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ABSTRACT

This research mainly studies the construction and implementation of the content-based folk music 
retrieval model. Firstly, it studies the music automatic annotation method based on deep learning, and 
then proposes the tag conditional random field music automatic annotation method, and then constructs 
the music annotation depth neural network model combining a variety of music representation and 
attention mechanism. Finally, it analyzes the proposed folk music retrieval model the effectiveness of 
the cable model is verified and its performance is evaluated. The results show that in Glu module, Glu 
blocks had better performance in music annotation, and the music annotation results of each index in 
music hierarchical sequence modeling are better, which ensures the effectiveness of music annotation. 
Compared with other algorithms, the AUC tag score of the proposed method is the highest, which is 
0.913; it can better model the mapping relationship between the audio features of music input to the 
text tag and has higher scores on all evaluation indicators.
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In recent years, with the rapid development of internet technology and multimedia applications, many 
musical works are being uploaded to online digital music libraries (Müller et al., 2019). In the face of 
huge online music data, it seems like people could find any music suitable for them, but for ordinary 
users, it is becoming more and more difficult to conveniently find the music they want (Wang et 
al., 2020). Major digital music providers are now faced with the challenge of providing users with 
effective music recommendation and retrieval services.

The application of supervised machine-learning methods enables the automatic addition of 
descriptive labels to music. This technology can efficiently use large-scale music data to automatically 
add descriptive text labels to music based on the content of the music data, which improves the user’s 
experiences with services such as retrieval and recommendation (Shen et al., 2019). However, the labels 
generated by automatic music-annotation technology often provide high-level semantic descriptions, 
which creates a significant disparity with low-level audio representation and poses challenges in the 
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method’s design, including feature representation and label association. This study aims to investigate 
effective models and algorithms for automatic music annotation, proposing a music-annotation method 
based on conditional random fields of music fragments. It aims to aggregate labels from all music 
fragments to achieve comprehensive music annotation.

Some scholars have used the general summarization algorithm previously applied to text and 
voice to summarize the projects in the music dataset and evaluated the summarization process of 
category II and multi-category music-classification tasks by comparing the accuracy of the summary 
dataset with the complete songs using human-oriented summaries, continuous segments, and original 
datasets. The results show that compared with the selected baseline, Grasshopper, LexRank, latent 
semantic analysis (LSA), maximal marginal relevance (MMR), and a centrality model based on a 
support set all improve the classification performance (Raposo et al., 2016). A local merging method 
of song feature vectors based on a general background model was proposed, which includes two 
local activation modes of feature vectors: histogram representation and binary vector representation. 
Experiments on three open music datasets show that the proposed method is effective in music 
similarity computation (Seo, 2018).

Other scholars applied MusicMixer to propose a topic modeling method for retrieving similar 
music clips (Hirai et al., 2018). The MusicMixer method mixes songs according to the similarity 
of audio by beat-frequency analysis and potential theme analysis of chromatic signal in audio. 
Furthermore, a method to represent audio signal is proposed to construct a topic model to obtain 
audio latent semantics. Experimental results show the effectiveness of the proposed latent semantic 
analysis method. Users can select a song from the list of songs suggested by the system to perform 
DJ mixing. An expert team developed a two-level accurate and fast query-by-example–based music 
information retrieval system by using feature-fusion technology and decision-fusion technology. In 
the first stage, a variety of recognizer sets will automatically identify the type of query; in the second 
stage, the similarity between the query and other content of the same query-type dataset is measured 
to find the target song, a genre-adaptive feature-extraction method is proposed, and the feature-fusion 
technology is used to fuse the features. The results show that the accuracy and retrieval time have 
been significantly improved (Borjian et al., 2018). Based on the above research results, this research 
will focus on the optimization of automatic music annotation and build a content-based folk-music 
retrieval model. The steps are:

1.  Literature review: conduct a comprehensive review of existing research on content-based music 
retrieval and automatic music annotation using deep-learning techniques. Identify the strengths 
and limitations of current methods.

2.  Data collection and preprocessing: collect a suitable dataset of folk-music recordings with 
associated tags or annotations. Preprocess the dataset by removing noise, normalizing audio 
levels, and segmenting songs into individual units.

3.  Automatic music-annotation method: study and develop a deep learning–based automatic 
music-annotation method specifically tailored for folk music. Explore different techniques, such 
as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and attention 
mechanisms, to effectively annotate music based on its content.

4.  Tag conditional random field (CRF) method: propose and implement a tag conditional random 
field automatic music-annotation method. This method combines the power of CRF models with 
deep-learning techniques to improve the accuracy and reliability of music annotation.

5.  Music annotation deep neural network model: construct a music-annotation deep neural network 
model that incorporates various music representations and attention mechanisms. The model 
should be designed to capture complex features and relationships between music audio input 
and text tags.

6.  Experimental analysis: analyze and evaluate the effectiveness of the proposed folk-music retrieval 
model. Verify the performance of the gated linear unit (GLU) module and GLU blocks in music 
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annotation. Assess the quality of music-annotation results in terms of hierarchical sequence 
modeling. Compare the proposed method’s area under the curve (AUC) tag score with other 
algorithms and evaluate its performance using various evaluation indicators.

7.  Results analysis and discussion: interpret and analyze the results obtained from the experiments. 
Discuss the strengths and weaknesses of the proposed model compared to existing methods. 
Determine the effectiveness of the model in accurately annotating folk music and retrieving 
relevant content.

8.  Application and future work: demonstrate the practical application and potential applications of 
the developed content-based folk-music retrieval model. Discuss possible areas of improvement 
and future research directions to enhance the model’s performance and expand its capabilities.

This research aims to contribute to the field of content-based folk-music retrieval by developing 
an effective and accurate model for music annotation and retrieval. The proposed methods should 
provide valuable insights into the mapping relationship between audio features and text tags, facilitating 
the exploration and discovery of folk music from diverse traditions and regions.

ReLATeD woRK

Sotiropoulos et al. (2008) explore the use of objective audio-signal features to model the individualized 
(subjective) perception of similarity between music files. They present MUSIPER, a content-based 
music retrieval system that constructs music-similarity perception models of its users by associating 
different music similarity measures to different users. Feature learning and deep learning have drawn 
great attention in recent years as a way of transforming input data into more effective representations 
using learning algorithms. Nam et al. (2015) present a two-stage learning model to effectively predict 
multiple labels from music audio. Yu et al. (2019) propose a deep cross-modal correlation learning 
architecture involving two-branch deep neural networks for audio modality and text modality (lyrics). 
A pretrained Doc2Vec model followed by fully connected layers (fully connected deep neural network) 
is used to represent lyrics. Ghosal and Kolekar (2018) propose a novel approach for music-genre 
recognition using an ensemble of convolutional long short-term memory based neural networks 
(CNN LSTM) and a transfer-learning model. The neural network models are trained on a diverse set 
of spectral and rhythmic features, whereas the transfer-learning model was originally trained on the 
task of music tagging.

Xie et al. (2018) propose a CNN-based hard-hat detection algorithm. In this algorithm, the 
detection of construction workers and hard hats is assisted by a computer-vision technique where 
deep-learning models are trained to identify the proper wearing of hard hats. Based on characteristics 
of the knowledge expression of construction procedural constraints in Chinese regulations, Zhong 
et al. (2020) explore a hybrid deep neural network, combining bidirectional LSTM and CRF for the 
automatic extraction of the qualitative construction procedural constraints. The model-implementation 
results demonstrate the good performance of the end-to-end deep neural network in the extraction 
of construction procedural constraints. In this research work, a deep learning–based model has been 
discussed for content-based image retrieval (CBIR). Singh et al. (2020) study CBIR-CNN, content-
based image retrieval on celebrity data using deep convolution neural network. For classification 
purposes, a four convolution layer model has been proposed.

Content-based music information retrieval has seen rapid progress with the adoption of deep 
learning. Manco et al. (2021) propose to address music description via audio captioning, defined as 
the task of generating a natural language description of music audio content in a human-like manner. 
In order to study the application of the deep-learning method in music-genre recognition, Xu (2022) 
proposes the parameter-extraction feature and the recognition-classification method of an ethnic music 
genre based on the deep beliefs network (DBN) with five kinds of ethnic musical instruments as the 
experimental objects. The DBN is the best way for softmax to identify and classify national musical 
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instruments, and the accuracy rate is 99.2%. The deep CNN model in the field of deep learning has 
achieved good results in the fields of image and voice. Miao and Cheng (2023) study construction of a 
multimodal automatic music-annotation model based on a neural network algorithm. The construction 
of a multimodal automatic music-labeling model based on a neural network algorithm is launched.

CoNSTRUCTIoN of CoNTeNT-BASeD foLK-MUSIC ReTRIevAL MoDeL

Automatic Music Annotation Based on Deep Learning
In previous research, numerous algorithms have been proposed by researchers to address the issue of 
automatic music annotation. The overall framework is shown in Fig. 1. In the process of automatically 
labeling music, the music is typically categorized or associated with various types of labels. First, audio 
features are used to represent music samples, and then unsupervised feature learning or feature selection 
and combination are used to represent music features. For the existing audio-feature representation, 
the input of the algorithm generally combines the set of audio text tags and the training set of feature 
representation and outputs the trained automatic-annotation model. The model can be applied to each 
test set and predict the music samples and text tags. At the same time, the prediction results can be 
compared with the real annotation. After the relevant evaluation indexes are calculated, the calculation 
results are estimated to evaluate the annotation performance of the model.

In the above process, the audio-feature representation of feature learning and music-label 
prediction are the main tasks of automatic music annotation. For audio-feature representation, it is 
mainly divided into artificial design and feature learning. The artificial audio-feature representation 
is based mainly on the inherent sampling rate of the original audio waveform signal storage, such as 
WAV and MP3, and then by autoregressive modeling, Fourier transform signal-processing methods to 
obtain the audio-feature representation. However, the process of manual design is very time-consuming, 
and it is necessary to try a variety of schemes before choosing or combining a better scheme. 
Feature-learning audio-feature representation is to automatically find suitable feature representation 
for corresponding tasks through machine learning. According to adaptive feature learning, it is not 
necessary to have more prior knowledge of music signal when discussing music-related automatic-
annotation problems so as to better study the annotation model. Generally, feature-learning methods 
include sparse coding, K-means, and restricted Boltzmann machine. These methods are based on 
deep learning and integrate label prediction and feature learning in a deep neural network.

Deep neural network models are widely used in various fields. At the same time, some music-
annotation methods are also applied to neural network structure, such as multilayer perceptron, CNN, 

Figure 1. Schematic Diagram of Basic Method Framework of Automatic Music Annotation
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and RNN. Through data modeling and processing, these neural network structures can be divided 
into three kinds of music-annotation methods, which are multilayer perceptron, convolutional neural 
network, and a music-annotation method combined with sequence modeling. At present, the music-
annotation method based on deep learning is widely used and usually uses relatively primitive feature 
representation. This kind of network model can better intersect with the maximum pooling layer so 
that the high-level abstract-feature representation can also be learned and absorbed; then, according 
to the output prediction of the subsequent full connection layer, the confidence of the corresponding 
label can be obtained. In natural language processing and other sequence-modeling problems, a 
one-dimensional maximum pooling layer and convolution operation are often used to capture the 
characteristics of the audio signal. Generally, one-dimensional convolution is represented by a two-
dimensional time-frequency signal, and the convolution kernel slides on the time axis. At this time, 
the input feature and convolution kernel have the same frequency dimension, as shown in Fig. 2.

Label Conditional Random field Automatic Music Annotation
Most music-annotation methods divide a piece of music into a certain-length segment or directly regard 
it as a whole in order to model the internal relationship of music. In this study, a hierarchical adaptive 
music-representation method is applied. First, the audio signal sequence of music is determined and 
divided into multiple segments with the same audio characteristics, in which the length of the music 
segment is determined by its signal characteristics. Therefore, this study combines the previous research 
results, that is, using the decomposition algorithm based on self-similarity to segment music. In order 
to represent the characteristics of audio signals on music clips, a set of low-level audio features, such 
as energy, intensity and its ratio, spectrum attenuation and flux, spectrum contrast, pitch level profile, 
and MFCCs, is also applied in this study. In order to find the relationship between local music clips 

Figure 2. Architecture of Music-Annotation Methods Based on Deep Learning with Primitive Feature Representation
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and text tags more accurately, we need to infer the tags of each music clip. The semantic tags of 
clips in the same music are different, but the tags of adjacent clips are more similar. According to 
the understanding of the image semantic segmentation method, this paper proposes an automatic 
music-annotation method based on conditional random fields.

In general, music text tags do not exist independently, but have certain relevance. The correlation 
of music tags is calculated by the Jaccard similarity coefficient, as shown in equation (1) (Bag et 
al., 2019).
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In equation (4), x w
p
i , x w

q
i  means that x

p
, x
q

 of two adjacent music clips is obtained from the 
weighting of corresponding elements of regression parameter of tag i , s  is scale super parameter, 
and Dist()  is Euclidean distance. In order to increase the flexibility of labeling waveforms, local 
global consistency is labeled in the last item after equation (2), and inconsistency penalty terms of 
fragment-level labeling f i  and level labeling yi  are defined, as shown in equation (5).
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In equation (5), h()×  is the indicator function, which is 1 when the condition is satisfied, otherwise 
it is 0; c  is the consistency-strength super parameter that controls the level labeling of music clips.

With tag-specific feature learning, sparsity, sharing, and discrimination of music features should 
be fully considered. After these three characteristics are combined, the objective function of feature 
learning is shown in equation (6).
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1 2, ,...,  is the regression vector 
corresponding to the tags that need to be learned, R  is the distance matrix between tags, a , b  is the 
weight super parameter of each item in the control objective function, and the values are not less than 
0. In regards to the minimization problem, the optimization method selected in this study refers to the 
previous research results, namely, the accelerated proximal gradient method, to solve the non-smooth 
problem (Shimizu & Kanno, 2018). The general form of this method is shown in equation (7).
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Lipschitz constants. The update process of the proximal gradient is shown in equation (8).
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In equation (8), l  is the step parameter, and the value is 1/ L
f

; Wt is the value of the t iteration 
of W; and prox

hl  is the proximal operator of the function h()×  at l .

Music-Annotation Deep Neural Network Model Based on Combination 
of Multiple Music Representation and Attention Mechanism
In order to solve the problem of automatic music annotation, this study proposes an automatic music-
annotation model based on deep learning, as shown in Fig. 3. In this model, first, multiple GLUs are 
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combined, and then music-feature representation is learned from one-dimensional raw waveform and 
two-dimensional Mel spectrogram, so more-abundant music information can be obtained. Then, a two-
way long-term and short-term memory network is used to encode the hierarchical sequence structure 
of the two kinds of music, and double-memory LSTM is used to encode the temporal correlation 
between the two kinds of music. Finally, the music representation of each moment is aggregated into 
the overall feature representation through the self-attention weight mechanism, and finally the most 
suitable label for music prediction is achieved.

In order to make the music-tagging task better learn the music features related to text tags, this 
study introduces convolutional neural network layer in volume to process music data and introduces 
attention mechanism in the volume layer, that is, using gated linear unit to replace the ReLU function 
in convolution. Fig. 4 is a schematic diagram of the one-dimensional and two-dimensional GLU 
module structure.

The forward calculation method of the GLU module is shown in equation (9).

Y W X b V X d= +( ) +( )* * s  (9)

Figure 3. Structure Diagram of Hierarchical Attention Deep Neural Network for Automatic Music Annotation

Figure 4. Schematic Diagram of Module Structure of One-Dimensional GLU and Two-Dimensional GLU
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In equation (9), W , V  is the convolution kernel, b , d  is two cheap terms, *  is convolution 
operation,   is the product of corresponding elements of matrix, and s  is the activation function of 
sigmoid. From the perspective of learning, GLU calculates the importance of each element in the feature 
representation and then allocates the weight to achieve the purpose of attention mechanism on each 
time-frequency representation element. In order to learn and extract effective audio-feature representation 
in Mel spectrum, four cascaded 2D GLU modules are used to represent learning branches, and the 
convolution kernel size is 3 3´ , the corresponding convolution kernels of the four modules are 32, 48, 
64, and 64, and the maximum pooling operation step 2 4´  of the first three modules and 2 2´  of the 
last one are set. At the same time, six one-dimensional GLU modules are proposed to correspond to 
the amplitude signal of one-dimensional time series in the original waveform. The corresponding 
convolution cores are 16, 16, 24, 32, 48, and 64. The convolution core size is 5, and the pooling layer 
size is 4. The two-dimensional convolution feature-learning branch corresponding to Mel spectrum 
input and the one-dimensional convolution feature-learning branch corresponding to the original 
waveform signal input will finally output a feature sequence with the size of 56 64´  and input the 
feature sequence into RNN structure to achieve the long-term time-sequence structure of learning music.

LSTM is a variant function applied in RNN. It has three control gates, input, forgetting, and output, 
and a unit state variable. If t  exists at each time, the calculation method is shown in equation (10).
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By introducing an additional network branch, the standard LSTM model with a single memory state is 
extended to two-unit memory states and combined with the output of RNN, which represents the channel 
order modeling, to represent the potential temporal correlation, as shown in equation (11).
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of two groups of units representing branches can be obtained, as shown in equation (12).

c f c i W h W x

h o c

c f c

t
m

t t
m

t ch t
m

cx t
m

t
m

t t
m

t
w

t t

= + +( )
= ( )

=

− −

−

 





1 1

1

j

j
ww

t ch t
w

cx t
w

t
w

t t
w

i U h U x

h o c

+ +( )
= ( )











−



j

j
1

 (12)



International Journal of Information System Modeling and Design
Volume 15 • Issue 1

10

In equation (12), c
t
m , h

t
m  is the Mel spectrum, which represents the corresponding unit memory 

state and hidden state; c
t
w , h

t
w  is the original waveform signal, which represents the corresponding 

unit memory state and hidden state. The above-mentioned hierarchical sequence modeling is combined 
with a self-attention mechanism to realize the prediction of music tags.

Figure 5 shows a typical self-attention weight module. Given an input sequence X x x x
L

T

x
= 



1 2

. ,...,  

and L
x

 as the length of the feature vector, the attention weight represented by the feature at each 
moment is shown in equation (13).

a soft w W XT= ( )( )max
2 1
j  (13)

In equation (13), D
x

 represents the dimension of the vector x
i
 in the feature sequence; 

W RD Dx x

1
∈ ×  and w RDx

2
Î  are the weight matrices to be learned; softmax ⋅( )  ensures that the sum 

of attention weights is 1.The overall feature representation m  is obtained by computing the weighted 
sum of each representation in the feature sequence.

See equation (14).
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First, the matrix of single-attention weight is calculated by the feature sequence X x x x
L

T

x
= 



1 2

. ,...,  

output in the previous stage, w RDx
2
Î  is extended to W Rr Dx

2
∈ × , and r  is the super parameter indicating 

the number of attention weight vectors. Fig. 6 shows how to calculate the weight of multiple attention.
The calculation method of attention weight matrix A  is consistent with equation (13). Then calculate 

the feature sequence of two-dimensional embedding matrix M  aggregate music; see equation (15).

Figure 5. Schematic Diagram of Single-Attention Weight Mechanism
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M AX=  (15)

Among them, the i th row vector m
i
 in M  is the weighted sum m A x

i i j jj
=∑ ,

 of the feature 
vectors corresponding to each time in the feature sequence, and each individual vector actually pays 
attention to different parts of the whole feature sequence so as to retain the music features of different 
aspects of the sequence features.

The proposed annotation model has three full connection layers to predict music tags. The first 
two dimensions are 1,536, and the activation method is ReLU; the third dimension is 188, which 
ensures that the output value is within [ , ]0 1  through sigmoid and is used as the confidence value of 
the text tag.

expeRIMeNTAL ANALySIS of CoNTeNT-BASeD 
foLK-MUSIC ReTRIevAL MoDeL

validation of the Model
This experiment used the commonly used MTAT dataset to analyze and verify the performance of 
the music annotation method model (Bisharad & Laskar, 2019). MTAT stands for MagnaTagATune, 
which is a popular dataset used for music information retrieval tasks, specifically music auto-tagging. 
The MagnaTagATune dataset consists of audio excerpts from various genres and contains associated 
tags that describe the musical characteristics or content of the audio. It is widely used in research to 
develop machine-learning models for automatically assigning relevant tags to music based on its 
acoustic features. The music samples in the first 12 subdirectories of the MTAT dataset are used as 
the training set, the 13th as the verification set, and the 14th–16th as the test set. At the same time, 
128-dimensional logarithmic Mel spectrum features are extracted before the experiment, the sampling 
rate is 16 KHz, and the analysis window of 512 is applied. The samples of the original waveform 
signal are sampled at 8 KHz, and each dimension of all Mel spectrum features is normalized through 
the training data to obtain a single variance or zero mean; that is, the original waveform signal is 
shrunk to within [ , ]-1 1 . The retrieval model will be realized through TensorFlow, and the specific 
parameter setting of TensorFlow refers to the previous research results (Sanchez et al., 2020).

Figure 6. Schematic Diagram of Single-Attention Weight Mechanism
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In the compression excitation network (SENet) network structure, the labeling performance of 
the proposed model (GLU blocks) and GLU module replaced by other forms of convolution module 
is compared, and the comparison results are shown in Table 1. Among them, regular conv. refers to 
the maximum pool replacement of GLU module by the combination of ReLU activation function and 
conventional 1D/2D convolution; SE blocks refers to the replacement of a 1D/2D GLU module in the 
music representation learning part of the model with a 1D/2D SE module (Foote, 1997).

It can be seen from Table 1 that under SE module, GLU blocks music representation learning 
annotation performance is significantly better than that of SE blocks and regular conv., and conventional 
convolution operation annotation performance is lower than music representation learning annotation 
performance. It shows that the attention weight calculation method in GLU module is more fine-
grained and more suitable for the overall annotation model and the music annotation performance 
is better (Li & Ogihara, 2004).

The effectiveness of the proposed method is further verified by the results of several variations 
of the music sequence model (Ajoodha et al., 2015). Among them, WAV and MEL refer to the 
music annotation that uses a single music representation branch of Mel spectrum and original 
waveform signal; MEL + WAV refers to the realization of music annotation that uses only two music 
representation forms; and CORR refers to the annotation that uses only the feature sequence based 
on the correlation between two music representation branches that is calculated by the extended 
two-state LSTM (Aigrain et al., 1996).

It can be seen from Table 2 that the music-annotation results of each index of the model 
proposed in this study are good, which ensures the effectiveness of this music hierarchical sequence 
modeling. We need to verify the effectiveness of the model’s self-attention label prediction and 
compare it with the method proposed in this paper (multi-attention weighting) against conventional 
single-attention weight schemes and maximum pooling schemes. The results are presented in Table 
3.Among them, max-pooling refers to the maximum pooling of sequence features obtained from two 
music-representation branches along the time axis to obtain the overall music feature vector used 

Table 1. Performance Comparison of Music Representation Learning Annotation Based on Different Convolutional Structures

Performance Regular Conv. SE Blocks GLU Blocks

Top N tags 50 188 (All) 50 188 (All) 50 188 (All)

AUC-tag 0.902 0.889 0.902 0.890 0.913 0.900

AUC-clip 0.934 0.955 0.935 0.955 0.945 0.962

MAP-tag 0.427 0.194 0.428 0.196 0.458 0.212

MAP-clip 0.692 0.603 0.695 0.608 0.720 0.635

Table 2. Performance Comparison of Annotation Using Different Feature Combinations in Music Sequence Modeling

Performance MEL WAV MEL+WAV CORR Method of This Paper

Top N Tags 50 188 
(All) 50 188 

(All) 50 188 
(All) 50 188 

(All) 50 188 
(All)

AUC-tag 0.909 0.898 0.894 0.878 0.910 0.898 0.907 0.893 0.913 0.900

AUC-clip 0.942 0.960 0.929 0.951 0.943 0.961 0.939 0.957 0.945 0.962

MAP-tag 0.449 0.203 0.416 0.184 0.451 0.210 0.445 0.202 0.458 0.212

MAP-clip 0.710 0.624 0.684 0.597 0.715 0.631 0.708 0.622 0.720 0.635
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to predict text tags; single atten. weighting (Shen et al., 2006) refers to the calculation of only one 
attention weight vector.

It can be seen from Table 3 that the method proposed in this study applies the feature aggregation 
method of multigroup attention weight, which improves the music-annotation performance of 
all evaluation indexes, reflects that the multi-weight attention method can obtain more feature 
representation of music, and ensures the effectiveness of the research method in music annotation 
(Casey et al., 2008).

Comparing the performance of Related Research Methods
This study compares the proposed music-annotation method with some other methods on the MTAT 
dataset; the comparison results are shown in Table 4 and Fig. 7.

According to the results in Table 4 and Fig. 7, the AUC tag score of the method proposed in 
this study is the highest, which is 0.913. It reflects that the overall model architecture combining 
two kinds of music representation and music representation learning hierarchy sequence modeling 
is effective for the automatic music-annotation task.

Among the comparison methods, the event loc method is the closest to this study in research. 
Therefore, the method proposed in this study is more deeply compared with event LOC. In multi-
index, the results are shown in Table 5 and Fig. 8.

It can be seen from the results in Table 5 and Fig. 8 that the proposed automatic music-annotation 
method can better model the mapping relationship between the audio feature input of music and the 
text label, and the scores of all evaluation indexes are higher.

Table 3. Comparison of Annotation Performance Based on Different Sequential Feature Aggregation Mechanisms

Performance Max-Pooling Single Atten. Weighting Multi. Atten. Weighting

Top N tags 50 188 (All) 50 188 (All) 50 188 (All)

AUC-tag 0.876 0.848 0.910 0.895 0.913 0.900

AUC-clip 0.919 0.944 0.942 0.960 0.945 0.962

MAP-tag 0.370 0.151 0.449 0.206 0.458 0.212

MAP-clip 0.644 0.555 0.712 0.627 0.720 0.635

Table 4. Comparison of the Labeling Performance of the Proposed Method and Other Methods on the MTAT Dataset

Method AUC-tag

PSMC-MTSL (Hamel et al., 2011) 0.872

Transfer Learning (He et al., 2020) 0.879

FCN-4 (Ortego et al., 2020) 0.883

Event Loc. (Wang & Wang, 2014) 0.885

MSFL-MLP (Rathbun et al., 1997) 0.887

Time-Frequency CNN (Li et al., 2020) 0.897

SampleCNN (Steppa & Holch, 2019) 0.905

ReSE (Kim et al., 2018) 0.909

Method of this paper 0.913
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Figure 7. Labeling Performance Comparison of Proposed and Latest Methods on MTAT Dataset

Table 5. Performance of the Proposed Method Compared With That of Event Loc in MTAT Dataset

Performance Event Loc Method of This Paper

Top N tags 50 188(All) 50 188(All)

AUC-tag 0.896 0.880 0.913 0.900

AUC-clip 0.932 0.952 0.945 0.962

MAP-tag 0.406 0.183 0.458 0.212

MAP-clip 0.680 0.592 0.720 0.635

Figure 8. Comparative Analysis of Proposed Method and Event Loc Performance on MTAT Dataset
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CoNCLUSIoN

This study focuses primarily on addressing the retrieval challenges in folk music using an automatic-
annotation approach. It involves constructing a deep neural network model for music annotation that 
integrates various musical expressions and attention mechanisms, followed by model verification. 
The findings indicate that the proposed method in the GLU module offers finer granularity and is 
better suited to the overall annotation model, leading to improved music-annotation performance 
across all evaluation indices. This ensures the effectiveness of hierarchical sequence modeling in 
music annotation. In comparison to other algorithms, the proposed method achieves the highest AUC 
tag score at 0.913. It demonstrates superior capability in modeling the mapping relationship between 
audio features of music input and text tags, as evidenced by higher scores across all evaluation 
indicators. Due to time and resource constraints, only the output of the final GLU module is utilized 
as a feature sequence in the subsequent network level within the music-representation aspect of the 
model. Subsequent testing is anticipated to enhance the performance of this component.
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