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ABSTRACT

In recent years, with the widespread application of medical images, the rapid and accurate identification 
of these regions of interest in a large number of medical images has received widespread attention. This 
article provides a review of medical image segmentation methods based on deep learning. Firstly, an 
overview of medical image segmentation methods was provided in the relevant knowledge, segmentation 
types, segmentation processes, and image processing applications. Secondly, the applications of 
supervised, semi supervised, and unsupervised methods in medical image segmentation were discussed, 
and their advantages, disadvantages, and applicable scenarios were revealed through the application of 
a large number of specific segmentation examples in practical scenarios. Finally, the commonly used 
medical image segmentation datasets and evaluation indicators were introduced, and the current medical 
image segmentation methods were summarized and prospected. This review provides a comprehensive 
and in-depth understanding for researchers in the field of medical image segmentation, and provides 
valuable references for the design and implementation of future related work.
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Introduction

Medical images can intuitively reflect the anatomical structure and tissue function and extract 
large amounts of rich pathological information for medical image segmentation, classification, and 
disease detection (Johny et al., 2021). This assists doctors in treating diseases, surgery planning, and 
rehabilitation monitoring. Wang et al. (2018) proposed a cascaded U-Net network combined with a 
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graphical model to segment the aorta, pulmonary artery, myocardium, left and right ventricles, and 
left and right atria of the heart and then performed similarity shape analysis for image comparison. 
In recent years, researchers have successfully implemented deep learning (DL) for brain (Zhuang et 
al., 2022), ear (Xu et al., 2019), liver (Fogarollo et al., 2023), spleen (Sharbatdaran et al., 2022), lung 
(Johny et al., 2021), kidney (Song et al., 2022), and multi-organ (N. Shen, et al., 2023) segmentation. 
DL has since been widely used in clinical applications. Due to the ability to extract and analyze 
biomedical information and apply image segmentation techniques to help doctors and researchers 
better understand diseases and human physiological conditions, medical image segmentation with 
DL has become a hot research topic.

Representative literature in the field of medical image segmentation includes the work of Ramesh 
et al. (2021) and Liu et al. (2021), who focused on classification of the fully convolutional network 
(FCN), U-Net, and mask R-CNN, but they only touched on the use of DL. Fu et al. (2020) combined 
image alignment and DL but derived only a few relevant combination techniques. Asgari et al. (2021) 
introduced FCNs, U-Net, and guided convolutional neural networks (CNNs) and classified them 
purely from the perspective of DL methods, with little elaboration. With the goal of addressing the 
shortcomings of previous research, in this study, we sought to provide a systematic exposition of 
DL-based medical segmentation methods. The study described in this paper contributes to the current 
literature in the following ways:

1) 	 This study focused on DL-based medical segmentation methods. It systematically elaborates 
on basic concepts, basic methodological processes, and learning paradigms, with emphasis on 
relevant technologies used in medical segmentation and the latest technological improvements 
in the field.

2) 	 Systematically discussed are the basic ideas of DL segmentation methods in the literature, a 
summary of the basic methods and main technologies of DL segmentation, and an analysis of 
the advantages and disadvantages of these technologies.

3) 	 Common medical image segmentation datasets and evaluation metrics are comprehensively 
summarized. Then described are the data collection and annotation, model interpretability, 
multi-modal medical image segmentation, semi-supervised learning, unsupervised learning, 
and optimization of network structure.

Related Knowledge

Overview of Medical Image Segmentation
Medical image segmentation is a technique for separating regions of interest (ROI) in an image (e.g., 
tissues, organs, lesions) from the background. Segmentation is an important step in image processing 
and is widely used for medical diagnosis, treatment planning, and assisted surgery. DL methods can 
automatically learn features of medical images by training neural network models and applying them 
to segmentation tasks. The types of image segmentation are semantic, instance, and panoramic. Dental 
X-ray (Z. Shen, et al., 2023) images (Figure 1) are good examples for demonstrating the different 

Figure 1. Comparison of Application of Different Tooth Segmentation Types (Note: From left to right the figure shows semantic 
segmentation, instance segmentation, and panoramic segmentation)
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segmentation types. Semantic segmentation, also known as pixel-level segmentation, divides different 
classes of objects in an image. Instance segmentation implements pixel-level classification and 
distinguishes instances according to specific classes. Panoramic segmentation requires the assignment 
of two labels to each pixel of an image: semantic label and instance label. Panoramic segmentation 
combines semantic segmentation and instance segmentation.

Medical image segmentation requires several steps to distinguish the target area of interest from 
the background and usually involves image preprocessing, feature extraction, image segmentation, 
and post-processing. Image preprocessing may include cropping, enhancing contrast, denoising, 
resizing, cropping edges, rotation, etc. Traditional image segmentation methods often rely on pixel 
based techniques, region growth, or contour detection. The general segmentation process of deep 
learning based segmentation techniques is shown in Figure 2. Classifiers and algorithms are usually 
used to segment medical images, where convolutional layers and max pooling layers play a role in 
extracting representative feature vectors from preprocessed images.

In recent years, with the continuous development of information technology (IT), computing 
power has been continuously enhanced. In the face of the shortage of public health resources in 
recent years and the imbalance of resources caused by regional differences, it has become a trend 
for machines to replace manual labor for repetitive work. Digital images have become an important 
type of multimedia data, and it is widely used in modern life (Zheng et al., 2015). Patient electronic 
medical records on medical data clouds make periodic health examination (PHE) reports accessible 
to the general public. Onyebuchi et al. (2022) built data warehouses that acquire data from numerous 
heterogeneous sources and transform, clean, and process it into applicable data repositories for 
implementation across healthcare organizational settings. Mandle et al. (2022) proposed brain tumor 
classification based on VGG19 convolutional neural network (CNN), which solved the problem of 
automatic tumor identification.

In terms of digital image security, in order to solve the complexity of images, Wang et al. 
(2020) proposed a two-stage image multi-feature fusion paradigm for multimedia data processing. 
Digital image watermarking technology is used to identify suspicious watermark signals (Li et al., 
2019) and improve detection efficiency (Jelušić et al., 2022). Yu et al. (2018) proposed a four-image 
encryption scheme based on quaternion Fresnel transform (QFST), computer-generated holograms, 
and two-dimensional logically adjusted sine mapping (LASM). Xu et al. (2021) proposed a secure 
and efficient certificateless public audit scheme for cloud-assisted medical wireless sensor networks, 
which not only supports dynamic data sharing and privacy protection, but also achieves efficient group 
user revocation. Masud et al. (2020) proposed a lightweight physically secure mutual authentication 
and key establishment protocol that uses a physical unclonable function (PUF) to enable network 
devices to authenticate the doctor and the user before establishing session keys. Regarding sensor 

Figure 2. General Flow of Medical Segmentation Method
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node legitimacy, the Internet of medical things (IoMT) enables doctors to remotely diagnose patients, 
control medical equipment, and monitor quarantined patients through their own digital devices.

In terms of digital synthetic image processing, Qian et al. (2022) believed that the texture clarity 
of images obtained by most methods is low, resulting in insufficient details of IST. To this end, the 
authors proposed a new IST method based on an enhanced GAN with a priori recurrent local binary 
pattern (LBP). They utilized the circular LBP in the GAN generator as texture and then improved the 
detailed texture of the generated style image. Chopra et al. (2022) generated images through iterative 
refinement through a stack of two GANs, making the images more realistic after appropriate training.

Many scholars have further conducted semantic research. Chu et al. (2022) used the rich knowledge 
obtained from labeled 2D images to organize unlabeled 3D models and performed feature extraction 
on the images and models. Then, the semantic information of multiple clusters on the 3D features and 
3D model features were clustered to obtain a more reliable target pseudo label. Zheng et al. (2022) 
proposed a multi-scale, multi-level ViT model, which can effectively improve the accuracy of fine-
grained image classification through data augmentation technology. Nhi and Le (2022) identified 
the desired images from a large and diverse image dataset. The low-level semantic content of the 
image included color, shape, and texture. The basic idea of this method is to map low-level features 
to high-level semantic structures.

Overall, the widespread application of machine learning methods in medical image segmentation 
and related technologies provides powerful tools and methods for improving healthcare outcomes 
and addressing challenges in the field of medical imaging. Subsequently, we explored in this article 
the technical applications of machine learning in the field of medical image segmentation, providing 
theoretical guidance for specific practical technical applications.

DL-Based Medical Image Segmentation Methods
Image Segmentation Methods for Supervised Learning
Supervised machine learning (ML) is generally more accurate than other paradigms because it trains 
the model with existing data samples and the corresponding type labels to facilitate the mapping 
of each data sample to each type label. In recent years, CNNs have been widely used in the field of 
medical image segmentation. Convolutional computational neural networks acquire image features 
by learning specific convolutional kernels and subsequently obtain more accurate and efficient 
segmentation results. With the increasing influence of computational resources, CNNs usually use 
many smaller-scale convolutions to overlap computational layers. Down sampling is used to reduce 
the image spatial scale and further increase the CNN depth perception field, thus achieving multi-level 
feature extraction to improve the segmentation results. Although the supervised learning segmentation 
method has a high accuracy rate, it also requires a large number of labels for training, and the labeling 
of data increases the workload. In this subsection, we introduced representative methods applied to 
image segmentation and summarized the technical characteristics of each method.

U-Net. U-Net is a typical network framework in the field of medical image segmentation. It was 
proposed by Ronneberger et al. (2015), based on the fully convolutional network (FCN) 
technique for segmentation. The network can handle smaller training sets and produce more 
precise segmentation results by modifying and expanding upon the FCN. One main advantage 
of U-Net is that it preserves a large number of channels during the up sampling step, allowing 
the network to transmit contextual signals to higher resolutions. Additionally, its symmetrical 
contracting and expanding paths form a U-shaped architecture, with skip connections used to 
merge feature maps from different stages. In the 3D U-Net proposed by Setio et al. (2017), after 
all convolution layers, there are normalization layers and nonlinear activations. The decoder part 
of the network is almost symmetrical to the encoder. Spatial up sampling is performed using 
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trilinear interpolation between stages. The authors found that down sampling the feature maps 
using dilation techniques would result in irreversible loss of spatial information.

NnU-Net. Medical image segmentation is a rapidly developing field, with many new network 
architectures proposed every year. However, certain networks sometimes do not perform 
effectively in distinct organ or pathology segmentation. This is mainly because there are significant 
differences in medical datasets such as data size, pixel size, and grayscale values. To overcome this 
problem, Isensee et al. (2020) proposed NnU-Net, a computational architecture for medical image 
segmentation based on U-Net, also called 3D U-Net. NnU-Net follows the architectural design 
pattern of U-Net, but it further focuses on enhancing network training techniques by improving 
the network technology aspects of U-Net and 3D U-Net. NnU-Net uses processing techniques 
such as clipping, resampling, normalization, and information reinforcement in the preprocessing 
stage of simulated input information and sets its own hyper-parameters (e.g., batch size and patch 
size) according to the characteristics of the information system. It also introduces a fivefold 
cross-validation exercise in U-Net, 3D U-Net, and two other 3D U-Net cascade models. NnU-
Net has the advantage of being applicable to different medical image datasets and can effectively 
solve the problem of variability among datasets. Differences between datasets thus improve the 
generalization ability and performance of the model. This scheme has been used in a variety 
of medical image segmentation tasks such as brain, heart, liver, and other organ segmentation.

ResUNet. ResUNet is a type of residual network with a neural network structure as proposed by He 
et al. (2016). The increase in bandwidth and depth of progression in neural networks is prone 
to problems such as step decrement or step explosion, which leads to degradation of network 
performance. The basic design idea of a residual network system is to introduce a spanning 
connection in each network layer (i.e., a residual connection). This combination enables network 
layers to connect to one another and directly transfer the input information to the last level. The 
residual block (Figure 3) also attempts to understand and fit the residuals to ensure that the 
number of network layers increases without reducing the expressiveness of the network system. 
By introducing residual connections, residual network performs well on deep networks and is 
less prone to step disappearance or step explosion, thus improving the properties of the network 
system. This approach also enables the network to learn complex features, achieving good results 
in various computer vision tasks.

UCTransNet. Wang et al. (2021) first proposed the UCTransNet network architecture. It is a 
deep neural network model based on a U-shaped CNN and transformer structure. The design 
purpose is to bridge the semantic gap between the encoder and decoder. The literature proposes 
channel transformers (CTrans) to replace skip connections (Figure 4) in U-Net that consists 

Figure 3. 64-Channel 3x3 Convolution
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of two modules, namely, the channel-wise cross fusion transformer (CCT) for multi-scale 
encoder feature fusion and the channel-wise cross-attention (CCA) for decoder feature and 
enhanced CCT feature fusion. The proposed connection composed of CCT and CCA can 
replace the original skip connection and solve the semantic gap problem. The multi-head 
attention mechanism can also improve the model performance by introducing global context 
information in the transformer structure.

ScaleFormer. Huang et al. (2022) from Tsinghua University proposed the ScaleFormer network 
architecture. The overall structure is similar to that of the transformer but with modifications 
and optimizations for the image segmentation task. The model employs a global self-attentive 
mechanism to capture global contextual information. It also uses a depth separable convolution 
based on grouped convolution to reduce the number of parameters. The computational effort of 
the model can handle images of various resolutions, does not require down samplings to reduce 
the image resolution, simultaneously processes multiple scales of feature maps, and combines 
them by performing specific fusion methods to improve segmentation accuracy.

MISSFormer. MISSFormer was proposed by X. Huang et al. (2021) at Beijing University of Posts 
and Telecommunications in 2021. They used hierarchical encoder-decoder in the model. The 
feedforward network was redesigned using the proposed enhanced transformer block—which 
makes features adaptively aligned and enhances remote dependencies and local context— and 
the remote dependencies and local context of multi-scale features generated by the hierarchical 
transformer encoder were modeled. MISSFormer also introduces an attention mechanism for 
different scales, dividing the image into multiple scales, and feature vectors within each scale are 
only associated with feature vectors at other locations within that scale. This reduces computational 
effort and improves segmentation efficiency.

U-Net++ and U-Net3+. These models were proposed by Zhou et al. (2018). As shown in Figure 5, 
the main advantage is the addition of more skip connection paths and up sampling convolutional 
blocks, which establish a direct connection between the decoder and decoder, allowing the 
former to access more high-rise characteristic information. UNet++ also introduces deep 
training monitoring technology, adding a branch to the hidden layer in the network to monitor 

Figure 4. Schematic Diagram of UCTransNet (Note: The two components composed of CTrans, which replaced the original skip 
connections, are channel-wise cross-fusion transformer (CCT) and channel-wise cross-attention (CCA))
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the training of the entire network, and thus overcomes the problem of gradient disappearance. 
In addition, network-pruning techniques can reduce the number of model parameters, achieving 
higher operational efficiency of the model by reducing the inference time. Huang et al. (2020) 
proposed a new U-Net framework called U-Net3+. U-Net3+ can better address the aforementioned 
problem via full-size skip connection and deep monitoring compared with U-Net++ (Figure 
5), which was proposed in 2018 to overcome the inability to obtain full information at multiple 
sizes. Full-size skip connections originate from fusions of high-level and underlying semantics 
in feature graphs of different sizes, while deep monitoring shows feature graphs aggregated by 
different sizes and depths. In addition, U-Net3+ provides a hybrid loss function and a classification 
bootstrap to increase organ boundaries and reduce the over segmentation of non-organ regions, 
allowing the model to improve the accuracy of segmentation information. U-Net3+ has higher 
accuracy and a more flexible network structure than U-Net++ (Figure 5) and can significantly 
reduce the covariance within a tolerable accuracy range.

3D UX-Net. A large kernel volume convolutional neural network was proposed by Lee et al. (2022). 3D 
UX-Net (Figure 6), based on the 3D U-Net architecture, adapts the features of a layered transformer 
to a pure ConvNet module for medical image segmentation in a 3D network architecture. This 

Figure 5. Comparison of U-Net, U-Net++, and U-Net3+ Structural Diagrams

Figure 6. 3D UX-Net (Note: This article takes several points from (b) and (c) simultaneously, performs 7 * 7 * 7 convolution using 
DWC, and then performs depth-wise convolutional scaling (DCS))
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scheme has four encoder stages, which is similar to standard 16-fold down sampling. Each stage 
consists of several but varying 3D UX-Net blocks, and the multi-scale output of each stage 
connects to the ConvNet decoder through a long skip connection, forming a U-shaped network-
like structure for downstream segmentation. Three challenging common data sets of brain and 
abdomen volume imaging show the fastest rate of convergence in the limited sample training 
(FeTA2021) and transfer learning (AMOS2022) scenarios. The training with increasing sample 
size (FLARE2021) resulted in convergence speeds comparable to SwinUNETR, and both their 
accuracies were higher than the comparative algorithms. 3D UX-Net aims to reduce the number 
of parameters and computational workload, thereby improving the computational efficiency and 
inference speed of the model while improving segmentation accuracy. This model has broad 
application prospects.

Dilated-Unet. As an improved U-Net model, Dilated-Unet was proposed by Azad et al. (2022), 
introducing the idea of dilated convolution. The convolution operation of expanding the 
receptive field without increasing the number of parameters is achieved by introducing voids in 
the convolution kernel. This operation can help the network capture a larger range of contextual 
information, thereby improving segmentation performance. Both the encoding and decoding 
stages use dilation convolution. The encoder gradually reduces the size of the feature map and 
extracts high-level semantic features through multi-layer convolution and pooling operations. 
The decoder gradually restores the size of the feature map through up sampling and dilation 
convolution operations, and fuses detail information with contextual information. It performs 
well in image segmentation tasks in complex scenes.

CS-Unet. CS-Unet is a model based on ViT, which relies too heavily on pretrained data and has 
inductive bias, making it unable to effectively generalize small datasets. To address this issue, 
Liu et al (2022) designed CS-Unet, which combines convolutional blocks with multi-head self-
attention mechanisms and feedforward networks to provide the required local spatial context 
information, improve induction bias, introduce conditional parameters to enhance the flexibility 
and generalization ability of the model, and dynamically adjust the behavior of the input image 
features to improve the accuracy of segmentation results and detail expression ability. The encoder 
is responsible for extracting abstract features from the input image, while the decoder gradually 
restores the original image size and generates segmentation results. By using skip connections, 
CS-Unet can retain feature information at different levels, which helps to better capture details 
and contextual information in images. W. Zhang et al. (2023) achieved good results in heart 
segmentation on the ACDC dataset.

Table 1 shows the medical image segmentation methods based on supervised learning addressed 
in this section.

Image Segmentation Methods for Semi-Supervised Learning
The use of deep neural networks is an approach that has recently attained significant progress in 
the field of medical image analysis. Deep neural networks usually require a large amount of labeled 
data to provide for model learning, which is particularly difficult for tasks such as medical image 
segmentation. Medical images are semantically complex and often have 3D information, leading to 
expensive and time-consuming labeling of image datasets, severely limiting the further development 
of DL algorithms in this field. With the goal of overcoming these difficulties, researchers have given 
increased attention to semi-supervised learning methods. During model training, semi-supervised 
learning realizes the labeling of data by using a large number of pseudo labels. Compared with 
supervised learning methods, semi-supervised learning methods not only reduce the dependence of 
labels but also reduce the cost. These features explain why semi-supervised learning methods have 
wide application prospects in the field of medical image analysis. Large amounts of medical image 
data are much easier to obtain compared with annotation work, and it can provide more data support 
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Table 1. Medical Image Segmentation Methods Based on Supervised Learning

Method Main Technique Advantage Shortcoming Year

U-Net (Isensee 
et al., 2019)

Encoder and 
decoder architecture, 
deconvolution and skip 
connections

The traditional classification 
network is transformed into a 
segmentation network, and the 
network structure is relatively 
simple.

The up sampling result is 
coarse and insensitive to 
image details.

2015

NnU-Net (Yu et 
al., 2018)

Data set adaptation, multi-
branch networks and deep 
supervision

Dynamic adaptation to 
different data sets

Training time is too 
long, high computational 
complexity and demanding 
dataset

2018

ResUNet (Xu et 
al., 2021)

Residual connection, 
convolution and batch 
normalization

Alleviates the gradient 
disappearance problem in deep 
networks and accelerates the 
convergence of the network

The network structure is 
more complex and requires 
more training data and 
computational resources to 
train the network.

2018

UCTransNet 
(Masud et al., 
2020)

Atreus convolution and 
global average pooling

Improves the contextual 
information of the network, 
reduce the risk of overfitting, 
make the training and 
inference process simpler

There are some problems of 
spatial location information 
loss.

2022

ScaleFormer 
(Qian et al., 
2022)

Hierarchical encoder 
structure and multi-scale 
self-attentive mechanism

Capable of handling multi-
scale features effectively

High performance 
computing equipment 
required for large 
computational volumes

2022

MISSFormer 
(Chopra et al., 
2022)

Hierarchical encoder 
structure and multi-scale 
self attentive mechanism

Large and small scale features 
in medical images can be 
processed.

High performance 
computing equipment 
required

2021

U-Net++ (Chu 
et al., 2022)

Dense connection and 
deep supervision

Enhancing the gradient flow 
during training, the network 
converges, generalizes more 
easily

Longer training time, 
redundant training data 
and consumes more video 
memory

2018

U-Net3+ (Zheng 
et al., 2022)

Feature pyramid poo-ling, 
dense connection and 
residual connection

Use the underlying features 
and up sampling features 
to improve segmentation 
performance and make the 
network more robust and 
generalizable

Longer training time, high 
memory consumption 
and high computational 
complexity

2020

3D UX-Net (Nhi 
et al., 2022)

The large receptive field 
brought by nonlocal self 
attention

Spatial perception ability and 
richer feature representation

High calculation cost and 
overfitting risk 2023

Dilated-Unet 
(Azad 2021) Dilated convolution

Expanding convolutional 
operations can increase 
receptive fields and design 
Dilated blocks to achieve 
sparse global attention

Large number of parameters 
and high computational 
complexity

2021

CS-Unet (Liu 
2023)

Using compressed sensing 
theory to reconstruct high 
quality images from a 
small amount of sampled 
data

Deep convolutional neural 
networks and hyper pixel 
segmentation and multi-level 
feature extraction and up 
sampling methods

High computational 
resource requirements and 
complex model

2023
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for the semi-supervised learning methods. In this section we summarized a number of semi-supervised 
segmentation methods and discussed some variant models.

PS-MT. This model proposed by Liu et al. (2021), is a semi-supervised semantic segmentation 
model based on the teacher algorithm. It is composed of two mean teacher models (Figure 7), 
namely, the perturbed mean teacher (PMT) model and the strict mean teacher (SMT) model 
with label constraints. The PMT model introduces a noise perturbation mechanism to enhance 
the generalization ability by perturbing the input data, whereas the SMT model improves the 
robustness by imposing constraints on the prediction results. The teacher algorithm generates 
pseudo labels for training unlabeled data and replacing the MSE loss of MT with the confidence-
weighted CE loss (Conf-CE) function, resulting in stronger convergence and better overall 
training accuracy.

ST++. ST++ is an enhanced self-training model, introduced at Nanjing University, Tencent and 
Southeast University by Yang et al. (2022). This model retrains samples according to the reliable 
and unreliable sets. Because of the self-training label method and due to the alternating method 
between self-training labeled data and unlabeled data for training, errors generated by pseudo 
labeling are amplified during the training process, leading to the performance degradation of the 
self-training method. Therefore, two strategies are used to reduce pseudo-labeling errors: A noise 
suppression mechanism is used for unlabeled data and a new dual CNN design is implemented 
that further reduces pseudo-labeling errors by integrating deep and shallow features. The specific 
process of training the ST++ model entails three stages. The first is to train labeled images to 
obtain an initial teacher model. The second stage involves predicting one-hot pseudo labels for 
unlabeled images using teacher models. Finally, labeled images, unlabeled images, and pseudo 
labels, are mixed and a student model is retrained for final testing. The model uses easy-to-hard 
and reliable-to-unreliable approaches to select unlabeled images and their pseudo labels at the 
image level, utilizing unlabeled images incrementally. In contrast to the general practice of 
selecting pixels with high confidence, ST++ selects reliable images based on the stability of the 
pseudo labels in the first stage of training. Strong data augmentation of unlabeled images in the 
retraining phase can learn a richer representation based on the teacher model.

RCPS. In 2023, Zhao et al. (2023) proposed correction and contrast pseudo supervision, bidirectional 
voxel comparison loss, and a confidence negative sampling strategy, which combine 
correction pseudo-supervision technology and voxel level comparative learning to improve 

Figure 7. Dual-Teacher Architecture
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the performance of semi-supervised segmentation models. Correction pseudo-supervision 
technology improves the segmentation performance of semi-supervised models by learning the 
robust representations of different segmentation objects in the image space. Bidirectional voxel 
comparison loss and a confidence negative sampling strategy are used to improve semantic 
separability between different categories in the feature space. This is a new strategy based 
on uncertainty estimation and the consistency regularization pseudo-supervision method to 
reduce the noise impact in pseudo labels. By introducing bidirectional voxel comparison loss 
to ensure intra-class consistency and inter-class discrimination in the feature space, the class 
separability in image segmentation is increased.

SCP-Net. Consistency learning effectively utilizes limited labeled and unlabeled data in semi-
supervised medical image segmentation. However, its effectiveness and efficiency are challenged 
by predictive diversity and training stability, as the limited amount of labeled data used for training 
is often insufficient to form the internal compactness and inter-class differences of pseudo labels. 
To address these issues,Zhang et al. (2023) proposed a self-perception cross-sample prototype 
learning method (SCP-Net) to improve the diversity of predictions in consistency learning by 
utilizing broader semantic information obtained from multiple inputs. It is a self-perceived 
consistency learning method that utilizes unlabeled data to improve the compactness of pseudo 
labels in each class. The consistency learning method introduces the dual loss weight loss 
weighting method to improve the reliability and stability of the model and reduce the negative 
impact of noise on pseudo labels.

Uncertainty-Aware Mean Teacher (UAMT). UAMT is often used for semi-supervised learning. It 
uses standard data to improve a more robust model, usually to constrain statistical consistency 
before and after various data perturbations. Defining additional subtasks provides corresponding 
invariants to assist in optimizing the network. In contrast to the mean teacher approach, UAMT 
(Figure 8) uses the dropout technique to generate the uncertainty estimates of the model, using 
entropy as a metric for screening reliable pseudo labels. Yu et al. (2019) applied the UAMT to 
a semi-supervised 3D left atrial segmentation task and achieved good results.

FixMatch. Sohn et al. (2020) developed FixMatch in 2020. It combines two common semi-supervised 
learning methods: the consistency regularization technique and the pseudo-labeling technique. 
FixMatch generates virtual labeled data, mixes them with other labeled data, and then regularizes 

Figure 8. Pipeline of Our Uncertainty-Aware Framework for Semi-Supervised Segmentation (Note: D
U

 is unlabeled data, D
L

 

is labeled data, and 
C

 is consistency loss)
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the model via consistency regularization to generate two versions of the input data for model 
prediction. If the predictions of these two versions are the same, then the sample is consistent 
and regarded as virtual labeled data with high confidence. This confidence estimation method 
helps to reduce the effect of mislabeling and improve the generalization ability of the model 
while simplifying the process of semi-supervised learning. As demonstrated by Luo et al. 
(2021), FixMatch successfully segmented a prostate gland from MRI images. Unlabeled MRI 
images were used for virtual label generation and data expansion, extending the labeled dataset 
and providing new ideas and methods for research and practice in medical image segmentation.

ReMixMatch. This method was developed by Berthelot et al. (2020), whose core idea was to 
implement distribution alignment and data augmentation anchoring. First, they established the 
model to align data distribution between training data and unlabeled data. Then, they combined 
training data with unlabeled data by forcing the enhanced versions of both to use the same labels 
for learning. Z. Huang et al. (2021) used the adaptive cross-entropy loss based on ReMixMatch, 
a loss function that can adjust different weighting coefficients according to the perplexity of 
the samples. This scheme enables hard-to-classify samples to receive more attention during 
training, thereby improving the performance of the model. In addition, a new data augmentation 
strategy called sharpness-aware augmentation (SAA) was proposed. This method can improve 
the robustness of the model by minimizing the entropy of its prediction distribution to select the 
optimal data augmentation method. Compared with the original MixMatch method, the improved 
method is more robust and scalable and achieves better results in semi-supervised learning tasks.

Uncertainty-Guided Cooperative Mean Teacher (UCMT). The UCMT-based algorithm, 
advocated by Tohoku University, Fujian Normal University, and the University of Alberta 
through the work of Z. Shen et al. (2023), involves semi-supervised semantic segmentation with 
high confidence pseudo labeling. UCMT consists of two main components: collaborative mean 
teacher (CMT) and uncertainty-guided region mixing (UMIX). UMIX operates on the input 
image according to the uncertainty mapping of CMT, whereas CMT is trained collaboratively 
under the supervision of pseudo labeling of UMIX images. UCMT combines the advantages 
of UMIX and CMT, preserving model consistency in co-training segmentation and improving 
the quality of pseudo labeling.

Table 2 outlines the medical image segmentation methods for semi-supervised learning described 
in this section.

Image Segmentation Methods for Unsupervised Learning
Medical image segmentation based on unsupervised learning refers to a machine learning method 
that does not rely on manual labeling. It solves the problems of expensive medical image datasets and 
time-consuming labeling work. The learning process of unsupervised learning involves evaluating and 
selecting the optimal prediction model from the hypothesis space (model set), and then predicting the 
results through computational methods such as clustering, dimensionality reduction, and probability 
estimation. Due to the complex knowledge involved in medical images, the generalization of the 
model determines the segmentation results. At present, the segmentation effect of many organs is 
not ideal. The main reason is that the relatively uniform tissue far away from the ROI has serious 
noise interference, so it is very challenging to segment insensitive structures. Following are several 
models for unsupervised learning.

TricycleGAN. The TricycleGAN model is a generative adversarial network (GAN)-based image 
generation model proposed by Baruhov and Gilboa (2020) of the University of Waterloo, Canada. 
The TricycleGAN model uses a tricycle structure of three generators and three discriminators. 
It uses multiple loss functions (i.e., generator loss, discriminator loss, and reconstruction loss) 
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to improve the stability of the model and image quality. In addition, TricycleGAN uses a batch 
normalization method, thus avoiding pattern collapse.

SDC-UDA. Most medical image segmentation UDA methods use 2D UDA (Figure 9), which can 
cause inconsistent predictions in the slice direction when stacked together. Shin et al. (2023) 
led Yonsei University, Naver AI Laboratory, Naver Cloud, Probe Medical Inc., and other units 
in a collaboration to launch the effective SDC-UDA framework for cross modal medical image 
segmentation. The joint venture focused the model in the direction of continuous slices, which 
combines self-attention image conversion within and between slices, pseudo-label optimization 
with uncertainty constraints, and volume-based self-training. Volume information is considered 
in the translation and segmentation process, thereby improving the continuity of segmentation 
results in the slice direction. The difference from previous medical image segmentation UDA 
methods is that it can achieve continuous segmentation in the slice direction, ensuring higher 
accuracy and potential in clinical practice.

SSL-ALPNet. Ouyang et al. (2020) proposed a network architecture based on self-supervised 
learning. The network consists of three main components: a self-encoder network, an auxiliary 
task network, and a semantic segmentation network. The self-encoder network learns the low 
dimensional representation of images, the auxiliary task network learns the rotation angle of 
images, and the semantic segmentation network segments images to complete the process of 
learning medical images. The introduction of auxiliary tasks and training with label-free data 

Table 2. Medical Image Segmentation Methods Based on Semi-Supervised Learning

Method Main Technique Advantage Shortcoming Year

PS-MT (Liu et 
al., 2021)

Average teacher model and 
confidence weighting

Ability to learn features 
automatically

Cannot handle 
nonparallel voice and 
text data

2021

ST++ (Yang et 
al., 2022)

Two-stream convolutional 
neural network

Improved speech recognition 
accuracy

Need more computing 
resources 2022

RCPS (Zhao et 
al., 2023)

Correction strategy 
for pseudo-supervised 
methods of uncertainty 
estimation and consistency 
regularization

Higher data utilization and 
reduced error propagation

Increased complexity 
and difficulty in 
parameter tuning

2023

SCP-Net (Z. 
Zhang et al., 
2023)

Self perception and cross 
sample

Reduce noise in low contrast 
areas

Dependent on data 
quality 2023

UAMT (Yu et al., 
2019)

Adversarial training, multi-
task learning

Multi-task learning scenarios 
allow for efficient use of 
unlabeled data, improved 
generalization of models, and 
application to different domains 
and tasks.

Need more computing 
resources 2021

FixMatch (Sohn 
et al., 2020) Confidence estimation Easy to use, good results Manual setting of 

hyperparameters 2020

ReMixMatch 
(Berthelot et al., 
2020)

Multiple data enhancements Good robustness and scalability Costly to calculate 2019

UCMT (Z. Shen 
et al., 2023)

Uncertainty oriented 
collaborative mean tester 
with high confidence 
pseudo labels

Reduce annotation costs Algorithm complexity 2023
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can improve the generalization ability and robustness of the model. SSL-ALPNet also adopts 
a learning strategy of gradually introducing auxiliary tasks, which enables the model to better 
learn semantic information and improve segmentation accuracy and stability.

BT-Unet. The BT-Unet method was developed by Sugimoto and Agarwal (2021). Its framework 
has two phases: pretraining and fine-tuning. BT-Unet is a semantic segmentation model based 
on U-Net and the bi-tempered logistic loss function, which is an improved cross-entropy loss 
function that can handle category imbalance and noisy data. The BT-Unet framework applies 
various advanced U-Net models, such as attention U-Net. Punn and Agarwal (2022) proposed 
the use of the Barlow Twins method in conjunction with BT-Unet. The Barlow Twins method 
trains the model by minimizing the difference between two different representations to generate 
a model with a high-quality representation.

PLN. The PLN method was proposed by Li et al. (2022) and uses a parasitic-like network (or parasitic 
network) to extract features from raw medical images (Figure 10). These features are then fed 
into specific model training. In this model, a parasitic-like network with an alignment module 

Figure 9. UDA Framework

Figure 10. Overview of Our Proposed PLN Framework
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(as a host) and a semi-supervised segmentation module (as a parasite) address inter-slice label 
propagation and inter-volume segmentation prediction, respectively. This method utilizes a small 
amount of annotated data for training. Furthermore, it generates high-quality features through 
auxiliary tasks of self-supervised learning. The generalization ability and performance of the 
model in this manner are improved.

UniMiSS. This model, called the medical self-supervised learning model, breaks down dimensional 
barriers. University of Adelaide and Northwestern Polytechnical University jointly developed 
UniMiss with Xie et al. (2022) at the helm. The multi-dimensional medical image data is 
converted into one-dimensional data and then input into the masked auto-encoder for training. 
As the masked self-encoder is an unsupervised learning method, the feature representation of 
the data trains the model by masking some random regions in the data. A pyramidal U-shaped 
medical switchable patch-embedding module and a transformer composition provide pretrained 
models and custom training options for fast medical image segmentation. UniMISS supports a 
wide range of medical image formats and datasets. Visualization tools view the segmentation 
results and allow for necessary adjustments and editing.

Segmentation methods based on unsupervised learning described in this section are detailed in 
Table 3.

Medical Image Datasets and Evaluation Criteria

Medical Image Datasets
In medical image segmentation, training during network modeling often requires large amounts of 
labeled information, but the collection process entails many problems. First, considerable time and 

Table 3. Medical Image Segmentation Methods Based on Unsupervised Learning

Method Main Technique Advantage Shortcoming Year

TricycleGAN 
(Baruhov & 
Gilboa, 2020)

Tricycle structure with 
three generators and three 
discriminators

High quality and efficiency 
in image conversion tasks 
between multiple domains

Sensitive to hyperparameters, 
high computational cost and 
unstable training

2021

SDC-UDA (Shin 
et al., 2023)

Intra-slice and inter-slice 
self-attentive image 
translation, uncertainty 
constrained and volumetric 
self-training

Capture 3D feature 
information

The difference between the 
source and target domains is 
significant, and performance 
may still be affected.

2023

SSL-ALPNet 
(Ouyang et al., 
2020)

Atreus convolution, 
self-attention mechanism, 
residual network, and 
multi-scale pyramid 
pooling

A small amount of 
labeled data can be 
used for medical image 
segmentation with strong 
generalization ability.

Larger computational 
resources required and longer 
training time

2021

BT-Unet 
(Sugimoto & 
Agarwal, 2021)

Dual logistic loss function, 
residual connection and 
self-attention mechanism

Can handle complex 
medical images

Experiments were conducted 
on specific data sets only. 2021

PLN (Li et al., 
2022)

Sequence-to- sequence 
models, self-attention and 
transfer learning

Generate high-quality 
features with a small 
amount of labeled data

Requires longer training 
time and larger computing 
resources

2022

UniMiSS (Xie et 
al., 2022)

U-shaped structure of 
pyramid-shaped

Easy-to-use framework 
and support for multiple 
segmentation algorithms

The splitting algorithm is not 
very accurate. 2022
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expertise are required for annotation work when correctly labeling each pixel. The annotation process 
of the dataset also usually requires large investments in terms of time and human resources. Second, 
medical image data acquisition requires the use of professional medical imaging equipment; however, 
the cost of acquisition equipment, such as CT and MRI, is high. Medical institutions must invest huge 
human and material resources in acquiring, preserving, and managing the relevant data. Furthermore, 
without patient approval, medical institutions would not disclose relevant medical image data due to 
privacy requirements and other reasons. Therefore, the datasets currently available to research and 
development personnel are mainly open source datasets launched by well-known research teams 
in conjunction with major medical institutions. These include catalogues of categories for medical 
image data collection (e.g., relevant parts, dataset, pathological mode, image mode, opening year, 
data format, data content). Also, depending on the imaging mode, the camera forms an intuitive 
reflection of the organ area in the image, while CT imaging technology scans the human body 360 
degrees to calculate the degree of X-ray absorption in the body. It usually provides much higher image 
quality (bones, lungs, and other areas), faster rates, and higher-dose displays, which are suitable for 
patients requiring rapid treatment. Meanwhile, MRI uses strong magnetic fields and radio waves to 
generate pixels with different signal intensities to form images, but it has a relatively slow imaging 
rate and a lower exposure dose. MRI is mainly suitable for imaging soft tissues such as the brain, 
liver, kidney, muscle, tumors, and brain tissue and the nervous system. Common image datasets are 
outlined in Table 4.

Evaluation Criteria
The complexity of the actual evaluation divides the ordinary loss function and the hybrid loss function. 
In the field of medical image segmentation, the commonly used evaluation metrics are accuracy (AC), 
recall (SE), specificity (SP), Dice similarity coefficient (DSC), and Jaccard index (JAC). TP is the 
number of positive samples correctly classified; TN is the number of negative samples incorrectly 
labeled as positive samples; TP is the number of negative samples correctly classified; and FN is 
wrong identification as negative samples. In medical image segmentation, A is the predicted data 
information, while B is the real data information. The expression of the formulae is as follows:

Table 4. Commonly Used Medical Image Datasets

Position Dataset Pathological Type Imaging Modality Data Format Year(s)

Heart

ImageCHD (Xu et al., 2019) 
ACDC (Peng et al., 2021) 
MMWHS (Peng et al., 2021) 
HVSMR (Peng et al., 2021)

Coronary heart disease, 
Congenital heart disease, etc. 
Heart disease 
-

CT 
MRI 
MRI 
MRI

NIFTI 
DICOM 
NIFTI 

DICOM

2017-2020 
2017 
2017 
2016

Liver

SLIVER07 (Peng et al., 2021) 
MICCAI Liver (Di et al., 2022) 
LiTS Liver (Peng et al., 2021) 
LiTS2017 (Peng et al., 2021)

Liver disease, liver cancer 
Liver disease, liver cancer 
Liver disease, liver cancer 
Liver disease, liver cancer

CT 
MRI, CT 

CT 
CT

DICOM 
DICOM, NIFTI 

NIFTI 
NIFTI

2007 
2007 to present 

2017 
2017

Lungs

CT Chest (Gozes et al., 2020) 
LUNA16 (Peng et al., 2021) 
CTVIE19 (Peng et al., 2021) 
COVID-19-20 (Peng et al., 2021)

Lung disease, lung cancer 
Lung disease, lung cancer 
New crown 
New crown

CT 
CT 
CT 

CT, X-ray

DICOM 
DICOM 
DICOM 

DICOM, PNG

2020 
2016 
2020 
2020

Spleen CHAOS (Peng et al., 2021) - MRI, 
CT

DICOM, 
NIFTI 2019

Kidney KiTS19 (Peng et al., 2021) Kidney 
disease, kidney cancer CT DICOM, 

NIFTI 2019

Multiple 
organs

TCIA (Huang et al., 2018) 
MSD((Peng et al., 2021))

Various cancers 
Various diseases

CT, MRI, PET 
MRI, CT

DICOM, NIFTI 
NIFTI

2012 to present 
2019

Brain
BraTS (Peng et al., 2021) 
ISLES (Wang et al., 2019) 
ADNI (Chen et al., 2019)

Brain disease, brain tumor 
stroke, Ischemic stroke 
Alzheimer’s disease

MRI 
MRI 

MRI, PET

NIFTI 
NIFTI 

DICOM, NIFTI

2012 to present 
2015 to present 
2004 to present
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AC
TP TN

TP TN FP FN
=

+
+ + +

 	 (1)

SE
TP

TP FN
=

+
	 (2)

SP
TN

TN FP
=

+
	 (3)

DSC
A B

A B
=

∩( )
+

2
	 (4)

JAC
A B

A B
=

∩
∪

	 (5)

The problem of category imbalance is common in medical image segmentation. Dice calculates 
the similarity of two collections, allowing the problem of category imbalance to be effectively 
circumvented (i.e., the weights of true examples better measure the accuracy and reliability of 
segmentation results). Jaccard loss, known as the intersection over union (IoU), focuses more on the 
segmentation details of the results. The values of the two coefficients are in the range of [0, 1]. The 
higher the Dice coefficient and Jaccard coefficient are, the better the segmentation effect is. The 
relationship between the two coefficients is as follows:

SP
JAC

JAC
=
+
2

1
	 (6)

In practice, individual evaluation metrics have difficulty achieving results in complex segmentation 
tasks; hence, the specific loss function uses specific tasks to improve segmentation accuracy. For 
example, people with congenital heart disease distribute in different age groups, and this disease 
has a special complexity. Whole heart segmentation involves many complex segmentation parts, 
and with the common loss function it is difficult to achieve ideal results. The hybrid loss function 
proposed by Yang et al. (2018) performed better in whole heart segmentation. It consisted of two 
parts: voxel size-weighted cross-entropy and multi-class Dice similarity coefficient. In this scheme, 
the error between the target output and the actual output of the neural network can be determined. 
Then, the weight of the two loss functions control the proportion of the functions in the total loss 
function. The commonly used loss function is the cross-entropy-based loss function, but it can hardly 
achieve the desired effect in cardiac segmentation because the volume of the left ventricular blood 
chamber, myocardium, and other substructures is often smaller than that of other substructures. The 
imbalance of simple loss function is more obvious during whole heart segmentation. Furthermore, the 
loss function based on cross-entropy simply summarizes the error of each pixel and voxel. It may not 
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capture the specific characteristics of the region of interest, which will lead to the focus on the main 
region of interest, while the network monitors the region of uninterested, which leads to researchers 
to focusing on the primary ROI and the network supervising the non-ROI.

The formula of voxel size weighted cross-entropy and multi-class Dice similarity coefficient 
(DSC) follow.

The complementary hybrid loss function is show in Equation (7). wCross and mDSC can both 
reduce class imbalance. wCross usually guides the network to retain complex boundary details but 
introduces considerable noise, whereas mDSC tends to generate more compact and clear boundaries 
but ignores branch details. The complementary loss approach combines the advantages of both 
functions to obtain detail-enhanced segmentation results.

e
hybrid

= ε αε
wCross mDSC

+ 	 (7)

Voxel-size weighted cross-entropy:
The expression of block-by-block weighted cross-entropy is shown in equation (8), where χ 

denotes the training sample y W
i i i
= ( )( ) c c| ;  correspond to sample, and sample corresponding 

to the target class label  c( )
i
 with the probability of c c i( )  is determined by the size of the proportion 

of the target class label  c( )
i
 in the training sample χη χ

 i( ) to obtain the η χ
 i( )  weights.

ε χ η χ χ χ η χ
χ

χχ
mDSC i p i i i i

W y W
i

; | ; ,( ) = − ( ) = ( )( ) ( ) −
∈

( )
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

log

i

1

Ç

	 (8)

Multi-class Dice similarity coefficient:
The Dice similarity coefficient (DSC) is a function to alleviate gradient imbalance (Thada & 

Jaglan, 2013), which is measured by the global shape similarity and based on the differentiable multi-
class Dice similarity coefficient (mDSC) as in formula (9), using the loss function to balance multi-
class training, where   is ground truth,   is probability, i  is voxel, and c  is volume:

e
mDSC
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Summary and Outlook

Combined with the intensive research in machine science that presently drives the widespread development 
of CNNs, the DL image segmentation algorithm has the ability to obtain information independently; it 
can help quickly handle complex medical segmentation tasks. It has a broad application prospect in the 
field of biomedical image segmentation, but there are also many problems. In the future, researching more 
efficient, accurate, and stable image segmentation methods to improve clinical application effectiveness 
still faces a series of challenges. This paper provides a summary and outlook from the following aspects.

Complexity of Medical Image Segmentation
The essence of medical image segmentation is to minimize error analysis, requiring a large number of 
datasets and high-performance GPUs to provide computational power in deep networks, or spending 
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more time training the network to compensate for insufficient computational power. High precision 
will inevitably lead to model complexity, increased parameter count, and excessive reliance on high-
performance GPUs. However, convolutional neural networks are usually developed under a fixed 
budget, and not all research institutions can install high-performance GPUs, which has a relatively 
low penetration rate. Therefore, from a practical application perspective, the model needs to fully 
consider the balance between accuracy and efficiency at the beginning of design and cannot blindly 
add common modules. It is necessary to independently innovate mechanisms that comply with 
model learning according to actual needs. Medical images are more complex than natural images. 
Medical images usually contain richer structures and features such as texture, color, and shape. 
Different diseases, organs, and tissues also vary greatly in morphology and texture. In addition, 
medical image acquisition entails interference from a variety of factors such as imaging techniques, 
noise, and artifacts, which affect the accuracy and robustness of segmentation algorithms. Improving 
the resolution and sensitivity of the probe and software can directly improve the imaging methods. 
For example, Archibald and Gelb (2002) interpolated segmentation linear functions and corrected 
an image to reduce the effect of Gibbs ring artifacts. Super-resolution reconstruction (Dong et al., 
2015) is another technique for addressing noise issues, and new artifact enhancement techniques 
can provide new ideas. DL algorithms can also avoid the tedious process of manual design. The 
automatic learning of features can be adapted to different datasets and tasks, resulting in better 
portability and robustness.

Label Mark Date
Medical image segmentation usually requires the use of pixel-level annotation data, with each 
pixel labeled as a target region or a background. However, label marking is a time-consuming and 
intricate task. The structures and tissues in medical images are diverse and complex, and the label 
mark is oftentimes susceptible to human factors, as they require specialized medical knowledge and 
experience to perform accurate labeling. DL techniques can automatically perform medical image 
segmentation and annotation by training and learning from large-scale data, thus reducing the burden 
of manual labeling of marks, unbalanced categories, low volume of data annotation, and inconsistent 
data distribution. Xiao et al. (2020) used semi-supervised domain adaptive methods with pretrained 
models and migration learning techniques to achieve significant performance gains on several datasets. 
Self-supervised learning and self-encoder methods and clustering algorithms can also improve the 
generalization ability and efficiency of DL algorithms and expand their application scenarios.

Model Generalization
At present, medical image segmentation models are mainly designed for single organ segmentation, 
and the models’ generalization abilities are insufficient. When transferred to other organ datasets for 
training, the performance significantly lags. The fundamental reason for the poor generalization of 
such deep models is the difference in feature distribution between the training data and the unknown 
dataset, resulting in poor performance of the originally excellent model when substituted into other 
datasets. Although training more annotated data is the ideal method to improve generalization ability 
and help the model fully learn, considering the difficulty of medical image annotation, this method 
can be implemented. Transfer learning can adapt to other datasets by fine-tuning some parameters 
of the pretrained network, but it also requires annotating the data. The process of collecting a large 
amount of data from new fields to retrain the network is expensive. The model lacks the ability to 
perform global modeling for medical image segmentation and extract detailed features; and has high 
computational complexity and insufficient generalization ability. To solve the problems in the above 
models, measures such as enhancing feature extraction, enhancing spatial information extraction, 
accelerating convergence, eliminating gradient vanishing, avoiding overfitting, expanding receptive 
fields, achieving global attention, controlling parameter quantity, and reducing computational 
complexity can be taken to improve the usability of the model.
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Interpretability of Models
In deep learning models, the hidden layer contains numerous neurons and parameters. These 
complex internal structures make the interpretability of the results unclear, making it difficult 
to enhance the models’ performance with the help of doctors’ knowledge. Therefore, it is crucial 
to explain the segmentation process of the model from a clinical perspective. By visualizing 
feature maps and decision logic at different levels, doctors can understand the sources of pixel-
level label maps and master how to form these labels. At the same time, utilizing the saliency 
map of the derivative direction in the conceptual space of the network, they can predict the 
trend of disease development; provide explanations for the cause, pathological features, and 
diffusion process of lesions; and reveal potential indicator markers. These methods enable 
doctors to comprehensively grasp the working principles and intermediate outputs of the model, 
thereby applying their prior knowledge to guide the design of the model structure, optimizing 
decision-making based on clinical experience and identifying potential problems in specific 
organ segmentation tasks.

Research on Large Models
In the field of image segmentation, the open source of the large segment anything model 
(SAM) has promoted the development of MedSAM. Although there is still a significant gap in 
performance between MedSAM and professional models in some tasks, this has not affected 
researchers’ interest in large models. In the future, there may be more advanced network 
architectures with stronger representation capabilities. The interpretability and visualization level 
of model predictions will also be enhanced, which will help us better understand the process and 
quality of manual annotation by doctors.

Conclusion

In this article, we summarized the key tasks of medical image segmentation, which involve 
accurately identifying lesion areas in medical images. We discussed various methods used in 
the field of medical image segmentation and explored improved approaches, metrics, and the 
advantages and disadvantages of related techniques. Additionally, we introduced commonly 
used datasets and evaluation metrics, as well as the challenges and potential solutions in medical 
segmentation tasks. This research plays an important role in assisting doctors in quickly and 
accurately identifying areas of interest and has a significant impact on evaluating segmentation 
quality. In the future, we will combine more domain knowledge and technical means to further 
summarize the application of convolutional neural networks in the field of medical image 
segmentation, laying a solid foundation for further research.
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