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ABSTRACT

Scheduling large-scale and resource-intensive workflows in cloud infrastructure is one of the main 
challenges for cloud service providers (CSPs). Cloud infrastructure is more efficient when virtual 
machines and other resources work up to their full potential. The main factor that influences the quality 
of cloud services is the distribution of workflow on virtual machines (VMs). Scheduling tasks to 
VMs depends on the type of workflow and mechanism of resource allocation. Scientific workflows 
include large-scale data transfer and consume intensive resources of cloud infrastructures. Therefore, 
scheduling of tasks from scientific workflows on VMs requires efficient and optimized workflow 
scheduling techniques. This paper proposes an optimised workflow scheduling approach that aims 
to improve the utilization of cloud resources without increasing execution time and execution cost.

Keywords
Bayesian Optimization, Cloud Optimization, Scientific-Workflow, Tabu Search, Whale Optimization, 
Workflow Scheduling

INTRODUCTION

Cloud is a challenging and highly demanding system where services are metered, reliable, and can 
be accessed on-demand Yang and Chen (2010), Zhang et al. (2010), Sandhu and Lakhwani (2022), 
Sorkhoh et al (2020). Workflows Zhao et al. (2011) have been used to model scientific applications 
Barker and Van Hemert (2007), Pietri et al. (2013), Gil et al. (2007). Scientific workflows like 
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MONTAGE, LIGO, SIPHT, GENOME, etc. have millions of tasks. Zhao et al. (2011), Vöckler et 
al. (2011), Kouatli, I (2020). These tasks must be mapped to cloud resources as they become feasible 
to provide efficient scheduling with the least amount of resource consumption. There are varieties 
of optimization approaches that may be used to find optimal scheduling solutions (Casavant and 
Kuhl, 1988). To address different optimization problems numerous general-purpose meta-heuristic 
algorithms are available (Talbi, 2009). These algorithms provide scheduling and optimization solutions 
that are close to optimum (Kumar and Sivakumar, 2022; Bisht and Vampugani, 2022; Alakbarov, 
2022), Farhat et al (2020) .

Meta-heuristic approaches are generally more computationally intensive than heuristic approaches 
and take longer to run; however, they also tend to find more desirable schedules as they explore 
different solutions using a guided search. In cloud systems, using meta-heuristics approach to solve 
the workflow scheduling problem involves many challenges such as: modeling a theoretically unbound 
number of resources, defining operations to avoid exploring invalid solutions (e.g., data dependency 
violations) to facilitate convergence, and pruning the search space by using heuristics based on the 
cloud resource model (Negi et al., 2013; Rajput et al., 2022; Kumar et al., 2022).

In the recent era, single-objective and multi-objective-based tasks scheduling (Vöckler et al., 
2011, Vecchiola et al., 2009, Malawski et al., 2015, Hammoud et al. 2020) and mapping algorithms 
have been used by researchers in cloud environment (Holland, 1992, Rodriguez and Buyya, 2017, 
Mehta et al., 2009, Deelman et al., 2015, Verma and Kaushal, 2015). There are many promising studies 
that provide efficient scheduling of input tasks in cloud systems (Yu and Buyya, 2005, Calheiros et 
al., 2011, Arisdakessian,et al. 2020, Mishra et al. 2021). Still, research demands improvements in 
existing meta heuristic algorithms so that resources can be utilized at maximum.

Tasks scheduling in cloud computing is a fast and demanding area of research. In cloud 
computing, plenty of tasks runs concurrently and use the resources online. The scheduling reduces 
the computation time and processing time of tasks (Alkhanak et al., 2016, Liu et al., 2017, Reddy 
and Kumar, 2017, Rimal and Maier, 2016, Zhu et al., 2015, Wahab, O. A., et al. 2017). Different 
types of algorithms and techniques (Nasr et al., 2014, Singh and Singh, 2013, Zhang et al., 2017, 
Priya and Kiranbir, 2018, Huang et al., 2013, Abrishami et al., 2013, Arabnejad et al., 2016, Ghose 
et al., 2017, Shaw and Singh, 2014, Shi and Dongarra, 2006, Delavar and Aryan, 2014, Alkhanak 
and Lee, 2018, Al-Qerem et al. 2020, Kuppusamy, P., et al. 2022) used for task scheduling in the 
cloud system are categorized in Figure 1.

Figure 1 depicts methods of task scheduling where meta-heuristic approach is stronger and is 
adopted in proposed study.

Figure 1. Dependent task scheduling
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In scientific workflows and their mapping techniques, researchers have targeted various parameters 
to attain better outcomes. Figure 2 highlights these important scheduling parameters. Time From the 
age of grid computing, time or makespan is the primary objective of most scheduling techniques. As 
far as the Cloud Computing environment is concerned, execution time plays a significant role since the 
cloud provider charges its customers based on execution time. In workflow applications, the execution 
time is defined as the time taken to complete all tasks in a workflow. Hence reducing the execution 
time of workflow applications become a crucial factor. Cost Cloud providers often charge clients 
for leasing infrastructure, which includes costs for resource consumption, data transport, and cloud 
storage, among other things. The computation cost plays a dominant role in workflow scheduling, it 
is necessary to minimize these costs for the effective usage of the cloud platform. Thus, an efficient 
scheduling algorithm that considers these costs during the resource provisioning is necessary for 
executing the workflow applications in the heterogeneous cloud environment.

Energy Due to the rising execution of workflows in various fields, the energy consumption of 
data centers has gradually increased. Hence, energy conservation in cloud data centers has become 
a matter of concern. High energy consumption incurs high operational and maintenance costs. Due 
to an inefficient scheduling approach, a data center with a low workload may become a high energy 
consumption center. In addition, if the resources on the servers are over-utilized, the cloud system is 
classified as inefficient in terms of energy usage. Thus an effective scheduling mechanism is required 
to address these issues that will help to attain a green-environment by reducing unnecessary power 
consumption (Sharma and Sajid, 2021; Gupta and Gupta et al., 2018; Bhushan and Gupta, 2017, 
Gaurav et al. 2022, Zhang et al. 2017, Shahzad et al. 2022).

Resource utilization Resource utilization determines the efficient usage of resources. Leased 
Resources should be utilized efficiently to avoid unnecessary money expenditure as providers also 
charge for the unutilized slots. Improving resource utilization has considerable benefits for its various 
users in the form of cost and also for its providers in terms of profit and energy consumption. Hence 
improving resource utilization becomes a significant factor in scheduling. This research work focuses 
on the significant scheduling criteria related to economic factors such as Time, Cost, and environmental 
factors, such as consumption of energy and Utilization of the resources for computing Workflow 
applications in the cloud environment. Security Data privacy and security need to be addressed while 
adopting cloud computing as the workflows may contain confidential information which scientists 

Figure 2. Scheduling parameters
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may not wish to reveal (Alkhanak et al., 2016, Gaurav et al. 2022, Mehla R & Psannis, 2022, Kumar 
et al., 2022, Gupta et al., 2009, Quamara et al., 2019).

Cloud Computing is a world where internet-based computing exists. So, all services, whether they 
are storage, apps, or servers, are delivered to users’ computers through the internet. For the success 
of the scientific world, the cloud has taken a well-built stride toward the facility of virtualization. 
There have been a lot of advancements made in this area. The primary objective of various workflow 
scheduling algorithms is to minimize the cost of execution. A majority of algorithms take other 
metrics, as outlined in Figure 3.

While Scheduling occurs, the important objectives are about what to minimize and what to 
maximize in the whole process (Vecchiola et al., 2009, Shaw and Singh, 2014, Singh, A., and Kumar, 
R 2021, Bhardwaj et al. 2022, Liang, Y., et al 2022). As depicted in Figure 3, make-span or total 
execution time (TET), total execution cost(TEC), total energy consumption, and response time should 
be minimized. On the other hand, the utilization of cloud resources should be maximized.

Major Contribution
The proposed method TBW contributes toward mapping and migration of tasks under deadline 
constraints. It also minimizes time and cost parameters. TBW method achieves better results than other 
optimization algorithms in the cloud VM scheduling. The objectives of this research are to optimize TEC, 
TET, and response time while migrating tasks from less utilized VMs to other VMs. Through simulation, 
it was observed that the proposed TBW algorithm outperforms the other optimization approaches.

Paper Organization
The rest of the article is structured as follows. Section 2 presents some of the important literature 
work related to task ranking and resource optimization. Then the architecture and framework of the 
proposed methodology are presented in section 3. Experimental simulation, results, and performance 
analysis are represented in section 4. Section 5 provides the comparative analysis of the outcome with 
other state of art literature. A few significant directions for future study are outlined in Section 6.

RELATED WORK

Scheduling based problems need some meta-heuristic algorithms (Rodriguez and Buyya, 2014, 
Arabnejad and Barbosa, 2014, Ghose et al., 2017, Jiang et al., 2017, Bisht et al. 2022, Onyebuchi, et 

Figure 3. Objectives behind scheduling a workflow
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al. 2022). Such algorithms work on parameters like time, cost, response time, memory consumption, 
energy consumption, etc. In Karaboga and Basturk (2007), a hybrid tabu and ABC scheduling 
approach for cloud systems have been defined. The target of the study is to balance the load on VMs 
in the cloud. Further, based on speedup, utilization, total time, efficiency, energy consumption, and 
makespan parameters a comparison with existing scheduling methods has been done in this paper. 
Byun et al. (2011) created an algorithm that calculates the ideal amount of resources that should be 
leased to keep the cost of a workflow’s execution to a minimum. The algorithm is made to run online 
and also creates a job for resource mapping. Every billing period (i.e., every hour), the schedule and 
resources are changed based on the state of the active VMs and tasks. In GA-PSO, optimal workflow 
scheduling results have been generated with load balancing; the authors used a hybrid approach for 
workflow tasks scheduling. Also, the researchers have done comparisons with existing methods like 
GA, PSO, WSGA, and HSGA (Al-Maamari and Omara, 2015).

In WOA Mirjalili and Lewis (2016), the work is on three operators. Searching for prey, trap the 
prey and then bubble-net foraging behavior of whales is the main dedication of the authors. Also, 
a comparison has been done in WOA on 26 mathematical benchmark functions. The optimization-
based results have been compared with existing optimization algorithms like HGA, PSO, PSOPC, 
SOS, HPSO, MBA for different design problems. WOA has provided better results.

Sossa (2016) suggested a PSO-based approach to reduce the execution cost of a single process 
while balancing task load on available resources. While cost reduction is a top priority in clouds, 
load balancing is a more sensible goal in a non-elastic setting like a cluster or a grid. The workflow 
execution time is not addressed in the scheduling objectives; hence this number might be quite high 
as a result of the cost-cutting philosophy. The authors assume a certain number of VMs are available 
and ignore the cloud’s flexibility. Because of this, the proposed solution is comparable to those used 
for grids, where the generated schedule is a mapping between tasks and resources rather than a more 
detailed schedule indicating the quantity and type of resources that need to be leased, when they 
should be acquired and released, and in what order the tasks should be carried out on them (Elrotub 
et al., 2021; Singh and Kumar, 2021; Xu et al.,2021).

In paper Liu et al. (2017), the authors have worked on a deadline constraint-based workflow 
scheduling process. They accepted four scientific workflows as Cybershake, Montage, Lego, and 
Inspiral. Within the user’s defined deadline constraints, Both TET and TEC were evaluated. Apart 
from this, focus on crossover and mutation probability was also a prior concern. Performance is 
evaluated by a task ranking system. DAG is used to represent workflows. A penalty function, as well 
as a penalty rule in CGA was proposed which is CGA2 and it works without any parameter. Also, it 
has worked to overcome prematurity.

Authors in paper Reddy and Kumar (2017) have discussed the whale optimization-based 
algorithm which mimics the humpback whales. The authors shared that these whales hunt their food 
which is many small fishes close to the surface. For this hunting, whales swim around them within 
a shrinking circle.

Dubey et al. (2018) have provided the proposal for task ranking. In this scheduling, the rank of 
tasks and the assignment of processors are two important factors. Firstly, it creates a DAG and then 
it works on tasks in order. The proposed algorithm uses a modified HEFT algorithm that has reduced 
makespan and provides better resource utilization.

Alkhanak and Lee (2018) proposed a cost optimization approach for scientific workflow scheduling 
in cloud computing. The proposed method employs the four meta-heuristic algorithms and, these 
algorithms work on the VMs population of a cloud system. It helps in reducing the cost and time of 
the service providers. The execution cost and time are reduced as compared to baseline approaches.

Choudhary et al. (2018) introduced a gravitational search algorithm for workflow scheduling 
in the cloud environment. The optimizations in workflow reduce the cost and makespan. In this 
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process, two algorithms are hybridized GSA and HEFT for workflow scheduling. The performance 
evaluation is done on the basis of two metrics that are monetary cost ratio and schedule length ratio.

PROPOSED METHODOLOGY

According to (Rodriguez and Buyya, 2014, Arabnejad and Barbosa, 2014, Vecchiola et al., 2009) in 
workflow scheduling, mapping of task on VMs should not be static. The proposed methodology is 
more effective in mapping the task dynamically. It works on two objectives. First, it targets effective 
task distribution on cloud resources, and second, it targets optimal scheduling for better performance. 
Figure 4 presents the architectural framework of proposed workflow scheduling and optimization 
technique. It consists of two phases. Workflow task ranking, using Distributed HEFT technique is 
performed in phase-1 and, resource optimization using proposed TBW method is performed in phase 

Figure 4. Scientific workflow scheduling framework
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2. Collection of the scientific workflow tasks are the input for phase-1. Ranked-tasks mapped on 
cloud VMs is the outcome of phase-1 which further optimized dynamically in phase-2 to improve 
TET and TEC for input workflow.

Methodology steps for complete framework are as follows:

1. 	 Input the workflows.
2. 	 Parse the tasks.
3. 	 Ranking of tasks.
4. 	 Provides the virtual machines according to ranking based paths.
5. 	 Initialize the optimization using tabu search and Bayesian optimization.
6. 	 Use whale optimization and update the status of the fitness function.
7. 	 Check the output is optimized or not. If yes then analyze otherwise again initialize.
8. 	 Analyze the total resource utilization.

Input Workflow
Total five workflows are accepted as input named:

1. 	 MONTAGE
2. 	 CYBERSHAKE
3. 	 SIPHT
4. 	 LIGO
5. 	 EPIGENOMICS

Graphical representation of these workflow is shown in Figure 5. These are important scientific 
applications and uses datasets at large scale.

Figure 5. Scientific workflows
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Parsing and Finding Critical Path
Parsing is the next step. It is a step of analyzing input. In the proposed cloud workflow framework, 
parsing occurs at the initial stage. It shows tasks with dependencies. Following the critical path, all 
tasks of the input workflow were collected and analyzed. After this, phase 1 of the system begins.

Phase 1: Task Ranking
This phase progresses to find out the effective rank value of each task of input workflow. Distributed 
HEFT task ranking algorithm is proposed in this phase and various steps of this technique are 
represented in Algorithm 1.

Algorithm 1: Distributed HEFT task ranking

1: Begin 
2: Select initialization heuristics: 
3: B as Budget, T as Time, D as Deadline 
4: Gather T, B, and D of each task F 5: Find Correlations as: 
6: CTB

 = correlation between T and B
7: C

TD
 = correlation between T and D 8: C

BD
 = correlation between B and D

9: For every task at each level compute: 
10: Distributed score = ∑ + +( )C C C

TB TD BD
  

11: Assign the highest rank to a task with a maximum correlation score 
12: Schedule the Ranked task to VMs

It works on three heuristic parameters budget, time, and deadline. The distributed HEFT ranking 
method finds out the correlation between these parameters and then assigns the top rank to the task 
having a highly distributed score among all tasks. A correlation’s value might fall between -1 and +1. 
It is a relationship between two parameters that conveys how closely related two parameters are to 
one another. The task with the highest correlation receives the highest rank, while the task with the 
lowest correlation receives the lowest rank. Now, utilising the distributed-HEFT Rank, these rated 
jobs are scheduled on cloud resources.

Phase 2: Cloud Optimization
This phase further uses three optimization approaches to make the system more efficient. In order to 
reduce energy usage, it first executes task migration on any underused machines that may be present in 
the system. An innovative optimization strategy based on Tabu search, Bayesian, and whale optimization 
methodologies has been applied throughout this procedure. Tabu optimization helps to find out 
underutilized resources. Afterward, Bayesian optimization approach helps to provide a combination of 
VMs which are best suitable for task migration. While minimising time, cost, and reaction time, Whale 
optimization facilitates in the transfer of jobs from underutilized machine to others host. The major 
goal of this study also includes analysis and assessment of performance. The Makespan, Cost, Energy 
Consumption, and Response-time of Workflow Execution are determined after conducting VM migration 
in an efficient way. Figure 6 represents complete process of proposed TBW optimization technique. 
Moreover, an explanation of the proposed work with the algorithm and a flow chart of the methodology 
in detail is explained in this section. The concept of scheduling for optimization is implemented on the 
cloud system. Cloud-based virtual machines (VMs) are the most advantageous elements of this phase 
(Nigam et al., 2022; Kumar et al., 2022; Hemrajani et al., 2022, Stergiou et al. 2021, Gupta et al. 2021).

The Cloud-based system can be optimized utilizing Tabu, Bayesian, and Whale optimization 
approaches, as depicted in figure 6. It takes input tasks that have been ranked and assigned to cloud 
VMs using the distributed HEFT ranking algorithm. TBW algorithm is denoted as an optimization 
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algorithm as it works step by step to find an optimum solution based on objective functions. All these 
steps are part of the schedule to ensure that neither any Virtual Machine is left idle for neither long 
periods of time nor any Virtual Machine is overloaded with work. A scheduler decides which task/
job should go to which machine. Looking for underused VMs and searching for over-utilized VMs 
are the two primary processes done throughout the setup. TBW algorithm is capable of avoiding local 
optima. So, it is suitable for most practical applications. Apart from this, to solve different constrained 
or unconstrained optimization problems, no alteration is required to perform in the algorithm. In 
the proposed ideology, three algorithms are used: -Tabu Search to find the underutilized resources, 
Bayesian Optimization to combine the best suitable VMs for task migration, and Whale Optimization 
to optimized the task migration.

•	 Tabu Search: Input to Tabu search method is the list of VMs on which ranked-tasks are mapped. 
Tabu search algorithm is applied to find neighbours of current VM. It works iteratively. If a 
neighbour-VM is less utilized than the current-VM, add such neighbour in the Tabu-list. The 
outcome of the Tabu search is a final list of VMs that aren’t being used effectively. Now, target 
the tasks of these VMs and migrate on other VMs (Efficiently utilized) but without making 
Queue. Algorithm 2 presents various steps incurred in determination of Tabu list for Tabu search 
in real time.

•	 Bayesian Optimization (BO): BO is a viable approach for determining which VM is most 
appropriate for a given workload. In this research work, it is used to choose the best combination 
of VMs for mapping tasks. It targets tasks of the VMs which are not efficiently utilized and 
those VMs which are in the underutilized category. BO provides all combinations of VMs where 

Figure 6. TBW optimization technique in cloud environment
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tasks can be shifted. Algorithm 3 presents various steps incurred in the determination of the best 
combinations of VMs for mapping the task in real time.

•	 Use of Whale Optimization (WO): Whales have the ability to locate their target before engulfing 
them. Whale optimization algorithm is inspired by humpback whales’ bubble-net feeding 
technique, in which they release a stream of bubbles in decreasing circle and spiral patterns 
around their pray. The whale positions are chosen at random and further analysed to see which 
the best is now. After then, the other whales also change their locations in accordance with the 
current optimal solution as described in Algorithm 4.

In Algorithm 4, p is a random number between 0 and 1. In step-6, X (t + 1) is the updated 
position, X¢(t) is the best solution and method A = (2∗α∗r) –α where αis linearly decreased from 2 
to 0 depends on max iteration number shrinking encircling and r is random vector between (0, 1) and 
D = | (2*r*X¢(t))-(X(t))|where X(t) is position vector. In step-7, D = |(2*r*Xrand(t)) −(X(t))|and Xrand(t) 
is position vector. In step-8, b defines the logarithmic spiral shape, L is random number between −1 
and 1 and D’= X¢(t) −X (t).

In this research work, optimization is used for the migration of tasks from underutilized machines 
to other ones but ones, without any increase in time, cost and response time. Whale Optimization takes 
input from Bayesian Optimization. Based on its objective functions, it chooses the best combination 
of VM and shifts tasks on VMs efficiently without increasing TEC and TET. Overall results are 
better than GA-PSO for scientific workflows. In the whole process, management of time and cost 
are the main factors.

Equations (1 to 5) expressed below are effectively elaborating TET and TEC used throughout 
the process:

Tt =åTR + åTP + åTW	 (1)

where:

Tt : Total Time
TR: Receiving or passing time of task
TP: Processing Time of task
TW: Waiting Time of task

Actual Cost = Under Deadline Total Cost + Deadline crossed Task Cost	 (2)

Total Cost = (MF + CF)/2	 (3)

where:

MF: Movement Factor
CF: Cost Factor

MF = Number of Migrations/used VMs	 (4)

CF = (Process Cost * task memory)/involved VMs	 (5)

Algorithm-5 named TBW optimization algorithm has used algorithm-2 Tabu search to begin the 
process. It uses a tabu list which stores list of those VMs which are not effectively utilized. Then on 
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the basis of tabu list, statement 6 in TBW algorithm is used to call Bayesian optimization algorithm 
which is algorithm 3. Bayesian optimization provides best combination of resources, as the target 
of this research is to migrate tasks from underutilized VMs to other VMs. Using it, algorithm 4 has 
started from statement 8 which is use of whale optimization for actual migrate of tasks of underutilized 
machines to other VMs. Also the complete process has analyzed the scheduling on the basis of time, 
cost, and response time and energy consumption parameters.

Algorithm 2: Tabu Search

1:  procedure TABUSEARCH (VMs)
2:  Begin: 
3:  Xbest := Xnow := randomly choose VM from VMs list
4:  for each VM do
5:     G1: ={x|neighbour of Xnow and x satisfies the rule}
6:     G2:={x|neighbour of Xnow and x does not satisfy the rule}
7:  for x in G1 do
8:     Xnow:= x that minimizes ƒ(x) → where f(x) utilization 
       function for VM x 
9:     if ƒ(x) < ƒXbest) and ƒx) < ƒXnw) for some x in G2 then Xnow :=x
10:    if ƒ(Xnow) < ƒ(Xbest) then Xbest:= Xnow

11:       Tabulist:=Xbest and f(Xbest)
12: Return Tabulist

Algorithm 3: Bayesian Optimization

1: Procedure BAYESOPT(VMs,Tc) Begin:
2: Initial combination XѲ¬ Tc 
3: Bound of length Ѳ ∈XL

,X
U

4: θ
P
∈{ X

L
, X

U,
 P}

5: Workflow size:K 
6: for t = 1 to task

i
 do

7: X
i
: n = argmax(αt(X|Pr(XL−i,θ : n))

8: X
final

= Evaluate(X
L
–I, X

i
: n)

Return X
final

Algorithm 4: Whale Optimization

1: Procedure WHALE(population)
2: Begin 
3: while t < tmax

 do
4: for each agent do
5: if p <0.5 where p is the random number between 0 and 1 then

6: if A
���
<1 then X t � �+( )1

� ��������
 = X t’( )

� �����
 - A Dn

�� � ��
⋅

7: else if A
���
 >= 1 then X t � �+( )1

� ��������
 = X t

rand ( )
� �������

  - A Dn
�� � ��
⋅

8: else if p >= 0.5 then X t � �+( )1
� ��������

  = D '
���
⋅ ebi
���
 cos 2πl( )+ X t‘( )

� ����

Evaluate the fitness of X(t + 1) and updates X’
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Algorithm 5: TBW Optimization Algorithm

1:  procedure TBW()
2:  Begin
3:  Take input as ranked scheduled Tasks on VMs 
4:  VMs = TABU (task, rank)           call algorithm 2
5:  Tc ← Task all combination
6:  Xfinal= Bayesopt(VMs, Tc)  call algorithm 3
7:  for each Xƒinal

(i) do
8:     Whale(i)← X

final
(i)  whale optimization used

9:  Update whale parameters a, A, C and L 
10:       Calculate distance Between each whale(i) 
11:       D= C. X

final
–X

rand

12:       if A < 1 then
13:       Update current whale position 
14: X(t+1)=1/data centre 1/VM (Memory cost + processor cost + time delay) 
15:       else
16:       X(t)← threshold
17:       Th← threshold
18:       According to Th migrate task to VM
19:       Analysis and Performance Evaluation 
20: Analyse the parameters total execution cost (TEC), total  
    execution time (TET), response time (RT) and energy consumption (EC).

SIMULATION TOOL AND EXPERIMENTAL SETUP

Implementation of this research work was carried out using CloudSim simulator. This section describes 
how the Simulation tool works, how it is setup, and what parameters it uses for execution.

About CloudSim
Calheiros et al. (2011) CloudSim is a platform for simulating the cloud computing environment. It 
is based on object-oriented Java programming language. It was developed by CLOUDS Laboratory 
at department of Computer Science and Engineering, University of Melbourne, Australia. Using 
CloudSim it is possible to simulate virtualization within data centers which allows for better 
experimentation and evaluation of cloud computing algorithms, meta heuristics, and protocols. 
Moreover, using CloudSim, users can simulate large-scale computing infrastructures and services, 
which include resource allocation, data centre, broker, allocation policies, scheduling etc.

Experimental Setup
The algorithms proposed in this research work are implemented in object-oriented Java Programming 
using Eclipse IDE and deployed to CloudSim toolkit version 4.0. The experiments were performed 
on a 64-bit operating system with a CPU (2.60GHz) and RAM (8 GB). A data centre with an x86 
architecture and Linux OS was created. The characteristics of the host machine are set to CPU Capacity 
1000 MIPS, RAM 4096 MB, and Disk space 2000000 MB. For each host, bandwidth is divided into 
two groups. Group-1 is a set of three host which takes values like {10,000, 15,000, and 20,000} and 
Group2 is a set of five host which takes values like {10000, 15000, 20000, 25000, 30000}. For VMs, 
number of CPU set to one and amount of bandwidth generated randomly between (5000, 10000), 
(5000, 15000) and (500, 20000).
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RESULTS AND DISCUSSION

The validation is performed via simulation-based experiments using cloudsim. The efficiency 
of TBW has been analysed by scheduling different workflow tasks on various VMs using TBW 
algorithm. The whole agenda of proposed study and its implementation is to reduce total cost 
and time consumed in whole process of mappings input tasks to VMs. Using cloud simulator, 
TBW (Tabu-Bayesian-Whale) scheduling algorithm has provided us better results as compared to 
existing scheduling and optimization algorithms. Table 1 shows the comparison of TET, TEC, RT, 
and EC of PSO, GA, PSO-GA, WHALE, and TBW which were implemented in various phases of 
this research. Here we have worked upon five different types of scientific workflows MONTAGE, 
CYBERSHAKE, LIGO, GENOME, and SIPHT. Figures 6 10 depicts the graphical comparison of 
TET, TEC, RT, and EC of the TBW algorithm with existing optimization algorithms using different 
number of active virtual machines.

As per the data in Table-1 we observe that TET, TEC, RT and EC are optimized in terms of 
TBW for LIGO, SIPHT, CYBERSHAKE, MONTAGE and GNOME scientific workflow. Figures 
7-11 depict the graphical comparison of TET, TEC, RT, and EC of the TBW algorithm with existing 
optimization algorithms using the different number of active virtual machines. Figure 7 depicts the 
simulation results scheduling LIGO workflow, Figure 8 for CYBERSHAKE, Figure 9 for GENOME, 
Figure 10 for SIPHT and Figure 11 for MONTAGE workflow. X-axis of all the graphs shown in 
Figures 7-11 represent the number of active VMs used. Y-axis of graphs represents the time (in ms) 

Figure 7. Simulation results of TET, TEC, RT, and EC parameters of scheduling LIGO workflow for different optimization algorithms



International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

15

Ta
bl

e 2
. C

om
pa

ris
on

 o
f T

ET
, T

EC
, R

T, 
an

d 
EC

 o
f T

ab
u 

Ba
ye

sia
n 

wh
ale

 (T
BW

) a
lg

or
ith

m
 w

ith
 ex

ist
in

g 
op

tim
iza

tio
n 

alg
or

ith
m

 
(P

SO
, G

A,
 P

SO
-G

A,
 w

ha
le)

 fo
r C

YB
ER

SH
AK

E 
wo

rk
flo

w

N
um

be
r 

of
 V

M
s

PS
O

G
A

PS
O

-G
A

W
H

A
LE

TB
W

TE
T

TE
C

R
T

EC
TE

T
TE

C
R

T
EC

TE
T

TE
C

R
T

EC
TE

T
TE

C
R

T
EC

TE
T

TE
C

R
T

EC

2
51

.7
35

.2
17

.5
21

.5
57

.1
58

.3
16

.0
23

.0
39

.8
15

.4
12

.9
13

.3
43

.3
57

.7
20

.0
13

.5
5.

8
11

.8
2.

4
1.

1

4
55

.6
54

.5
14

.3
21

.5
61

.4
81

.2
13

.9
22

.8
44

.0
21

.8
10

.1
13

.4
66

.1
62

.3
19

.9
11

.8
8.

1
12

.4
3.

3
1.

1

6
59

.5
80

.7
11

.9
21

.4
66

.2
10

3.
1

12
.7

22
.5

47
.3

44
.4

5.
3

13
.9

90
.8

67
.6

19
.6

11
.0

15
.9

13
.4

5.
9

1.
1

8
64

.5
10

3.
9

11
.0

20
.9

72
.0

11
9.

8
12

.4
22

.2
51

.5
73

.3
3.

5
13

.2
11

0.
6

73
.6

19
.3

10
.8

27
.7

14
.8

9.
3

1.
1

10
70

.0
12

0.
3

10
.8

20
.7

78
.2

13
1.

0
12

.3
22

.1
55

.9
10

0.
4

2.
8

12
.9

12
3.

9
79

.8
19

.1
10

.9
38

.8
16

.2
12

.0
1.

2

12
76

.9
13

0.
6

10
.8

20
.6

84
.4

13
8.

5
12

.4
22

.1
62

.0
11

4.
0

62
.0

11
4.

0
13

2.
6

85
.2

19
.1

10
.9

45
.4

17
.0

13
.4

1.
1

14
83

.0
13

7.
5

10
.9

20
.6

89
.0

14
3.

2
12

.5
22

.1
68

.2
12

2.
3

68
.2

12
2.

3
13

8.
8

89
.2

19
.1

11
.0

48
.8

18
.1

13
.5

1.
1

16
88

.7
14

3.
0

11
.0

20
.6

92
.4

14
6.

3
12

.5
22

.1
76

.6
13

1.
5

76
.6

13
1.

5
14

2.
3

91
.4

19
.1

11
.0

52
.3

20
.2

12
.9

1.
1

18
90

.7
14

4.
7

11
.0

20
.6

93
.5

14
7.

2
12

.5
22

.1
80

.3
13

4.
7

80
.3

13
4.

7
14

4.
2

92
.6

19
.1

11
.1

53
.6

21
.7

12
.4

1.
2

20
93

.2
14

6.
8

11
.1

20
.6

94
.7

14
8.

3
12

.6
22

.1
85

.2
13

8.
8

85
.2

13
8.

8
14

5.
3

93
.2

19
.1

11
.1

54
.9

23
.3

11
.8

1.
3



International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

16

Figure 8. Simulation results of TET, TEC, RT, and EC parameters of scheduling CYBERSHAKE workflow for different optimization 
algorithms

Table 3. Comparison of TET, TEC, RT, and EC of Tabu Bayesian whale (TBW) algorithm with existing optimization algorithm 
(PSO, GA, PSO-GA, whale) for GENOME workflow

Number 
of VMs

PSO GA PSO-GA WHALE TBW

TET TEC RT EC TET TEC RT EC TET TEC RT EC TET TEC RT EC TET TEC RT EC

2 50.6 32.2 18.0 16.5 56.0 44.7 17.0 20.9 39.1 13.6 14.4 5.3 36.3 56.7 16.6 14.7 12.8 10.2 2.5 0.4

4 54.3 43.4 15.0 19.6 60.4 54.8 15.4 23.3 42.6 23.0 9.2 8.4 47.3 61.4 19.4 13.6 13.8 17.5 1.6 0.6

6 58.6 54.1 13.6 22.2 65.3 62.9 14.8 24.7 46.1 35.9 6.4 11.9 56.7 66.5 21.4 13.2 15.0 27.7 1.1 0.9

8 63.7 62.3 13.1 23.6 70.7 68.7 14.7 25.2 50.4 47.3 5.3 14.6 63.5 71.7 22.3 13.2 16.2 37.5 0.9 1.2

10 69.2 67.8 13.1 23.9 75.7 72.5 14.7 25.1 55.3 55.3 5.0 16.0 68.1 76.3 22.3 13.3 17.3 44.6 0.8 1.3

12 74.7 71.5 13.2 23.7 79.9 75.0 14.9 24.7 61.4 60.4 5.1 16.2 71.1 79.7 21.9 13.4 18.7 49.1 0.8 1.3

14 78.7 73.8 13.4 23.2 82.5 76.4 15.0 24.4 66.8 63.7 5.2 15.7 73.0 81.9 21.5 13.5 20.2 51.8 0.8 1.3

16 81.7 75.3 13.5 22.8 84.2 77.3 15.0 24.1 71.8 66.4 5.4 15.1 74.0 83.0 21.2 13.5 22.0 53.8 0.8 1.3

18 82.7 75.7 13.5 22.6 84.7 77.5 15.0 24.1 73.6 67.2 5.5 14.8 74.5 83.5 21.1 13.5 22.7 54.5 0.8 1.3

20 83.8 76.2 13.6 22.5 85.3 77.7 15.1 24.0 75.8 68.2 5.6 14.5 74.7 83.8 21.0 13.6 23.6 55.1 0.9 1.3
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Figure 9. Simulation results of TET, TEC, RT, and EC parameters of scheduling GENOME workflow for different optimization algorithm

Table 4. Comparison of TET, TEC, RT, and EC of Tabu Bayesian whale (TBW) algorithm with existing optimization algorithm 
(PSO, GA, PSO-GA, whale) for SIPHT workflow

Number 
of VMs

PSO GA PSO-GA WHALE TBW

TET TEC RT EC TET TEC RT EC TET TEC RT EC TET TEC RT EC TET TEC RT EC

2 41.0 64.6 10.9 27.2 45.5 71.4 12.4 28.9 30.3 52.1 2.9 19.1 65.6 45.7 25.7 10.9 13.6 15.9 1.7 0.8

4 43.9 69.6 10.9 27.3 48.9 77.3 12.4 29.2 32.9 56.5 2.9 19.1 71.1 49.3 26.0 10.9 14.7 25.8 1.1 1.2

6 47.3 75.5 10.9 27.7 52.7 83.7 12.4 29.5 35.7 61.4 2.9 19.2 77.3 53.0 26.4 10.9 16.0 37.0 0.9 1.6

8 51.1 82.1 10.9 28.1 56.4 90.2 12.4 29.8 39.1 67.1 2.9 19.6 84.0 56.6 26.7 10.9 17.1 46.5 0.7 1.8

10 55.1 88.9 10.9 28.4 59.8 95.9 12.4 29.8 43.1 74.0 2.9 20.2 90.4 59.5 26.9 10.9 18.3 53.0 0.7 1.9

12 58.6 94.9 10.9 28.4 62.3 100.3 12.4 29.8 47.2 81.2 2.9 20.5 95.6 61.6 26.8 10.9 19.8 57.0 0.7 1.9

14 61.1 99.3 10.9 28.3 63.9 103.0 12.4 29.7 51.0 87.7 2.9 20.4 99.2 62.8 26.7 10.9 21.4 59.7 0.7 2.0

16 62.7 102.0 10.9 28.1 64.8 104.5 12.4 29.6 53.5 91.9 2.9 20.3 101.1 63.4 26.6 10.9 22.7 61.2 0.7 2.0

18 63.3 103.1 10.9 28.1 65.0 104.9 12.4 29.6 54.9 94.4 2.9 20.1 101.9 63.6 26.6 10.9 23.5 62.0 0.8 2.0

20 63.7 103.8 10.9 28.0 65.2 105.3 12.4 29.5 55.7 95.8 2.9 20.0 102.3 63.7 26.5 10.9 23.9 62.3 0.8 2.0
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Figure 10. Simulation results of TET, TEC, RT, and EC parameters of scheduling SIPHT workflow for different optimization algorithms

Table 5. Comparison of TET, TEC, RT, and EC of Tabu Bayesian whale (TBW) algorithm with existing optimization algorithm 
(PSO, GA, PSO-GA, whale) for MONTAGE workflow

Number 
of VMs

PSO GA PSO-GA WHALE TBW

TET TEC RT EC TET TEC RT EC TET TEC RT EC TET TEC RT EC TET TEC RT EC

2 38.4 63.1 10.8 32.3 43.2 70.3 12.3 33.7 27.6 50.3 2.7 24.7 64.4 43.5 30.7 10.8 10.2 16.8 1.8 1.3

4 41.6 68.6 10.8 32.2 46.8 76.5 12.3 33.7 30.3 54.9 2.8 24.2 70.2 47.2 30.7 10.8 11.4 27.4 1.2 2.0

6 45.2 74.8 10.8 32.2 50.5 82.9 12.3 33.7 33.4 60.2 2.8 24.0 76.7 50.8 30.8 10.8 12.5 37.8 1.0 2.5

8 49.1 81.5 10.8 32.3 54.1 89.0 12.3 33.6 37.1 66.6 2.8 24.3 83.2 54.1 30.7 10.8 13.7 45.7 0.9 2.8

10 52.8 87.9 10.8 32.1 57.0 94.1 12.3 33.3 41.1 73.6 2.8 24.4 89.0 56.6 30.4 10.8 15.1 51.0 0.9 2.9

12 55.9 93.1 10.8 31.8 59.1 97.7 12.3 33.0 45.1 80.4 2.8 24.2 93.4 58.2 30.1 10.8 16.6 54.4 0.9 2.9

14 57.9 96.7 10.8 31.4 60.3 99.8 12.3 32.7 48.2 85.8 2.8 23.7 96.2 59.1 29.8 10.8 18.1 56.5 1.0 2.9

16 59.1 98.7 10.8 31.2 60.9 100.8 12.3 32.6 50.2 89.2 2.8 23.4 97.6 59.5 29.6 10.8 19.1 57.6 1.0 2.9

18 59.5 99.4 10.8 31.1 61.1 101.1 12.3 32.6 51.3 91.1 2.8 23.1 98.1 59.7 29.6 10.8 19.7 58.1 1.0 2.9

20 59.7 99.8 10.8 31.1 61.2 101.3 12.3 32.6 51.7 91.8 2.8 23.1 98.3 59.7 29.6 10.8 19.9 58.3 1.0 2.9
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for TET and RT parameter, Cost (in rupees) for TEC parameter, and Energy Consumption (in KWh) 
for EC parameter.

CONCLUSION

Scheduling complex workflows is a challenge in the field of Cloud- Computing Environment. There 
is a need to optimize the Cloud-based resources while scheduling the workflow. The scheduling 
of scientific workflows needs to be managed carefully in the virtualized infrastructure to optimize 
execution time, cost, and energy consumption. In this paper, a comprehensive scientific workflow 
scheduling framework named TBW is designed and implemented in a simulated environment to 
optimize these parameters. The proposed framework indulges different time and cost-related attributes 
in order to optimize overall execution time and cost for scheduling scientific workflow. Moreover, the 

Figure 11. Simulation results of TET, TEC, RT, and EC parameters of scheduling MONTAGE workflow for different 
optimization algorithm
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phased architecture of the framework is designed to perform various predefined tasks in a sequential 
and synchronized manner. In order to achieve the overall effectiveness, the combination of three 
optimization approaches named Tabu Search, Bayesian Optimization, and Whale Optimization 
techniques is used.

In this research work, input workflow tasks are not randomly mapped to virtual machines but 
are first ranked using the distributed HEFT method and then scheduled on cloud-based machines. 
Afterwards, the optimization process starts which executes the TBW method to control time and cost 
parameters. We have incorporated a better optimization approach named TBW optimizer scheduler 
for optimizing the Total execution time, Total execution cost, Response time and Energy consumption 
parameters. The proposed approach has been implemented for MONTAGE, CYBERSHAKE, LIGO, 
GENOME, and SIPHT scientific workflows. The evaluated results have provided better results than 
the Whale optimization, GAPSO, GA and PSO approach for optimization. The proposed system is 
more effective as it has used effective optimization in a better way.
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