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ABSTRACT

The task of reconstructing a 3D cube from a 2D measurement is not well-defined in spectral imaging. 
Unfortunately, existing Deep Unfolding Network (DU) and End-to-End (E2E) approaches can’t strike 
an optimal balance between computational complexity and reconstruction quality. The goal of this 
study is to think about ways to merge the E2E’s violent mapping with DU’s iterative method. Our 
proposed deep learning framework, the Reversible-prior-based Spectral-Spatial Transformer, combines 
the high-quality reconstruction capabilities of DU with the advantages of having fewer parameters 
and lower computing cost, similar to the E2E approach. SST-ReversibleNet uses a reversible prior to 
project the end-to-end mapping reconstruction results back into the measurement space, construct the 
residuals between the reprojection and the actual measurement, and improve reconstruction accuracy. 
Extensive trials show that our SST-ReversibleNet outperforms cutting-edge approaches by at least 
0.8 dB and only use 34.3% Params and 44.1% giga floating-point operations per second (GFLOP).
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Introduction

With rich and unique features (Cao et al., 2016), hyperspectral images (HSIs) have been widely 
used for analysis and scene applications such as remote sensing (Deng et al., 2023), precision 
agriculture (Ishida et al., 2018), national security (Udin et al., 2019), environmental protection 
(Wright et al., 2019), and astronomical observations (De Angelis et al., 2015). In computer 
vision, HSIs can be extensively used for object tracking (Li et al., 2022; Kim et al., 2012), 
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material classification (Yu et al., 2022; Hong et al., 2022), feature extraction (Li et al., 2020), 
and medical image analysis (Liu et al., 2019).

To obtain spectral images, traditional methods typically scan scenes along the one-dimensional 
(1D) or two-dimensional (2D) spatial dimension, or along spectral channels, sacrificing time 
through multiple exposures to reconstruct the spectral data of the scene. Although traditional 
methods perform well in terms of spectral detection range and accuracy (Wang et al., 2021), they 
are unsuitable for dynamic detection and therefore consumer applications. Recently, researchers have 
used developments in compressed sensing (CS) theory to collect HSIs using snapshot compressed 
imaging (SCI) systems (Du et al., 2009), which combine information from snapshots throughout 
the process of reducing the spectral dimensionality to a single 2D observation. Coded aperture 
snapshot spectrum imaging (CASSI) (Wagadarikar et al., 2008) is considered a very promising 
field among the current SCI systems.

Although the CASSI technology modulates the spectral three-dimensional (3D) cube with a coded 
mask before dispersing it, the redundant picture information can be used to recreate the entire 3D 
cube. Spectral reconstruction methods are categorized into four types: conventional, deep unfolding 
network (DU), end-to-end (E2E), and plug-and-play (PnP).

Traditional methods perform reconstructions based on over-complete dictionaries or sparse 
spectral features that rely on hand-crafted priors and assumptions (Zhang et al., 2019; Wang et al., 
2016). The primary limitation of these conventional techniques is the requirement for human parameter 
adjustment, leading to inadequate resilience and sluggish repair. Deep learning approaches have shown 
significant prowess in recent years in image production (Qian et al., 2022; Yu et al., 2018; Li et al., 
2019; Chopra et al., 2022), image retrieval (Nhi et al., 2022; Chu et al., 2022; Wang et al., 2020), 
image-semantic analysis (Hu et al., 2022), image classification (Ghoneim et al., 2018; Mandle et al., 
2022) and reconstruction (Arnab et al., 2021), such as image denoising, image super-resolution, and 
rain and fog removal (Jia et al., 2023; Liu et al., 2022; Liang et al., 2022), and have also been applied 
to spectral image reconstruction. PnP introduces a denoising module based on the traditional method, 
but with limited improvement in reconstruction speed and accuracy. The current state-of-the-art 
(SOTA) methods all come from E2E and DU. The E2E directly establishes the mapping between the 
measurement and truth data, and the DU uses a depth module to simulate the iterations in a convex 
optimization algorithm. Although both E2E and DU have achieved good performance, there are still 
limitations to the current methods.

1. 	 The E2E method is similar to an open-loop control system where the measurements no longer 
guide the reconstruction process during the reconstruction, in addition to lacking a DU-like 
iterative framework and interpretability. As a result, E2E is inefficient at improving network 
performance by increasing network depth, and limits the ability to further improve accuracy.

2. 	 The DU networks are based on convex optimization algorithms, but require transposition and 
invertible operations on the operation matrix during iteration. These conditions limit the structure 
of the network module and impose requirements on the design of the coding mask, as described 
in Sec. 2.

3. 	 The denoising modules in the Transformer-based E2E methods and DU networks learn either 
the global self-similarity of the spectral dimension or the local correlation of the spatial 
dimension, disregarding the spectral and spatial correlations that exist on a global scale within 
the spectral cube.

The motivation of this paper is to find a new framework that employs end-to-end mapping and is 
able to guide the reconstruction process through measurements. Its structure is similar to the iterations 
of the DU but is not subject to the constraints of the convex optimization method, thus combining 
the advantages of both E2E and DU methods. Furthermore, the authors seek a denoising module 
that learns both the self-similarity of the transformer-based spectral dimension and the spatial global 
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dependence of the transformer-based spatial dimension, taking into account memory consumption 
and computational complexity.

To address the above issues, we, inspired by the reversible nature of the optical path, propose 
a framework based on the reversible optical path prior (Reversible-prior). The new framework 
uses a reversible prior to project the reconstruction results of the end-to-end mapping back into the 
measurement space after each iteration, and to construct the residuals between the reprojection and 
the actual measurement. By incorporating residuals and measurement errors into the learning process, 
as well as by utilizing raw measurement data from the sensors and network guidance, the model’s 
reconstruction capability can be significantly enhanced. The structure of this improved model is 
illustrated in Figure 1. The new framework incorporates a mapping network called Spectral-Spatial 
Transformer, which is designed to acquire knowledge of both spectral and spatial self-similarity and 
global correlation. This is achieved through the utilization of efficient spectral self-attention and 
spatial self-attention, respectively. We plug a spectral-spatial transformer (SST) into the reversible 
prior-based framework to establish a novel HSI reconstruction method, a spectral-spatial transformer 
network based on reversible prior (SST-ReversibleNet). Finally, based on the unique design of the 
new framework, we propose a new reversible loss. By implementing the approaches mentioned above, 
we have developed a set of very efficient SST-ReversibleNet families that outperform the current 
leading methods by a wide margin. The core of the efforts can be concisely summarized as follows:

1. 	 We propose a new framework that bridges the gap between E2E and DU, allowing E2E methods 
to have the iterative capabilities and interpretability of DU. In addition, we design a new reversible 
loss based on the new framework.

2. 	 We present a SST module that can balance the parameters and reconstruction accuracy without 
deepening the depth of the module.

3. 	 Our SST-ReversibleNet outperforms SOTA methods by an average of 5.54db higher peak signal-
to-nose ratio (PSNR) on simulated datasets and requires less than 1/3 the number of parameters 
and less than 1/2 of GFLOPs for the same reconstruction quality. SST-ReversibleNet also produces 
more aesthetically pleasing outcomes when applied to HSI reconstruction in the real world.

This article continues as follows. In Section 2, we discuss similar works. CASSI systems are 
introduced in Section 3, while SST-ReversibleNet design and loss are described in Section 4. We 
summarize the experimental setting and present and analyze the results in Section 5 and conclude 
in Section 6.

Related Works

Methods of HSI Reconstruction
E2E Method
The E2E method works by directly finding strong mapping relationships between measurements and 
spectral cubes, so the network structure is concise and diverse. E2E can be divided into convolutional 
neural networks (CNN)-based and transformer-based networks (Wang et al., 2015; Yang et al., 
2021). Following external learning, Zhang et al. (2019) developed a CNN model using coded image 
internal learning. Miao et al. (2019) propose λ-net, a network speeding up the reconstruction by 
adding conditional generative adversarial networks (cGANs) to the U-net. Cheng et al. (2022) trained 
recurrent neural networks (RNNs) combining CNN and self-attention to improve the reconstruction 
quality, but the RNN-based framework model is large and time consuming. Although Both CNN-
based and transformer-based E2E methods have the advantage of fast inference, both ignore the way 
CASSI systems work and lack theoretical interpretability and flexibility.
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DU Network
The DU uses multi-stage network iterations to map measurements down a gradient into the HSI cube. 
DUs are generated from convex optimization algorithms such as alternating direction method of 
multipliers (ADMM), proximal gradient descent (PGD), and half quadratic splitting (HQS). In order 
to solve the proximal mapping problem associated with the sparsity-inducing regularizer, Zhang et 
al. (2018) used the iterative shrinkage-thresholding algorithm (ISTA) as inspiration and converted 
it into a deep network structure. In their study, Juan et al. (2021) introduce the linearized alternating 
direction method of multipliers network (LADMM-Net), a novel approach that incorporates the 
alternating direction method of multipliers (ADMM) into a processing layer. This technique allows for 
the estimation of image details by linearizing each iteration of the ADMM. Typically, these methods 
break down the objective function into a term that measures how well the data fits and a term that 
promotes decoupling. This results in iterative schemes where solutions to a subproblem related to the 
data and a subproblem related to prior knowledge are alternated. However, the optimization-based 
approach has some conditional constraints in the solution process, and as in the HQS expansion 
framework (Cai et al., 2022), the 2-stage iterative process can be described as shown in Equations 
1 and 2.
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where I is a matrix of identities. F  is a matrix. X
k+1

and z
k+1

 are two subproblems of (k+1)-stage. 
m , m

k+1
 are hyperparameters. R(.) is a mapping function. It is clear from the formula that the 

optimization formula is valid on the premise that Φ ΦT I+( )−m
1
 is invertible. In addition, operations 

such as transpose multiplication F FT  and FTy  are involved in the operation.

3D Cube Feature Extraction Module
Both E2E and DU require feature extraction in the measurement space. While many earlier 
efforts focused on utilizing CNN to extract local spatial information, these models suffer from 
shortcomings when it comes to representing non-local self-similarity and capturing long-range spatial 
interdependence. To remedy CNN’s flaws, a new contender named Transformer has just emerged. To 
measure the reliance and similarity between different spectrums of HSI, Cai et al. (2022) suggested 
spectral-wise multi-head self-attention (S-MSA). However, S-MSA only extracts global features in 
spectral space while ignoring spatial information. The spatial-attention module in the spatial-spectral 
attention system suggested by Meng et al. (2020) learns 1D spatial features in the x- and y-axes before 
merging them with the spectral-attention feature. These methods either transform the dimensionality 
of the feature to reduce the parameters and operations, or ignore the interaction between spectral and 
spatial features. Insufficient feature learning results in less efficient network learning as the network 
depth increases.

Model of CASSI System

The model of our CASSI system is shown in Figure 1.
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Imaging Process of CASSI
The 3D hyperspectral cube is first scattered by a dispersive prism in the CASSI system after being 
modified by a coded mask, as shown in Figure 2.

In mathematical terms, we can think of a 3D HSIs cube as X n n cx y∈ × × , where c , n
x

 and n
y
 

stand for the number of wavelengths, diameter, and height of the HSIs, respectively. M, which is a 
pre-defined mask, is a member of the set n nx y´ . The spectral image is modulated for each wavelength 
m c= 1 2,  , and it can be expressed as shown in Equation 3.

′ ( ) = ( )X m X m M:,:, :,:,  	 (3)

where ′ ∈ × ×
X

n n cx y  is spectral data cube,   is the process of element-wise multiplying. Afterwards, 

the dispersive prism measures, ¢X  is slanted and sheared along the y-axis. ′′ ∈
× + −( )×( )X

n n d c cx y 1  is 
dispersed HSIs cube, and d indicates the shifting step. We assume l

c
 is the reference wavelength, 

which means that ′′ ( )X m:,:,  is unbroken along its y-axis. Then, we have Equation 4.

′′ ′( ) = +( )X x y m X x y d m
m

, , , , 	 (4)

Figure 1. Schematic Diagram of Reversible Optical Path. According to the Principle of Reversible Optical Path, Our Network Also 
Includes Two Stages: Forward and Reverse

Figure 2. Imaging Process of CASSI
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where (x, y) represents coordinates of a point on the 3D HSI, d
m

 is the spatial shift of the channel 

on X '' . Finally, the collected 2D compressed observation Y n n d cx y∈
× + −( )( ) 1  can be derived as shown 

in Equation 5.

Y X m G
m

c

= ( )+′′
=
∑
1

:,:, 	 (5)

where G n n d cx y∈
× + −( )( ) 1  is the measurement-related random noise produced by the photon sensing 

detector.

Proposed Method

Overall Architecture Based on Reversible Prior
Previous E2E methods look for violent mapping relations to obtain the solution to Equation 5 in a 
single pass, which means that they only have the upper half of the process (Reconstruction Net) of 
Figure 1. The single irreversible process also means that the end-to-end approach cannot fine-tune 
the intermediate inference results and learned features, leading to a partial degradation of the model 
performance.

In other fields, such as 3D reconstruction, relationships in the study of three-dimensional geometry 
often project the reconstruction results back into the measurement space based on the principle of 
reversibility of the optical path. The reconstruction results are updated using geometric distance 
constraints for optimization purposes. Similarly, HSI measurements also satisfy traditional physical 
optics. And the HSI 3D cube is easily projected back to the 2D measurement space. This process 
acts as an inverse process of reconstruction, and the quality of reconstruction can be improved by 
multiple iterations. Therefore, the primary distinction between our network and the E2E and the DU 
is the construction of residuals from measured and reprojected data, as well as the fine-tuning of the 
gap between the last learnt data and the true value based on the residuals. Figure 3 depicts the general 
architecture of SST-ReversibleNet, which is divided into a reversible module and a reconstruction 
subnet, as indicated below.

The physical meaning of the reversible module is that the reconstruction network takes the 
spectral image x

n
 obtained from the n-th reconstruction and compresses it into the measurement 

space z
n

 following the left-to-right process of Figure 2, expressed as shown in Equation 6.

z G x
n n
= ( ) 	 (6)

where   is the mapping of the spectral 3D cube to the 2D measurement, z
n

 is the output of the 
n -stage inverse process, x

n
 is the reconstruction result of the n -stage. Thereafter, based on the 

results of the reversible process, the residuals y z
n

−( )  of the true measurements and the reprojected 
data can be constructed. Thus, the forward reconstruction process can be expressed as an iterative 
process, as shown in Equation 7.

x y z x
n n n n+ += −( )+1 1

 	 (7)
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where y  is the actual measurement from the charge-coupled device (CCD) camera,   is the mapping 
from the input to the spectral 3D cube, and x

n+1
 is the reconstruction result of the n +( )1 -stage.

Figure 3 shows a diagram of our framework structure based on the reversable prior. The upper 
half is the forward process, reconstruction of the subnet including unmixing block, SST and mapping 
block. The blue line in the lower half indicates the inverse process, the reversible module. The 
reconstruction subnet corresponds to the inverse of the CASSI optical path and the reversible module 
corresponds to the forward direction of the CASSI optical path, with both directions allowing the SST 
to form a closed-loop iterative capability. A reversible loss is proposed on the inverse of the network.

As shown in Figure 4, we have created four SST-ReversibleNet models (SST), each with a 
different number of stages in the output ( x

n
). These models are named SST-S (n=1), SST-M 

(n=2), SST-L (n=4), and SST-LPlus (n=9). The models vary in their parameter sizes and 
computing costs, ranging from tiny to extremely big. In SST-S, we use reversible prior between 
SpatialAB and SpectralAB, while in other networks, we only use reversible prior between 
SpatialAB and SpectralAB modules.

Reversible Module
The inverse procedure is executed by utilizing the output of the spectral reconstruction network at 
the n-th stage to derive the anticipated value of the spectral cube x

n
. According to Equations 3 and 

4, the predicted value x x
n n
″( ) =−1

 can be projected back into the measurement space after mask 

encoding, dispersion, and blending. As shown in the blue line in Figure 3, x
n
″( )−1

, x
n
'( )−1  correspond 

to the inverse predicted values of x
n
²  and x

n
'  in the forward process, respectively, and the inverse 

process is described as shown in Equations 8 and 9.

Figure 3. Diagram of the Framework Structure Based on the Reversible Prior
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x x y x x y M
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After obtaining z
n

, our reconstruction network reconstructs a residual y z
n

-  of the measurements 
y  and feeds it again into the reconstruction network to relearn the mapping of y z

n
-  to x x

Truth n
- . 

The input y
n+1

 to the reconstruction subnet is represented as shown in Equation 10.

y
y n

y zn
n

+ =
=

−








1

0�if�

�otherwise
�	 (10)

Reconstruction Subnet
The function of the reconstruction subnet is to establish a mapping between the different inputs 
and outputs, mainly consisting of a spectral-spatial transformer. In addition, considering that the 
measurement space is a compressed 2D space and that there is aliasing of data from different channels, 
we introduced a module for unaliasing and feature mapping before the mapping network input and 
after the output.

Figure 4. Diagram of Spectral-Spatial Transformer (Note: (a) SST adopts a W-shaped structure; (b) SpatialAB consists of a 
window multihead-self-attention (MSA), a shifted-window-MSA, a feature forward network (FFN), and three layer normalization; 
(c) SpectralAB consists of a spectral-MSA, a FNN, and two layer normalization; (d) components of FFN)
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Given the measurement after initialization x
n

n n dx y m

+

× +( )∈
1

 , firstly, we divide the aliased data 
into input signals with different wavebands according to the backlight propagation. The initialized 
signal X

n

n n cx y

+

× ×∈
1

'   can be obtained as shown in Equation 11.

x x y m y x d d h m c
n n m m+ +( ) = +( ) = …
1 1

1 2' , , , : , , , , 	 (11)

where x , y  are the spatial coordinates of a point on the 3D cube, d
m

 is the offset of the spectral 
image on the m-channel, and h  is the height of the 3D cube.

Spectral Unmixing
Afterwards, we utilize the mask’s prior information to direct the input for unmixing. This is done by 
passing the shifted y, which is combined with the mask M, then through convolution with conv1 1*  
kernel to back to input signal X X

n

n n c

n

n n cx y x y'' ∈ → ∈× × × × 2 . The spectral unmixing is realized 
through the convolution layer with varying sizes to solve the aliasing problem under different receptive 
fields (conv3 3* , conv5 5* , conv7 7* ).

SST
The suggested reconstruction subnet is designed to generate high-quality HSIs from the spectral 
images obtained after unmixing. We use a W-shaped spectral-spatial transformer module (Figure 4), 
which is composed of encoding and decoding of spectral features and the encoding and decoding 
between spatial channels.

The SST-Spectral and SST-Spatial models employ an encoder-decoder architecture similar to an 
unet. These models are coupled through a sequence of nested dense SpatialAB and SpectralAB blocks, 
respectively. This architecture is specifically designed to merge the discontinuities between the feature 
maps of the encoder and decoder that correspond to the same feature but in different dimensions.

Spectral-Spatial-Wise Multihead Self-Attention (MSA)
The Cube of the spectrum has a spatial correlation in the spatial dimension, which is related to the 
target’s properties and the surface’s reflectivity. While, in the spectral dimension, the continuity of 
the spectrum determines that the adjacent spectra are similar, and the farther the spectral distance is, 
the more ranges are complementary. And since W H M= >> , modelling spatial-wise correlations 
will be more cost-effective than capturing spectral-wise interactions. However, when the model 
reaches a certain scale, a single method cannot continue to mine the information of spectral Cube. 
Therefore, we consider learning the global correlation of spatial features based on the spectral attention 
map to improve the learning ability.

SpectralAB is consistent with multihead self-attention block (MSAB) in mask-guided spectral-
wise transformer (MST) (Cai et al., 2022). In order to compute self-attention along the spectral 
channel, SpectralAB’s objective is to consider each spectral feature map as an individual token. And 
the formula for each head

j
Spectral  and SpectralAB is shown in Equations 12 and 13.

head Softmax Q K V
j
Spectral

j j j
T

j
= ( )s 	 (12)

SpectralAB X concat head W f V
N

j j( ) = ( ) + ( )
=1

	 (13)
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SpatialAB makes improvements based on swim-transformer (Liu et al. 2021). We remove 
Avgpooling blocks, and add a feature forward network (FFN) module and a LayerNorm layer 
(Figure 4). The objective of SpatialAB is to compute self-attention along the spatial dimension by 
treating each local spatial feature map as a token. Input x

n

n n cx y∈ × ×  is changed into tokens 

x
n

s

n

s
s s cx y

∈
⋅ × ⋅ ×

 , s represents the window-size (set to 8 by default) of each window. The following 
module adopts a windowing configuration that is moved from that of the preceding layer, by moving 

the windows by s s
2 2
,











 pixels from the regularly partitioned windows. The formula for spatial 

Attention is shown in Equation 14.

Attention SoftMax
QK

d
B V

T

= +










	 (14)

Loss Function
Our network has reversible module and reconstruction subnet. Therefore, we design the reversible 
loss according to this structure. The previous work only establishes the L2 loss of the reconstruction 
results with the true result. While in the reversible light path, since the reconstruction result is a biased 
estimation of the true value, by constraining the data in the measurement space, the constraint ability 
of the network can be improved. The outputting loss is calculated as the L2 loss of x x

out truth
- . The 

reversible loss calculation x
out

 is mapped back to the CCD under the nature of the reversible optical 
path to obtain the L2 loss of the  x

out( )  value to the actual measurement y . We defined the loss 
function as shown in Equation 15.

L x x x y
out truth out

= − + ⋅ ( )−2
2

2
2x  	 (15)

where x
out

 represents the final predicted network values.   means the process of mask coding and 
spreading out the expected values. Meanwhile, y  represents the observation. x  is penalty coefficient, 
has a default value of 0.2.

Experiments and Analysis

Experiment Setup
In our implementation, the spectral channels are represented by a total of 28 distinct wavelengths 
ranging from 450 nm to 650 nm. We conduct tests on both simulated and real HSI datasets

Two datasets of simulated hyperspectral images, CAVE (Yasuma et al., 2010) and KAIST (Choi 
et al., 2017), were utilized. The CAVE dataset has 32 hyperspectral pictures with a 512 × 512 spatial 
resolutions. The KAIST collection is made up of 30 hyperspectral images with a size of 2704 × 3376 
pixels. Following the schedule set by spectral-spatial transformer (TSA-Net, Meng et al., 2020), we 
use CAVE as our training set. Ten scenes from KAIST will be tested. For this, we rely on the real-
world HSIs dataset amassed by the TSA-Net CASSI system. We measure the HSI reconstruction 
performance using PSNR and structural similarity (SSIM), which were proposed by Wang et al. (2004).

We use Pytorch to implement SST-ReversibleNet. Our SST-S, SST-M, and SST-L are trained 
on a single RTX 3090 graphics processing unit (GPU), while SST-LPlus is trained on two RTX 3090 
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GPUs. We use the Adam optimizer (b
1
0 9= .  and b

2
0 999= . ) for 300 epochs. The learning rate 

is initially set to 4 10 4× −  and half every 50 epochs throughout training. The reconstruction quality 
is evaluated using the PSNR and SSIM measures.

Results on CAVE
We compare the Params, GFLOPs, PSNR, and SSIM of our SST-ReversibleNet with several SOTA 
HSI reconstruction algorithms, including l -net, alternating direction method of multipliers (ADMM-
Net, (Ma et al., 2019), TSA-Net, deep image priors pre-trained hyperspectral images (DIP-HIS, Meng 
et al., 2021), deep gaussian scale mixture prior (DGSMP, Huang et al., 2021), bidirectional recurrent 
neural networks with adversarial training (BIRNAT), MST series, coarse-to-fine sparse transformer 
(CST) series (Cai et al., 2022), high-resolution dual-domain learning (HD-Net), and degradation-
aware unfolding half-shuffle transformer (DAUHST) series. Table 1 lists the parameters and GFLOPs 
examined with the identical settings (test size = 256 × 256), as well as the PSNR and SSIM findings 
of different approaches on all simulated datasets.

Here, you need to briefly introduce Table 1 in the text (callout) before including it in the paper.
The most effective of our models, SST-LPlus, produces extremely impressive outcomes: 97.4% 

in SSIM and 39.16 dB in PSNR, which is more than 3 dB than the best PSNR of the SOTA published 
models, and the SSIM is more than 1.5%. SST-LPlus significantly outperforms DAUHST-9stg, 
BIRNAT, MST++, MST-L, HD-Net, TSA-Net and l -Net of PSNR by 0.80, 1.58, 3.82, 4.07, 4.19, 
6.86 and 7.39 dB, and 0.7%, 1.4%, 2.1%, 2.4%, 3.1%, 5.8% and 8.4% improvement of SSIM, indicating 
the efficacy of our approach.

Comparisons of our SST-LPlus algorithm and other SOTA algorithms on Scene 5 using four (out 
of twenty-eight) spectral channels are illustrated in Figure 5. Zoomed-in regions of white boxes are 
displayed in the upper-right corner of the HSIs; compared to previous SOTA techniques, reconstructed 
HSIs generated by SSTs have more distinct spatial characteristics and a more distinct texture across 
various spectral channels.

Furthermore, as shown in Figure 6, in positions A, B, and C, while all restoration techniques can 
better capture the qualitative trend of spectrum changes, SST spectral curves have superior spectral 
accuracy and perceptual quality.

Observably, our SST-ReversibleNet outperforms SOTA methods by a substantial margin, while 
requiring considerably less memory and computation power. Compared with other Transformer-
based method CST-L and MST-L, our SST-S outperforms CST-L by 0.59 dB but only costs 35.3% 
(1.06/3.00) Params and 71.3% (19.83/27.81) GFLOPs, and SST-S exhibits a 1.62 dB improvement 
over MST-L while requiring only 1.06/3.66 parameters for 29.0% and 19.83/28.15 GFLOPs for 
70.4%. Likewise, our SST-M outperforms DAUHST-5stg by 0.13 dB but only costs 61.3% (2.11/3.44) 
Params and 78.5% (35.03/44.61) GFLOPs and SST-M outperform CST-L-plus by 1.76 dB, but only 
costs 70.3% (2.11/3.00) Params and 87.4% (35.03/40.1) GFLOPs. More specifically, our SST-M 
acquires the equivalent SSIM (96.7%) of DAUHST-9stg (the best model at present), but only costs 
34.3% (2.11/6.15) Params and 44.1% (35.03/79.5) GFLOPs. In addition, our SST-L and SST-LPlus 
outperform other competitors by very large margins. Figure 7 presents comparisons of various 
reconstruction algorithms based on PSNR, parameters, and GFLOPs.

Real Data Results
We employ five compressive measurements obtained from the operational spectral SCI system to 
assess the proposed technique and evaluate its performance on actual data. The CAVE datasets are 
utilized to train all of the approaches, employing a consistent real mask and introducing 11-bit shot 
noise, in order to guarantee equitable comparisons. See how the suggested SST-M stacks up against 
the current SOTA methods in Figure 8.
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Table 1. Comparisons Between SSTs and SOTA Methods on 10 Simulation Scenes (S1-S10), Where Params, GFLOPS, PSNR 
and SSIM are Reported

Scene S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg Params GFLOPs

l -net PSNR 32.50 31.23 33.89 40.28 29.86 30.27 30.33 28.98 31.98 28.36 31.77 62.6 118.0

SSIM 0.892 0.854 0.930 0.965 0.889 0.893 0.975 0.880 0.891 0.834 0.890

ADMM-Net PSNR 34.12 33.62 35.04 41.15 31.82 32.54 32.42 30.74 33.75 30.68 33.58 4.27 78.58

SSIM 0.918 0.902 0.931 0.966 0.922 0.924 0.896 0.907 0.915 0.895 0.918

TSA-Net PSNR 32.95 31.69 33.01 41.24 30.12 31.89 30.75 29.89 31.61 29.9 32.30 44.2 135.2

SSIM 0.913 0.884 0.932 0.975 0.911 0.929 0.895 0.912 0.920 0.890 0.916

GAP-Net PSNR 26.82 22.89 26.31 30.65 23.64 21.85 23.76 21.98 22.63 23.10 24.36 4.27 84.47

SSIM 0.754 0.610 0.802 0.852 0.703 0.663 0.688 0.655 0.682 0.584 0.669

DGSMP PSNR 33.26 32.09 33.06 40.54 28.86 33.08 30.74 31.55 31.66 31.44 32.63 3.76 646.7

SSIM 0.915 0.898 0.925 0.964 0.882 0.937 0.886 0.923 0.911 0.925 0.917

DIP-HSI PSNR 32.68 27.26 31.30 40.54 29.79 30.39 28.18 29.44 34.51 28.51 31.26 33.9 64.42

SSIM 0.890 0.833 0.914 0.962 0.900 0.877 0.913 0.874 0.927 0.851 0.894

BIRNAT PSNR 36.79 37.89 40.61 46.94 35.42 35.30 36.58 33.96 39.47 32.80 37.58 4.35 2131

SSIM 0.951 0.957 0.971 0.985 0.964 0.959 0.955 0.956 0.970 0.938 0.960

HD-Net PSNR 35.14 35.67 36.03 42.30 32.69 34.46 33.67 32.48 34.89 32.38 34.97 2.37 154.8

SSIM 0.935 0.940 0.943 0.969 0.946 0.952 0.926 0.941 0.942 0.937 0.943

MST-L PSNR 35.29 35.48 36.72 42.68 32.55 34.67 33.53 32.50 34.98 32.45 35.09 3.66 28.15

SSIM 0.945 0.944 0.956 0.980 0.947 0.957 0.929 0.953 0.948 0.945 0.950

MST++ PSNR 35.53 35.68 35.99 42.78 32.71 35.14 34.24 33.30 35.13 32.86 35.34 1.33 19.64

SSIM 0.946 0.946 0.954 0.977 0.949 0.959 0.938 0.957 0.951 0.948 0.953

CST-L PSNR 35.96 36.84 38.16 42.44 33.25 35.72 34.86 34.34 36.51 33.09 36.12 3.00 40.10

SSIM 0.949 0.955 0.962 0.975 0.955 0.963 0.944 0.961 0.957 0.945 0.957

DAUHST-2st PSNR 35.93 36.70 37.96 44.38 34.13 35.43 34.78 33.65 37.42 33.07 36.34 1.40 18.44

SSIM 0.943 0.946 0.959 0.978 0.954 0.957 0.940 0.950 0.955 0.941 0.952

DAUHST-
3st PSNR 36.59 37.93 39.32 44.77 34.82 36.19 36.02 34.28 38.54 33.67 37.21 2.08 27.17

SSIM 0.949 0.958 0.964 0.980 0.961 0.963 0.950 0.956 0.963 0.947 0.959

DAUHST-
5st PSNR 36.92 38.52 40.51 45.09 35.33 36.56 36.28 34.74 38.71 34.27 37.75 3.44 44.61

SSIM 0.955 0.962 0.967 0.980 0.964 0.965 0.958 0.959 0.963 0.952 0.962

DAUHST-
9st PSNR 37.25 39.02 41.05 46.15 35.80 37.08 37.57 35.10 40.02 34.59 38.36 6.15 79.50

SSIM 0.958 0.967 0.971 0.983 0.969 0.970 0.963 0.966 0.970 0.956 0.967

SST-S PSNR 36.55 37.27 38.49 44.50 34.30 36.18 35.35 34.03 37.21 33.19 36.71 1.06 19.83

SSIM 0.953 0.955 0.964 0.984 0.960 0.966 0.948 0.959 0.955 0.949 0.959

SST-M PSNR 37.32 38.60 40.76 45.73 35.56 37.01 36.44 34.69 38.63 34.09 37.88 2.11 35.03

SSIM 0.961 0.965 0.973 0.987 0.968 0.972 0.955 0.966 0.966 0.959 0.967

SST-L PSNR 37.77 39.56 41.87 46.72 36.50 37.54 37.28 35.11 39.80 34.83 38.70 4.25 72.52

SSIM 0.966 0.972 0.977 0.990 0.972 0.975 0.962 0.968 0.972 0.963 0.972

SST-LPlus PSNR 38.24 40.05 42.45 47.87 37.02 37.59 37.20 35.42 40.54 35.25 39.16 9.64 167.5

SSIM 0.968 0.974 0.979 0.992 0.975 0.975 0.960 0.971 0.975 0.962 0.974
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Figure 5. Visual Comparisons of Our SST-ReversibleNet and Other SOTA Methods of Scene 5 with 4 Out of 28 Spectral Channels 
on the KAIST Dataset

Figure 6. Spectral Curves of the SOTA Methods in Figure 5 on the Randomly Selected Regions A, B and C
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Figure 7. PSNR-Params-GFLOPs Comparisons of Our SST-ReversibleNet and SOTA HSI Reconstruction Methods. Note. The 
Vertical Axis is PSNR (dB), the Horizontal Axis is GFLOPs (Computational Cost), and the Circle Radius is Params (Memory Cost).

Figure 8. Real HSI Reconstruction Comparison of Two Scenes. 6 Out of 28 Spectra are Randomly Selected
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These methods include DGSMP, TSA-Net, GAP-Net (Meng et al., 2020), BIRNAT, MST++, 
HDNet, CST, and DAUHST. When compared to earlier algorithms, our SST-S achieves better results 
in restoring structural details at high frequencies and suppressing actual noise. More texture and 
detail, particularly around blossom margins, can be restored in Scene 2 using the suggested method.

Ablation Study and Analysis

An ablation study is undertaken on the CAVE and KAIST datasets to assess the contribution of 
different components in the proposed SST-ReversibleNet (SST). Our primary emphasis is on the four 
components, i.e. whether to use the reversible prior, whether to use the reversible loss, the structural 
shape of the feature extraction network, and the effect of the combination of spectral self-attentive 
blocks (SpectralAB) and spatial self-attentive blocks (SpatialAB) on the model. Tables 2–5 2 to Table 
5 show the results of the comparison between PSNR and SSIM at different settings.

In Table 5, we build two networks A and B with similar number of parameters and GFLOPs 
as SST-S. In this case, A uses only the self-attention of the spectral channels and B only looks for 
correlations in the spatial dimension.

Table 2. Ablation of Use Prior

Baseline Use Prior Params(M) GFLOPs(G) PSNR SSIM

SST-S × 1.03 17.98 33.52 92.2%

SST-S √ 1.06 19.83 36.71 95.9%

Table 3. Ablation of Use Reversible Loss

Baseline Use reprojection loss Params(M) GFLOPs(G) PSNR SSIM

SST-S × 1.06 19.83 36.66 95.7%

SST-S √ 1.06 19.83 36.71 95.9%

Table 4. Ablation of SST Structures

Baseline shape of spectral spatial Transformer Params (M) GFLOPs (G) PSNR SSIM

SST-S Unet-like 1.01 16.99 35.42 95.3%

SST-S Unet++-like 1.06 19.83 36.71 95.9%

SST-M W-shaped 2.11 35.03 37.86 96.6%

Table 5. Ablation of Use SpectralAB and SpatialAB

Baseline Use SpectralAB Use SpatialAB Params (M) GFLOPs (G) PSNR SSIM

A √ × 0.97 19.61 34.83 93.2%

B × √ 1.13 21.74 35.77 94.7%

SST-S √ √ 1.06 19.83 36.71 95.9%
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The results show that 1) the impact of reversible prior on the model is crucial, comparing two 
networks with similar number of parameters for deepening the network depth and using reversible 
prior in Table 2, utilizing a reversible prior can significantly enhance the model’s reconstruction 
capability, with PSNR and SSIM improving by 3.19 dB and 3.7%, respectively. 2) The reversible loss 
can be a constraint on the model, and without changing the number of parameters or operations, the 
PSNR and SSIM are able to improve by 0.05db and 0.2% respectively. 3) The shape of the network 
structure also has a more obvious improvement on the reconstruction effect, the W-shaped structure 
can improve the PSNR and SSIM by 2.44 db/1.3% and 1.15 db/0.7%, respectively, compared to 
Unet-like and Unet++like shape. 4) The spectral-space transformer is a huge advantage over the 
spectral-transformer and spatial-transformer, especially the results for model B vs. SST-s. Model B 
has 7% higher number of parameters and 10% higher GFLOPs than SST-S, but the reconstruction 
results are 0.94 dB less than SST-S.

Difference With DU
To explore the differences between our iterative method and the DU, we compared the iterative process 
of SST-LPlus and DAUHST-9st on the simulated dataset. A randomly selected scene is visualized in 
both spectral channels and RGB changes. In addition, below the 636.3 nm visualization image, we 
have extracted the changes at different stages of each feature learning. Below the image we list the 
PSNR and SSIM changes from 1stg to 9stg, as shown in Figure 9.

Figure 9. Comparison Graph of E2E Iterative Method (SST-LPlus) and DU (DAUHST-9stg) in Different Stages (Note. Comparison 
of the differences on the 636.3 nm spectral image, the 636.3 nm spectrally learned feature map, the RGB image, the PSNR and 
the SSIM from 1 stage to 9 stage)
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Visualizing the analysis of the results, we believe that the reversible framework benefits from 
the learning of residuals to effectively improve the learning of features, with DAUHST learning a 
large number of global features at 1stg and fine-tuning from 2stg onwards.

Although SST-ReversibleNet only starts fine-tuning at 4stg, our SST-ReversibleNet learns more 
global features from 1stg to 4stg in the early stage and achieves results beyond DAUHST at 7stg to 9stg. 
We therefore believe that the feature learning capabilities of SST-ReversibleNet and DU are not the same.

Analysis
With the above experiments, we analyze the reasons why SST-ReversibleNet achieves good results 
and has a smaller number of parameters. The most important reason is the architecture of SST-
ReversibleNet ‘s reversible prior. Its architecture of reversible prior has more iterations compared to 
the E2E method, which can learn detailed features that were not learned in the previous stages from 
multiple residual learning. And compared with the DU method, which has two or more iterative 
steps in a single stage, SST-ReversibleNet has only one iterative step in a single stage. Thus, SST-
ReversibleNet has fewer parameters with similar reconstruction accuracy as DU. In addition, the 
designed structure of W-shape can learn features in both spatial and spectral dimensions, which 
greatly improves the performance of the network.

Although it is of note that the SST-ReversibleNet residuals are learned in such a way that 
they cannot be targeted to estimate the noise of the measurement. Considering that denoising of 
hyperspectral images can be a separate task, the network of SST-ReversibleNet can be designed as 
a two-stage network, and by introducing a denoising module (Sun et al., 2023; Li et al., 2023) at 
the input of the network, the noise as well as the reconstruction task can be solved simultaneously.

Conclusion

Inspired by the reversible light path, this paper proposes a novel SST-ReversibleNet for CASSI. 
The new framework significantly improves the reconstruction metrics and can be used for other 
algorithms. We use a W-shaped spectral-spatial transformer module to improve spatial and spectral 
feature extraction. In addition, we design a reversible loss. Using these innovative methods, we create a 
collection of exceptionally effective SST-ReversibleNet models. Quantitative experiments demonstrate 
that our approach surpasses state-of-the-art algorithms by at least 0.8 dB and only uses 34.3% Params 
and 44.1% GFLOPs. Furthermore, we believe that the proposed a priori reversible optical path can be 
used equally well for tasks such as super-resolution, video compression, de-fogging, and denoising. 
For all tasks with explicit optical significance, we consider the decomposition of the task into forward 
and backward processes to improve network performance by modeling the physical processes of 
the system, either explicitly or implicitly. Since SST-ReversibleNet and DU have a similar iterative 
structure, SST-ReversibleNet will face the problem of increasing parameters and arithmetic power as 
the number of iterations increases, and our future work will consider sharing weights or improving 
the reconstruction effect of a single stage to alleviate this problem.
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