held constant to determine its behavior 
on the system. Constraint-system analyses thereby lend themselves to presenting relationships using 
Cartesian graphs as the formal representation with one variable along each axis and the other variables 
as controls for manipulating the Cartesian graph.

In the domain of chemistry, the ideal gas law is one potential example of a constraint-system 
analysis DIG. The ideal gas law is governed by the equation PV = nRT, where notably “P” indicates 
pressure, “V” indicates volume, and “T” indicates temperature. Here, the phenomenological view 
would be a simulation game environment where molecules travel around in a container. The player 
can make the container larger or smaller (volume) by adding or removing blocks, and the player can 
increase or decrease the temperature by changing the size of a flame. In this game, perhaps called 
Kinetic Explorer, the player would need to manipulate pressure, volume, and temperature to manage 
specialized cells that power a hovercraft she uses to explore an alien world. Here, Cartesian graphs 
of pressure-versus-volume, volume-versus-temperature, and temperature-versus-pressure become 
the representations of control and communication.

Another example, in the domain of physics, is the constraint system of Coulomb’s force of 
repulsion and attraction. The narrative might cast the player as a space explorer on a spaceship. The 
player tries to achieve the right amount of repulsion or attraction between charge spheres in an alien 
device to navigate through play space (parallel to game play in SuperCharged, Squire et al, 2004, but 
played out in the formal representations rather than in a simulated world).

The previous paragraphs assert that the DIG template and genre proposed in this paper are 
generalizable to topics focusing on time-series analyses and constraint-system analyses where the 
formal representations of communication and control are Cartesian graphs. But what about topics 
beyond these model types? System-dynamics models also seem promising for DIGs because they 
involve specifying relationships and action sequences that influence outcomes given a scenario or 
set of parameters. In a system-dynamics model, variables are tied together by positive or negative 
links. Variables can be increased or decreased, which subsequently change other variables in the 
system though the links. Various lag, homeostatic, or feedback functions can be integrated with the 
models. Climate, economic, ecological, and other models in many disciplines can be designed as 
system-dynamics models. Figure 4 presents basic system-dynamics models for economics and for 
population ecology.

Could interesting game-play be built on interpreting and manipulating a system-dynamics model? 
Actually, such games have already been created as a recreational “indie” franchise that has been highly 
successful commercially. Democracy I, II, and III are essentially system-dynamics models (http://
www.positech.co.uk), in which the changes you make to individual variables influence all of the 
connected variables (either positively or negatively depending on the valence and magnitude of the 
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link). Democracy is an excellent example because all of the game-play is centered and focused in the 
formal representations. Thus system-dynamics models, together with other formal representations, 
are clearly viable for DIGs. Rather than using Cartesian change-over-time graphs as the control 
representations, for instance, players might manipulate the population system-dynamics model in 
Figure 4 to plan and author strategies, while a Cartesian graph of populations over time might be 
employed as the communication representation that presents the challenges and opportunities for the 
level (perhaps Zookeeper System Dynamics).

The key commonality in all of these hypothetical DIGs is that framing disciplinary integration 
in terms of model types and model strategies enables us to design games in multiple disciplines. We 
propose that these examples comprise only a subset of DIGs and model types possible, potentially 
making DIGs highly generalizable across the curriculum.

APPLYING THE DEFT FRAMEWORK TO MULTIPLE 
REPRESENTATIONS IN DIGS

Ainsworth’s (2006) DeFT framework for learning with multiple representations highlights the 
importance of analyzing the unique design parameters of multirepresentational systems, the functions 
they serve in enhancing learning, and the cognitive tasks in which learners must engage. Under 
DeFT, multiple external representations serve three functions: (1) complementary functions, (2) 
constraining functions, and (3) constructing functions. Complementary representations differ in the 
information they contain or the processes they support. Utilizing complementary representations 

Figure 4. System dynamics model in economics (left) and ecology (right)
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can potentially provide learners with the advantages of each representation. Representations can also 
serve a constraining role, where a more familiar or accessible representation constrains understanding 
of a more complex representation. Finally, representations can serve a constructing function when 
learners integrate information across representations to develop deeper understanding than would be 
possible with a single representation.

The DeFT framework proposes five key parameters that require articulation and consideration 
when analyzing the design of a multirepresentational system: (1) number of representations, (2) 
information, (3) form, (4) sequence, and (5) translational activities. In this paper, we explore DIGs 
through these parameters in light of the research on single and multiple representations, embodied 
cognition, segmenting, signaling, comparing and contrasting, adaptive scaffolding, and learning from 
dynamic visualizations. Within each section, we articulate design considerations that the research 
suggests are critical to the design of DIGs in terms of the functions and tasks for which they are 
intended. We then explore examples of how the design considerations might be implemented in 
SURGE Symbolic and other hypothetical DIGs.

PARAMETER 1: NUMBER OF REPRESENTATIONS

The first parameter discussed in DeFT involves determining the optimal number of representations. 
Ainsworth (2006) advocates using the smallest number of representations that will effectively support 
the intended instructional function of the system. She further explains that the decision for how many 
representations to use is guided by the informational and computational properties of the system. 
Before determining the fewest number of representations for a DIG, let’s start with understanding the 
importance of intermediate representations in these systems, leading to our first design consideration:

Intermediate Representations – Use Constraining Intermediate Abstractions and 
Representations to Bridge between Phenomenological and Formal Representations
Research on intermediate abstractions is critical to thinking about the design of DIGs. Several 
researchers have argued for the use of intermediate abstractions in the form of dynamic visualizations 
for learning physics. For example, White (1993) argued that, instead of teaching learners physics by 
directly teaching them physics principles during instruction, learners should first be presented with 
intermediate abstractions in the form of dynamic causal models. White argues that intermediate 
abstractions can recruit learners’ phenomenological understanding (in the domain of physics) and 
intuitive knowledge (in general) to help them develop causal explanations, which can then be further 
refined to develop a more canonical explanation of the relevant phenomenon.

Within DIGs, intermediate abstractions and “intermediate representations” based on those 
intermediate abstractions can recruit players’ intuitive and phenomenological knowledge to help 
constrain players’ interpretations of formal representations (i.e., the Cartesian graphs). This 
constraining function is valuable because learners commonly conceptualize graphs as iconic 
representations of real events (Preece & Janvier, 1992). For example, when viewing a graph of the 
speed of an automobile, learners may interpret the graph in terms of the position of the automobile 
on the track and may also erroneously interpret steeper slopes as a higher value instead of a higher 
rate of change, which is known as slope-height error (Bell & Janvier, 1981).

The relationship between conceptual knowledge and representational competence has been 
highlighted in a plethora of studies, which show that learners with low domain knowledge experience 
greater difficulties with graph comprehension. For example, middle school learners with low prior 
knowledge about weather maps focused on extracting individual data points, made only superficial 
interpretations, and rarely integrated information or compared graphical information (Edelson, Gordin, 
& Pea, 1999). Similarly, Shah and Shellhammer (1999) demonstrated that novice graph viewers 
were more likely to interpret line graphs more superficially than experts. In terms of constraining 
functions, Madden, Jones, and Rahm (2011) found that undergraduate chemistry learners exhibited a 
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preference for a single representation at first, but that they used familiar representations to constrain 
understanding of novel ones after gaining proficiency.

In terms of DIGs, the intermediate representation is typically graphical based on Stenning 
and Oberlander’s (1995) axiom that graphical representations are generally more concrete than 
analogous textual representations. The constraining function of the intermediate representation 
should decrease players’ tendencies to make common interpretation errors, such as the slope-height 
error. The intermediate representation should also serves to enhance players’ understanding of how 
graphs are constructed by providing a context for them to construct the graph from the concrete 
phenomenological view. In terms of DIG examples, players in the Action Potential time-series 
analysis DIG would aggregate sodium and potassium ions vertically to construct the appropriate 
formal representations. Similarly, players in the non-time series Cartesian Kinetic Explorer DIG 
would aggregate the flame icon at different pressure values to create the pressure-versus-time graph. 
On a more general level, we believe that such exercises can support the development of players’ 
representational competence in DIGs.

Fewest Representations -- Use the Fewest Representations Aligned 
with the Informational and Computational Properties of the DIG
Including an intermediate representation is in productive tension, however, with minimizing the total 
number of representations. The design goals in a DIG involve connecting the phenomenological 
view of the system to the formal representations so that players can translate within and across 
representations. Based on the research on intermediate abstractions and the research on the difficulties 
that learners encounter when interpreting Cartesian graphs, the addition of a constraining intermediate 
representation is warranted.

Research on displaying variables separately versus integrating multiple variables into a single 
representation is also in productive tension with minimizing the total number of representations. 
When multiple representations have unique computational properties they can support complementary 
processes (Larkin & Simon, 1987). Computationally non-equivalent representations can reference 
identical information but differ in the speed and ease with which inferences can be derived (Ainsworth, 
2014). Ainsworth, Bibby and Wood (1997) studied elementary aged children learning estimation 
principles through the CENTS simulation. The children were provided with feedback on the accuracy 
of their estimation in terms of the direction and magnitude. Children who received feedback through 
multiple simple representations learned estimation principles faster than children who received 
feedback through more complex integrated representations.

Balancing these tension, the minimum number of representations based on the informational and 
computational properties and functions of the DIG includes: (a) a phenomenological representation, 
(b) one or more formal representations that are potentially further separated at least initially into 
series of simpler individual representations, and c) intermediate representations that meaningfully 
hybridize or juxtapose the phenomenological and formal representations.

SURGE Symbolic should therefore include a phenomenological representation, one or more 
Cartesian graphs of key formal abstractions (e.g., position, velocity, acceleration, force, or mass) as 
required by each phase of the game, and a dot trace intermediate representation that is overlaid on 
the world representation (Figure 1). The dot trace places a “dot” on the world representation at fixed 
intervals in time to track Surge’s path in the world view. Dot traces are common in physics classes 
because they allow students to infer how position is changing over time, which allows the student 
to then infer how velocity and acceleration are changing over time. Essentially, bigger distances 
between dots equate to bigger changes in position over time (or velocity). Following from research 
demonstrating that a series of simpler representations can in some instances be better than a more 
complex integrated one, SURGE Symbolic uses series of separate position, velocity, and force graphs 
depending on the focus of a given game level. Similarly, our Action Potential DIG would include the 
phenomenological simulation view of sodium and potassium ions moving in and out of their respective 
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channels across the neuron axon membrane along with intermediate representations aggregating these 
ions over time. This DIG would also include two separate sodium and potassium ion movement-over-
time graphs to assist players in understanding how these ions move individually before understanding 
their interaction via the membrane potential-over-time graph, the third formal representation for this 
DIG. The Kinetic Explorer DIG would include the phenomenological simulation view of the ideal 
gas system along with intermediate representations and three separate formal graphs of the pressure-
versus-temperature, volume-versus-temperature and volume-versus-pressure relationships.

Across these examples, it is evident that splitting complex graphs into separate ones can 
be beneficial to acclimating novice players in DIGs and also in multirepresentational systems 
utilizing similar formal representations. Some phenomena, however, are typically represented 
with certain variables combined into a single representation. In population ecology (the Alien 
Zookeeper DIG), for example, a single Cartesian change-over-time graph typically combines 
both predator and prey populations. How and when to separate versus combine such graphs is 
explored further in the discussion section. Overall, each representation in these DIG exemplars 
affords players unique computational information and processes in support of the intended 
learning goals. Each DIG (or other similar multirepresentational system) may therefore vary in 
the minimum optimal number of representations.

PARAMETER 2: INFORMATION

DeFT specifies distribution of information as the second of the five parameters for consideration. 
Information can be distributed in many ways in multirepresentational environments according to the 
pedagogical goals of the system.

Redundant Representations – Gradually Reduce Redundant 
Representations as Users Increase in Expertise
Hegarty and Just (1993) found that novices presented with drawings of simple pulleys and textual 
descriptions scored significantly higher on kinematics problems than subjects presented with only the 
pulley diagrams or the textual descriptions but not on problems assessing their understanding of the 
configuration of the components in the pulley system. Similarly, Ainsworth, Bibby, and Wood (1997) 
found that subjects who were given two non-redundant representations learned estimation accuracy 
faster than subjects given two redundant representations when performing computational estimate 
tasks. Kalyuga, Chandler, and Sweller (1998), however, found that redundant textual information 
annotating diagrams enhanced subjects’ learning as novices but hindered their learning as the novices 
became more expert. Thus, redundant representations can be a useful scaffold for novices but should 
be reduced gradually as users increase in expertise.

Accordingly, all graphs in in SURGE Symbolic and our other exemplars have annotations that 
appear as the user scrolls across the graph with the relevant information for each data point on the graph 
(Figure 5). While this information is redundant, it is useful for novices. As players get more advanced 
in their understanding of the representations in our DIGs, the players or the DIG software can toggle 
or fade the annotations to mitigate any expertise reversal effects. Similarly, multiple representations 
of a phenomenon might be of value early in an activity progression to bootstrap and constrain novice 
players, but these redundant representations should be faded as players’ expertise increases.

PARAMETER 3: FORM OF REPRESENTATIONS

Representations can take a variety of forms that differentially impact how learners process them. 
Research on the forms of representations in relationship to learning goals provides substantial evidence 
supporting the view that differences in the form of representations influence learners’ cognitive 
processes and outcomes (Ainsworth, 2006).
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Structural Diversity – Employ Structurally Diverse Representations 
Aligning with the Pedagogical Goals of the System to Leverage 
the Cognitive Affordances of Each Structure
Bibby and Payne (1993) found that subjects learning to use a simple device who studied verbal rules were 
faster at determining which switches were misaligned than subjects who studied tables and diagrams. 
Conversely, subjects who studied tables and diagrams were faster at identifying faulty components. 
Stieff, Hegarty and Deslongchamps (2011) presented subjects with four distinct representations for 
a molecular mechanics equation across three interactive visualizations: (1) a mathematical equation, 
(2) a specific numerical example, (3) a graph, and (4) a ball-and-stick visualization of the system. 
They found that subjects generally selected the most relevant representation of the four for completing 
various tasks. Jones (1998) found that dynamic and static representations require different operators to 
understand, elicit different inferences from learners, and can complement each other when presented 
together. In summary, a variety of studies have demonstrated that complementary representations 
serve a useful role in promoting unique forms of reasoning relevant to diverse task demands.

Building on this research, SURGE Symbolic presents players with a variety of representations 
including the phenomenological, intermediate, and formal graphical representations. The 
phenomenological (world view) representation capitalizes on the computational properties of concrete 
visual imagery, the intermediate representation capitalizes on the computational properties of the both 
graphics and symbolic graphs, and the formal graphical representations exploit the computational 
affordances of symbolic graph-based representations. Players can access and review static images 
of linked graph and world-view states at their own pace and relate these to the dynamic world-view 
visualization. Similar diversities of representations are presented in our other DIG exemplars.

Multimodality – Leverage Multimodal Representations 
where Feasible rather than Visuals and Text Alone
The modality principle states that people learn more deeply when the words are spoken rather than 
printed (Kalyuga et al., 1999; Moreno & Mayer, 1999; Mousavi, Low, & Sweller, 1995). There is 
strong support for the modality effect across a wide variety of learning situations (Mayer, 2005c). 
Ginns (2005) found in a meta-analysis of forty-three studies that learners who learn from instructional 
materials using graphics with spoken text outperformed those who learn from a graphics with printed 
text. Paek (2012) found that the presence of audio narration significantly enhanced learning compared 
to conditions receiving no audio narration in a virtual manipulative to teach basic multiplication.

Bivall, Ainsworth, and Tibell (2011) found that biochemistry graduate learners given haptic 
feedback based representations of the dynamic process of protein-ligand interaction learned more and 
had fewer misconceptions than control participants who did not receive these haptic representations. 

Figure 5. Annotated velocity graph point
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Huang, Vea, and Black (2011) found that players who used a force feedback 3D joystick in conjunction 
with a catapult physics game simulation performed significantly better on kinematics and transfer 
questions than players who did not use the force feedback joystick. Huang (2013) found an even 
stronger effect for the force feedback joystick to enhance learning when it was used to prime players’ 
understanding of physics concepts before game instruction began.

This research suggests that the affordances of both audio and haptic interfaces should be 
integrated into DIGs where feasible. Use of audio may be more beneficial to novice players to narrate 
the text of self-reflective and explanative prompts and answers, data points, and graph axes. Audio 
narration should be user-controlled and/or gradually faded, however, to avoid an expertise reversal 
effect. Audio can also be used to add sound effects to the various aspects of DIG environments, both 
phenomenological and formal. Similarly, input interfaces that measured the pressure that players 
apply by pushing could be included for players to specify the amount of force they wish to apply in 
the SURGE Symbolic. In our chemical reactions DIG, players could receive haptic force feedback 
whenever molecules form and break bonds, and players in our Coulomb’s force simulation could 
receive force feedback whenever charge spheres repulse or attract each other. Lastly, while training 
videos are not novel, they are a multimodal representation that is often under-utilized in preparing 
players for learning how to interact in a multirepresentational environment. Overall, the integration 
of audio and haptic modalities and multimedia training videos in DIGs and multirepresentational 
environments in novel ways has the potential to enhance learning.

Parameter 4: Sequence
The sequence and activity structure around the representations in a multirepresentational system clearly 
matter. Research on domain-specific versus domain-general approaches to integrating, segmenting, 
and comparing and contrasting representations is central to thinking about sequencing in DIGs.

Concrete before Abstract – Sequence Concrete Representations Prior to 
More Abstract Ones, but Domain-Specific Considerations May Supercede
Ainsworth et al. (1998) advocate for presenting learners first with concrete representations and 
then gradually presenting more abstract representations. For example, learners in her COPPERS 
environment were presented first with pictures of coin problems, then a combination of text and 
pictures, then text in isolation, and then as algebra. Resnick and Omanson (1987) found that children 
no longer utilized concrete representations (i.e., Diene blocks) after the children had learned to 
automatically manipulate symbol representations to subtract numbers. New representations should 
thus be presented before learners have automated their understanding of the current representation 
(Ainsworth, 2006). Similarly, Plotzner (1995) advocates presenting qualitative representations before 
quantitative representations when teaching one-dimensional physics problems.

Designers of multirepresentational systems can also implement a continuum of domain-specific 
approaches to sequencing representations (Ainsworth, 2006). Sometimes these domain- specific 
approaches may be in tension with the concrete-to-abstract pattern. In Kaput’s (1994) MathsCar 
calculus simulation, for example, Kaput advocates introducing integration before differentiation in 
calculus teaching (arguably concrete before abstract) and hence advocates presenting velocity graphs 
before position graphs (arguably abstract before concrete).

Our SURGE Symbolic system sequences representations from most proximal and concrete to 
more distal and abstract given our disciplinary goals in teaching Newtonian physics. Students are 
first presented with a worldview visualization, then an intermediate dot trace abstraction, and then 
formal Cartesian graphical representations, which tend to be most difficult for players. In terms 
of graphical representations, players begin with only a position graph. Players are then scaffolded 
through a series of game levels and dot trace intermediary activities to seeing a velocity graph (the 
integral of the position graph).
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There is tension, though, between the domain-general design consideration of concrete-to-abstract 
and the domain-specific consideration of starting instead with velocity, which is more easily mapped 
to the dot trace intermediate representation (which is the archetypal progression in learning about 
Newtonian mechanics). To further explore these tensions, we are continuing to research approaches 
to balancing these sequence tensions between domain-general and domain specific in SURGE 
Symbolic and other DIGs. Thus far, domain-general concrete-to-abstract approaches appear to be 
productive starting points in our other DIGs. In Alien Zookeeper, for example, players would first 
explore a concrete predator/prey simulation, then intermediate representations would be added, and 
finally with the formal graphs of predator/prey populations would be added. In Zookeeper System 
Dynamics, players would be presented with the zoo simulation prior to viewing nodal feedback graphs 
of population dynamics. Domain-specific considerations would likely arise, however, as we moved 
deeper into development, and tensions between domain-general and domain-specific would need to 
be balanced in a manner similar to the balancing required by all similar multirepresentational systems.

Segmenting – Use predefined or User-Defined Segmenting and Pictorial 
Scaffolding of Dynamic Visualizations to Foreground Critical Points and States
We next consider research on static and dynamic displays of information. Dynamic visualizations 
often preclude learners from re-inspecting information, which reduces their efficacy (Hegarty, 2004). 
Mayer, Mautone, and Prothero (2002) found that learners who viewed pictorial scaffolds highlighting 
key states in a geology simulation learned more than learners who did not view the scaffolds or 
learners who viewed verbal scaffolds. Mayer, Dow and Mayer (2003) found that learners shown a 
segmented animation explaining how electric motors worked performed better on transfer questions 
than learners who watched a continuous animation. Mayer and Chandler (2001) found learners who 
viewed a segmented animation of lightning formation performed better on tests of problem-solving 
and transfer than those who viewed a continuous animation. Hastler et al. (2007) found that learners 
who studied a pre-segmented or user-controlled animation on the causes of day and night learned 
better than learners who watched a continuous, non-user controlled animation. Segmentation can 
also serve to define event boundaries for the learner ahead of time (Spanjers & Van Merrienboer, 
2010). Catrambone (1995) found that learners who viewed a series of calculation steps where each 
step was labeled and/or on a separate line learned better than learners who viewed the calculation 
steps without segmenting or cueing.

Accordingly, as the player scrolls to each point on the position, velocity and force graphs in our 
exemplar SURGE Symbolic DIG, the corresponding frame appears in the world-view. In the Alien 
Zookeeper DIG, the predatory and prey graph is linked frame by frame to the zoo simulation and in 
the Coulomb’s Force DIG, the Coulomb’s force over distance square and q1*q2 graphs are linked to 
the charge sphere simulation. Hence across our DIG examples, the dynamic world-view visualizations 
are linked to the graphs, frame by frame, and segmented into a series of user-controlled static 
pictures to scaffold and constrain understanding of the graphs. Users can also pause, fast forward, 
rewind, stop, and replay the world-view animation using simple controls as much as they like. This 
design consideration should benefit non-game based multirepresentational systems with similar 
representations as well. Since this feature is entirely user controlled, users can use it less frequently 
as they gain expertise, avoiding the expertise reversal effect.

Construction – Delay the Articulation of Abstract Rules and Relationships 
Until Players Have had a Chance to Construct and Articulate These 
Abstractions for Themselves Through Comparing and Contrasting
Rittle-Johnson and Star (2007) found that 7th graders who compared and contrasted alternative algebra 
solutions achieved greater gains in procedural knowledge and flexibility compared to learners who 
reflected on alternative solutions one at a time. Rittle-Johnson, Star, and Durkin (2012) found that 
novice 8th graders who compared multi-step equation problem solving procedures were more flexible 
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problems solvers than those who did not. Similarly, Schwartz, Chase, Oppezzo, and Chin (2011) found 
that learners who had to invent density formulas after examining contrasting cases performed better 
on ratio structure and transfer problems than learners who were told these formulas before examining 
contrasting cases. These studies therefore align with other research advocating the benefit to learners 
of exploring relationships before being provided with abstract articulations of those relationships.

Across all DIG examples, players use comparisons to invent abstractions in many ways. For 
example, players create graphs and then compare and contrast across them. As players complete a 
trial, they will be able to see and compare the results of this past trial transparently as they perform 
a new one. Other forms of comparing and contrasting occur when players are prompted to compare 
more than one graph on the screen (e.g., a position communication graph and a velocity control graph 
in SURGE Symbolic or sodium ion and potassium ion intracellular concentration-over-time graphs 
in our Action Potential DIG). Across DIGs, prompts encourage players to explore how both graphs 
are similar and different and to try to form relations among the two using the various segmenting 
activities at their disposal.

Players also have “sandbox” levels, where they are free to explore and make their own graphs 
and compare them across trials to make their own inferences. Providing learners with opportunities to 
invent abstract rules is a powerful principle to apply to designing non-game based multirepresentational 
systems as well.

All DIGs therefore focus on scaffolding players’ exploration of relationships within and across 
representations. The goal involves supporting players in exploring the relationships first to develop 
a tacit phenomenological understanding and then eventually to explicitly articulate the underlying 
relationships through the game dialog interface with the game characters. This process of exploration, 
invention, and articulation would also extend to other multirepresentational environments with similar 
intended functions.

PARAMETER 5: TRANSLATIONAL ACTIVITIES

Learners can integrate information from multiple representations to construct a deeper understanding 
than would be afforded by individual representations. This process is known as translation (Ainsworth, 
2006). Learners are more likely to transfer the deeper understanding achieved through integration of 
representations to new domains and situations (Bransford & Schwartz, 1999). Stull, Hegarty, Dixon, 
and Stieff (2012), for example, found that learners who interacted with physical models translated 
more easily between diagrams of molecular structure. Furberg, Kluge, and Ludvigsen (2013) found 
that the provision of science diagrams of heat and transfer promoted the coordination, discussion, 
and interpretation among groups of learners. The following sections synthesize design considerations 
for supporting translation across representations in DIGs in terms of research on dynamic linking, 
signaling, and explanation prompts within game dialog.

Dynamic Linking – Structure Environments so that Players Construct 
Dynamic Links and Embodied Connections Across Representations
Dynamic linking occurs when learners interact with one representation and see the corresponding 
results in another. SimCalc, for example, dynamically links actions in one representation to other 
representations in a simulation environment designed to teach the mathematics of change (Hegedus 
& Roschelle, 2013). Kaput (1992) specifically argues that dynamic linking is particularly beneficial 
when the representations are expressing action sequences opposed to merely final outcomes.

Van der Meij and de Jong (2006, 2011) explored learners’ understanding of the turning effect of 
a force, known as the moment, using abstract equations and graphs dynamically linked to concrete 
animations and numeric representations. Domain knowledge was significantly improved in the 
dynamically linked integrated display condition compared to the separated non-linked display 
condition. Subjects in the integrated dynamically linked condition also found the representational 
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system easier to use, interpret, and manipulate. Furthermore, Van der Meij and de Jong (2006, 2011) 
found that (a) dynamic linking supported learners in constraining representations but (b) dynamic 
linking did not support additional translation beyond that.

Research has demonstrated that dynamic linking should be varied based on the level of learners’ 
prior knowledge. Van Labeke and Ainsworth (2003) studied three learners’ use of multirepresentational 
software and found that learners with low prior knowledge used dynamic linking to relate 
representations superficially while learners with higher prior knowledge used dynamic linking less and 
related representations on deeper levels. Ainsworth (2006) concluded from this study that the degree 
of support as well as the level at which it is provided should be varied based on the prior knowledge 
of the learner. Ainsworth (2006) further cautions that over-automation of relating representations may 
discourage learners from reflecting on the nature of connections among representations.

Research on embodied or perceptually-grounded cognition can ground our understanding of 
effective dynamic linking. Furthermore, these perspectives reinforce the multimodality design 
consideration discussed in the previous section. Embodied cognition research posits that achieving a 
full understanding of a concept entails being able to create a mental perceptual simulation of it when 
retrieving or reasoning about the concept (Barsalou, 2008, 2010; Black, 2010). Mokros and Tinker 
(1987) and Brasell (1987) found that children using motion sensors to create graphs of position and 
velocity demonstrated significant gains on graph interpretation. Chan and Black (2006) found directly 
manipulating interactive kinematics animations improved learning for these concepts. Yang, Black 
and Jyung (2010) found that medical learners who interacted with a 3D internal anatomical structure 
via a joystick that allowed them to rotate the structure comprehended the structure better than learners 
who simply viewed an identical video of the 3D structure. Bodemer, Ploetzner, Feuerlein, and Spada 
(2004) found learners who had to actively integrate textual and algebraic representations in a statistics 
simulation by dragging and dropping them in the appropriate location performed better than learners 
who did not integrate them or viewed a split source representation.

Accordingly, we are working to develop a variety of functionalities in SURGE Symbolic and other 
DIGs that will support a more embodied perspective for players. In terms of existing functionality, 
embodied activities already dynamically link and constrain our concrete world-view and physics 
graphs in more active ways. The player can, for example, drag and manipulate thrusters of various 
magnitudes, durations, and directions on the force graph across various time points (Figure 6). This 
is a more embodied way of constructing the force graph that applies to constructing graphs in other 
DIGs and non-game multirepresentational systems.

In terms of functionality under development, players in future versions of SURGE Symbolic 
will click on dots to form line segments from the dot trace they have just created, and they will then 
manipulate these line segments to construct their graphs of velocity and position (Figure 7). Similar 

Figure 6. User controlled force thruster
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embodied aggregating activities will be explored for other DIGs. As players increase in expertise, this 
process will be automated and then faded completely. We are also working to develop functionality 
in SURGE Symbolic so that users can drag their mouse along a user-defined segment of a graph, 
release the mouse, and then see an animation of Surge’s motion for that segment.

All such translational activities should adapt to both player expertise and optimal depth 
of instruction. As the learner progresses, DIGs and other multirepresentational environments 
should gradually transition from superficial to deeper translational activities to link across 
formal representations.

Signaling – Use Signals Including Congruent Axes, Numbers, 
Labels, and Scales Across Representations
Learners comprehend more when multimedia presentations are signaled (Mautone & Mayer, 2001). 
Signaling is the process of using cues to direct a learner’s attention towards key events in a multimedia 
presentation and the causal relations among these events. Mautone and Mayer (2001) found that learners 
presented with a signaled presentation on how airplanes achieve lift performed significantly better on 
transfer questions than learners who viewed the non-signaled version. Signaling in static illustrations 
was found to direct learners’ attention and enhance learning (Tversky et al., 2008). Signaling can be 
implemented in multiple forms to help learners perceive relationships among representations, such 
as altering the luminance of objects in a display (e.g., De Koning, Tabbers, Rikers, & Paas, 2007), 
altering font style (e.g., Mautone & Mayer, 2001), flashing elements (Craig, Gholson, & Driscoll, 
2002; Jeung, Chandler & Sweller, 1997), and orienting gestures guiding learners to related elements 
(Lusk & Atkinson, 2007). Not all forms of signaling work equally well in all instructional contexts. 
Hegarty, Kriz, and Cate (2003) found, for example, that arrows signaling important steps and causal 
chains of events in learning how a flushing cistern works did not benefit learners. Signals should be 
carefully designed in light of the intended function, the expertise of the learners, and the nature of 
the relationships highlighted.

When representations have consistent labels and similar colors to represent similar objects 
across representations it is easier for learners for perceive the relationships among them (Ainsworth, 
2006). Children, for example, tend to recognize that representations relate to the same problem 
only when they use the same numbers (Dufour-Janvier et al., 1987). Zhang (1996) advocates the 
importance of matching the scale of the representation of information to the scale of the display of 
this same information. Specifically, he states this will avoid over-interpretation of representations 
with nominal information displayed using interval scales or increased cognitive load of understanding 

Figure 7. Dot trace position line segment
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representations with interval information displayed using nominal scales. Ainsworth (2014) generalizes 
these assertions to the principle that when distributing information over multiple representations it 
is beneficial to match the scales of the information and the display.

In SURGE Symbolic (Figure 8) and all of our other DIG exemplars, the same X-axis time scale is 
used across all graphs to maximize similarity across them. When possible, the Y-axes across graphs 
and the world-view use similar interval scales. When graphs and the phenomenological view are 
being compared in the various DIG exemplars, similar colors and flashing are used to signal which 
slope segments on graphs and which segments of the world-view are being compared and translated. 
Accordingly, utilizing similar axes and signaling relationships among representations can be beneficial 
across DIGs and most multirepresentational systems.

Explanation Dialog – Use Adaptive Self-Reflective and Explanative 
Feedback Prompts in Game Dialog to Scaffold Players to relate 
Specific Elements within and between Representations
Roy and Chi (2005) found that self-explanation fosters average learning gains of 20% in learning 
from multimedia presentations, 44% for learning from diagrams, and 22% for learning from text. 
Explanative feedback prompts require learners to choose an answer to a question and then give them 

Figure 8. Segments of graphs flashing to signal translation
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an explanation for the correct answer choice. Moreno and Mayer (2005) found that learners who 
received explanative feedback prompts while playing the Design-a-Plant game learned better than 
learners who received simply corrective feedback or no feedback whatsoever. Also, they found that 
reflection was most useful for enhancing learning in interactive environments when learners reflect 
on correct answers opposed to their own solutions. Mayer and Johnson (2010) found that learners 
playing a circuit game who received self-explanation prompts for embedded game questions where 
they had to choose the correct circuit principle from a list, received explanative feedback after choosing 
an answer from a list, or both performed better on transfer questions than learners who received no 
self-explanative or explanative feedback. Importantly here, learners chose an explanation from a list 
and did not generate explanations spontaneously.

Berthold and Renkl (2009) found that self-explanation prompts that encouraged learners to 
integrate parts across different representations assisted learners in acquiring conceptual knowledge 
in a multirepresentational simulation environment about probability. They also found, however, that 
incorrect self-explanations hindered the acquisition of procedural knowledge. Van der Meij and de 
Jong (2011) provided learners with more specific and directive self-reflective scaffolding prompts to 
translate and relate representations in a multirepresentational physics environment. They found that 
these directive prompts enhanced learners’ domain knowledge significantly more effectively than 
general self-reflective prompts.

Cognitive flow is also an important consideration when designing prompts. Flow experiences 
include periods of concentration, distorted time, and an enhanced sense of control (Kiili, 2005; Adams 
& Clark, 2014). Adams and Clark (2014) found that middle school learners who received explanative 
prompts performed slightly worse than learners who did not receive prompts in a physics game 
environment. Adams and Clark hypothesized that this occurred because learners were overloaded, 
and their game flow was disrupted, by the timing and number of questions as well as the fact that 
learners were required to reflect upon incorrect as well as correct answer choices. Hsu, Tsai, and 
Wang (2012) divided learners into high and low engagement level learners based on their ratio of 
correct, incorrect, and “I don’t know” responses to self-explanation prompts (which learners received 
each time they made a mistake in an educational game about shadows). High engagement learners 
scored significantly better on comprehension tests than low engagement self-explanation learners, 
emphasizing the importance of users’ engagement and motivation with prompts.

There is also substantial literature indicating that adaptive feedback can enhance learning. Chi 
et. al (2011) found that adaptive learning systems for teaching introductory college physics improved 
learners’ learning gains significantly. Reif and Scott (1999) compared human tutoring, step-based 
tutoring, and no tutoring for a physics domain. They found that gain scores between human tutors 
and step-based tutors were not significantly different, but were significantly better than having no 
tutor. VanLehn (2011) found intelligent computerized tutors that adapted content according to learner 
performance were even more effective than human tutors.

Accordingly, SURGE Symbolic engages players with explanative prompts within the game 
dialog. Figure 2 presented an example where dialog choices are presented as text. Figure 9 presents an 
example where the dialog choices are presented as images (graphs in this example, but dialog choices 
in the system can include any combination of text and images). Corrective feedback prompts are not 
used, instead explanative feedback prompts occur in the dialog only after players have successfully 
completed a specific challenge that exemplifies the relationships at the heart of specific explanative 
feedback prompts. Further explanations are provided based on the explanation selected by the player.

In SURGE Symbolic, for example, a computer character may ask players to relate a plateau 
in a multi-step velocity graph to a specific constant increase in slope in the position graph. In our 
Coulomb’s Force DIG, players may relate the center of the force-versus-distance-squared graph to 
the center slope of the q1*q2-versus-force graphs to encourage players to explore and articulate how 
exponential and multiplicative forces are related. These prompts emphasize translation by asking 
players to relate the phenomenological representation to broad and specific segments of the formal 
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graphs as well as to relate specific parts of representations between and within representations. Such 
prompts are useful in both the design of DIGs and most multirepresentational systems. Across our 
exemplars, the explanative and self-reflective prompts adapt to player expertise in three ways: (1) 
prompts increase in difficulty and specificity as players perform better on them, (2) more prompts 
are given to players for concepts they consistently perform poorly on, and (3) prompts appear less 
frequently once players progress further along the game and have demonstrated expertise to avoid an 
expertise reversal effect. This adaptive framework is highly applicable to other multirepresentational 
systems. Furthermore, the explanative and self-reflective prompts should be integrated into a story 
arc to enhance engagement. Overall, a variety of story arcs across DIGs should be used to encourage 
players to feel empowered that their translational actions will help achieve key game objectives for 
the main characters.

DISCUSSION

The current paper has applied the DeFT framework (Ainsworth, 2006) as a lens to synthesize design 
considerations for disciplinarily-integrated games. In addition to the literatures on single and multiple 
representations, we have leveraged the literatures on embodied cognition, segmenting, signaling, 
comparing and contrasting, adaptive scaffolding, and learning from dynamic visualizations to address 
the challenges, tradeoffs, and questions highlighted by the DeFT framework. Applying the proposed 
design considerations to DIGs across model types and modeling strategies was demonstrated as 
generally clean and consistent in terms of the proposed examples. We thus propose that most of the 
design considerations should transfer well to other DIGs based on those model types and templates, 
and potentially beyond to DIGs and other multirepresentational systems with similar intended functions 
based on other model types and modeling strategies outlined. There are three issues arising from 
the application of the design considerations to DIGs, however, that raise important issues meriting 
further discussion, exploration, and research: (a) the potential efficacy of shifting so much control 
to the player, (b) balancing design considerations, learning goals, and game mechanics, and (c) the 
relative tradeoffs in combining versus separating variables in graphs.

Equivocal Research about the Benefits of User Controls 
in Multiple Representation Systems
Research demonstrates that user control can contribute substantially to learning. Subjects presented 
with an animation where they could interactively control the pace of an animation about lightning 

Figure 9. Explanative scaffolding prompts with images for dialog choices
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formation, for example, performed significantly better than subjects who had no user control (Mayer 
& Chandler, 2001). Furthermore, Ainsworth (2006) makes clear that over-automating connections 
across representations can diminish their efficacy. Research has found, though, that full user control 
of dynamic media is not always beneficial. Kriz and Hegarty (2004), for example, found that high 
prior knowledge learners, but not low prior knowledge learners, could construct models of a novel 
device after viewing user-controlled animations. Similarly, Lowe (2003) found novices interacting 
with user-controlled animations of a weather map focused on perceptually striking features instead 
of thematically relevant ones.

SURGE Symbolic and other DIGs, however, have user-controlled visual environments that are 
structured differently than the environments in Kriz and Hegarty (2004) and Lowe (2003). Specifically, 
the user-controlled visualizations in those studies were not generated by the learner. Players in DIGs 
and other multirepresentational systems with similar intended functions actively make choices that 
affect the outcome in the representations. Players use controls specifically to explore and understand 
the implications of their actions so that they can solve the current or future levels more effectively. 
As discussed in Clark et al. (2015), the studies we have conducted thus far with the SURGE series of 
games suggest that user-controls can support deeper engagement and exploration of the relationships 
depicted within and across representations.

Also, as discussed in the appropriate design consideration sections, user controls in DIGs are 
integrated with (a) pre-segmented areas, (b) signals to help players attend to thematically relevant 
features within and across representations, and (c) translational activities and prompts to construct 
and bridge representations. Accordingly, these additional features should promote the efficient use 
of user-controls by the player, especially when the players are novices, but this requires further 
exploration. Overall, the tension over degree of user control highlights the importance of the design 
of control systems (in DIGs or other multirepresentational systems with similar intended functions) 
such that mechanics support translational activities rather than random trial-and-error line fitting or 
other brute force strategies.

Balancing Design Considerations, Intended Learning Goals, and Game Mechanics
A second critical tension involves balancing design considerations, intended learning goals, and 
game mechanics. Examining the design considerations about intermediate representations and the 
dynamic linking, for example, highlights the challenge of designing the translational activities with 
intermediate representations so that they are less artificial and more tightly integrated into the game 
mechanics of the DIG. When players create line segments out of the dot trace and drag these line 
segments to create the position and velocity graphs and link them to the phenomenological world 
view in SURGE Symbolic, or when players perform aggregating activities to link ion concentrations 
in our action potential and chemical reactants DIG examples, how can these translation/construction 
activities be structured as central and engaging game mechanics rather than mandatory tasks that 
must be completed to allow further progress? Similarly, examining the design consideration about 
self-explanation, we have found a strong tension between the learning mechanics and the flow and 
engagement of the game mechanics (e.g., early work on explanation in SURGE by Adams and Clark, 
2014). Optimally, the explanation functionality should be woven into engaging game dialog with 
characters in the game, but ongoing research and design will be required to achieve this goal.

An early math game from the 1980s called MathBlasters is often invoked to highlight this 
tension in educational game design. In MathBlasters, players complete school tasks (i.e., solve math 
problems) to earn the right to subsequently shoot junk and trash in space. Thus, the engaging game 
mechanics (shooting junk in space) is separate from the learning mechanic (solving math problems). 
Habgood and Ainsworth (2011) and others describe this distinction as extrinsic integration (when 
the game and learning mechanics are separate) and intrinsic integration (when game and learning 
mechanics are one and the same). Clark and Martinez-Garza (2012) point to a more stringent case 
of intrinsic integration that they define as conceptual integration. While Habgood and Ainsworth 
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(2011) and others have demonstrated that intrinsic integration is possible and can increase both 
learning and engagement, successfully designing for intrinsic integration is much more challenging 
than designing for extrinsic integration. Future research on DIGs and other games for learning needs 
to focus carefully on these questions.

Combining Versus Separating Variables in Graphs
A third important (but finer-grained) issue involves the tension between combining variables in graphs 
versus exploring each variable in a separate representation. When are iconic formal representations 
depicting multiple variables on the same graph beneficial for novice players? When and how might the 
individual variables be more productively distributed across separate representations? For example, 
prototypical predator/prey population-over-time graphs present both the predator and prey variables 
on the same graph (Figure 3). Iconic action potential graphs similarly display changes in sodium and 
potassium ions over time on the same graph. Following from the design consideration of including 
the fewest representations, having separate representations for each variable may overload novices. 
Alternatively, splitting such graphs into two separate graphs and then giving players translational 
activities to construct graphs comparing both variables simultaneously may be optimal and most 
aligned with the pedagogical goals of the system under design considerations of structural diversity. 
In SURGE Symbolic, for example, the various position, velocity, and acceleration graphs depicting 
motion are separated but utilize the same X-axes for time. This approach does not violate design 
considerations of fewest representations, because these additional isolated representations are not 
extraneous to learning and may in fact be essential for novice players.

Some phenomena of interest, however, focus on the pattern of displacement of the variables, 
which requires direct overlaying and comparison of the variables in a single representation. In the case 
of the population-prey graph, for example, the sin-waves are only slightly offset. Placing the predator 
and prey variables in separate graphs occludes this relationship. Furthermore, it may be valuable to 
familiarize players with the formal disciplinary representation of the phenomenon. Thus, ultimately the 
variables may need to be displayed in the same graph (which aligns with Mayer’s contiguity principle) 
so long as the axes are commensurable for each variable (e.g., predator and prey graphs use the same 
Y-axis – population – whereas the velocity and position graphs do not). Following from the design 
considerations, however, the variables should potentially be treated separately initially to support the 
player in developing an understanding of each individual graph before overlaying the graphs (if they 
are commensurable). How best to scaffold players to this point remains an open question.

IMPLICATIONS AND FINAL THOUGHTS

While the issues discussed above require further exploration and consideration, we propose that DIGs 
and the design considerations discussed in this paper provide a generalizable genre and template. 
Furthermore, we propose that DIGs and the associated templates and design considerations hold 
promise as vehicles for engaging players with key model types and modeling strategies that cross 
multiple disciplines and respond to calls for greater emphasis on problem-solving, 21st century skills, 
and engaging players in the practices of disciplines to develop deeper understanding. We now close 
the paper by considering the implications of this generalizability.

Why are the Design Considerations of Value?
The design considerations synthesize research across broad areas of cognitive science including 
multirepresentational learning, embodied cognition, multimedia learning, and spatial cognition. 
Hence, these considerations exemplify how varied areas of cognitive science can be synthesized 
cohesively to inform instructional design. Additionally, research in multirepresentational gaming is 
sparse, and these design considerations therefore provide a useful template for how to apply such 
varied learning principles to the design of educational games involving representations. Furthermore, 
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many of the design considerations extend beyond DIGs to inform the design of non-game based 
multirepresentational systems with similar intended functions across a diversity of contexts. These 
considerations help frame the various complementary, constraining, and constructing roles potentially 
afforded by representations and structures in multirepresentational systems more generally.

The design considerations are not absolute and are, in fact, “considerations.” Accordingly, they 
provide a formulation for researchers to assess in terms of their applicability across a spectrum of 
designs, contexts, learners’ prior knowledge, spatial and verbal working memory capacities, attentional 
capabilities, motivational levels, age, gender, sociocultural environment, and many other factors. 
Also, as Ainsworth and others (e.g., Clark, Tanner-Smith, & Killingsworth, 2016) make clear, studies 
of multirepresentational systems and studies of digital games for learning typically do not provide 
detailed articulations of the intended functions of the representations and activity structures under 
study, nor do they typically provide detailed articulations of the specific designs enacted to support 
those intended functions. Ainsworth (2014) and Clark, Tanner-Smith, & Killingsworth (2016) make 
clear that such theoretical articulations are necessary for research and fields to move beyond simple 
comparisons to meaningfully explore deeper questions of how specific designs and structures can 
be leveraged to achieve intended functions for specific learners.

Furthermore, these design considerations are intended not only for researchers but also for 
designers in industry. For example, simulation designers for engineering companies and military 
training facilities may benefit from these design considerations depending on the intended 
functions of their multirepresentational systems. Multi-representational systems are increasingly 
prevalent, especially in virtual and augmented reality (AR) environments. AR interventions 
require overlaying formal representations onto the phenomenological real world surrounding 
learners. Accordingly, these design considerations could help AR designers consider approaches 
for overlaying formal representations and actively engaging learners in translating across formal 
and real-world representations.

Overall, these design considerations may thus (a) help synthesize synergistic areas of research 
on cognition, (b) apply to many learning environments within and beyond educational games, and 
(c) highlight interesting questions for further research.

Economically Feasible Propagation of Games in the Curriculum
Up to now, the task of developing digital games for learning in multiple disciplines at an economically 
feasible budget has often devolved into simple forms of gamification (i.e., simply layering points and 
badges over mechanics that are not themselves game-like). On the other hand, creating a game where 
core disciplinary ideas drive game-mechanics has proven time-intensive and cost-intensive. This, in 
turn, has created an obstacle to the systematic integration of digital games across the curriculum. A 
potential advantage of the generalizability of the DIG genre and the proposed design considerations 
proposed is that, once a DIG template is honed and refined through iterative cycles of design and 
research, designers can build on the same conceptual, functional, design, and software foundations to 
create other DIGs in other disciplines. The proposed genre, templates, and design considerations could 
therefore create important economies of scale in terms of development time and cost for integrating 
games systematically across the curriculum.

Beyond Learning Within the Game: Development Across the Curriculum
Even more importantly, this generalizability has critical implications for the development of learners 
themselves across the curriculum. Much research on digital environments in the classroom has focused 
at the level of the activity rather than the level of the longer-term curriculum because of limitations in 
technology development. However, the conceptualization of DIGs as multirepresentational systems 
lends itself well to thinking about the connections between the curricula beyond DIGs in terms of 
the epistemic and representational forms therein.
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The “science as practice” perspective attends to the long-term production of scientific knowledge 
through the long-term development of epistemic and representational practices. Typically, however, 
learners in a K12 science classroom learn small amounts about myriad different domains during the 
same academic year, thereby minimizing opportunities of meaningful long-term engagement within 
a single curricular unit. By considering the epistemic and representational forms within each unit, 
though, DIGs could be interspersed throughout the academic year in order to meaningfully connect 
across the preceding and succeeding curricular units. Within a DIG, the multirepresentational 
systems can be designed to enable players to become familiar with a representational form, develop 
intermediate representations, and then generate new representational forms that are not only 
canonically more sophisticated, but can also provide representational forms that are leveraged in the 
subsequent curriculum.

In their strongest form, therefore, DIGs and these design considerations can help us conceptualize 
the year-long science curriculum as a careful assembly of curricular units, arranged to encourage 
meaningful connections between epistemic and representational forms. For student learning, it shifts 
the focus from thinking about learning within a game – i.e., a short-term focus on learning – to the 
development of epistemic and representational practices that are central to the long-term development 
of scientific expertise in an authentic manner, i.e., in a manner that is representative of the professional 
practice of scientists.
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