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ABSTRACT

In this work, a simple yet robust neighboring-aware hierarchical-based clustering approach (NHC) is 
developed. NHC employs its dynamic technique to take into account the surroundings of each point 
when clustering, making it extremely competitive. NHC offers a straightforward design and reliable 
clustering. It comprises two key techniques, namely, neighboring- aware and filtering and merging. 
While the proposed neighboring-aware technique helps find the most coherent clusters, filtering 
and merging help reach the desired number of clusters during the clustering process. The NHC’s 
performance, which includes all evaluation metrics and run time, has been thoroughly tested against 
nine clustering rivals using four similarity measures on several real-world numerical and textual 
datasets. The evaluation is done in two phases. First, we compare NHC to three common clustering 
methods and show its efficacy through empirical analysis. Second, a comparison with six relevant, 
contemporary competitors highlights NHC’s extremely competitive performance.

Keywords
Hierarchical Clustering, Information Systems, K-means, Machine Learning, Neighboring Clustering, Partitional 
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Introduction

Clustering is an unsupervised method that divides the unlabeled data points into various groups based 
on distance metrics (or similarity measures). It is frequently utilized in a variety of fields, including 
knowledge discovery through machine learning (ML), information retrieval (IR), and data mining. 
By grouping related data points (or semantically important groupings of points or documents) into 
meaningful clusters and dispersing the dissimilar points over numerous clusters, clustering provides 
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intuitive navigation and browsing options. Several scientific applications have used a variety of 
clustering algorithms that were developed over the past 40 years, including mixed data (Kuwil et al., 
2019), database system design (Abdalla et al., 2023; Fernández & Gómez, 2021), recommendation 
systems (Akilandeswari et al., 2022), data and text classification (Gilpin & Davidson, 2017; Hussain 
& Haris, 2019; Salem et al., 2018; Steinbach et al., 2000), high-dimensional data space (Chander et 
al., 2022), indexing (Zhu & Ma, 2018), and word embedding-based text clustering (Gong et al., 2018). 
As a general rule, while clustering data points (or documents) are divided into k clusters, related 
points (or documents) are placed in the same cluster, and different data points are placed in different 
clusters. In actuality, the complexity inherent in the clustering of documents, especially during the past 
30 years, has caught the researchers’ attention. Consequently, the search for semantically meaningful 
groups of documents is still in full gear for scholars.

Two clustering categories are widely popular, namely, partitional and hierarchical, which have 
achieved significant results in applications across multiple domains. Overall, partitional clustering 
is more dynamic and efficient than hierarchical clustering. Indeed, in partitional clustering, the 
points of data can be migrated from one cluster to another smoothly. Moreover, they can be linked 
with knowledge connected with clusters’ size and shape via leveraging distance measurements with 
suitable prototypes (Kuwil et al., 2019). However, the demerits of partitional clustering are: (1) Most 
algorithms use optimization techniques to solve their problems with initialization and the number of 
clusters; (2) their iterative mechanism makes them susceptible to local minima and prone to cluster 
initialization, leading to the failure to find the best or optimal solutions; (3) they are highly sensitive 
to both noise and outliers, and determining the k clusters has long been expressed as challenging 
tasks; (4) their dimensionality negatively affects the efficacy of partitional category. Further, since 
performance is heavily dependent on the initial centroids and the number of clusters, the majority 
of them typically experience performance fluctuations (Gong et al., 2018; Kuwil et al., 2019). The 
k-means algorithm is one of the most used clustering algorithms (Abdalla et al., 2023; Arthur & 
Vassilvitskii, 2007). The k parameter in the k-means algorithm must be established as the number 
of clusters in the first phase. The k-means will then select k randomly chosen numbers as centroids 
using the k value. The initial data point for each cluster are these centroids, which are employed in 
the first phase. The computations to optimize the centroids’ placements are carried out repeatedly 
until the centroids are stabilized by iteratively running k-means. The ultimate clustering solutions 
will then be produced using the stabilized centroids.

On the other side, without knowing the exact number of clusters (k), hierarchical algorithms are 
used to draw the hierarchy of the clusters (Kuwil et al., 2020; Liu & Frank, 2022; Zhang et al., 2015; 
Zhang P. et al., 2019; Zhang W. et al., 2019). The majority of these algorithms, including minimum-
spanning tree-based clustering algorithms (MSTs), are suitable for massive, contemporary datasets with 
high dimensions (Wang et al., 2013). Due to the drawbacks of partitional methods described above, 
the results of hierarchical clustering are generally more reliable than those of partitional algorithms. 
The performance of the partitional algorithm, in particular k-means and its derivations, suffers from 
these flaws despite ongoing efforts to address them, such as k-means++ (Arthur & Vassilvitskii, 2017), 
particularly when data are sparse and high-dimensional. However, the building of the model requires 
a quadratic execution time for the hierarchical methods, which makes them slower than partitional 
clustering (Zhang P. et al., 2019). The resulting clusters may also contain various densities. Last but not 
least, outliers that affect cluster separations frequently result in a definite decline in clustering quality 
(Yang, 2022). One of the most widely used methods in this category is agglomerative hierarchical 
clustering (AHC) (Abdalla et al., 2023). The number of clusters for AHC, such as k-means, can be 
set at k, or the algorithm can be allowed to create any number of clusters it likes.

Even though extant literature includes many clustering studies, the majority of these have the 
following shortcomings:
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1. 	 They primarily focused on either IR datasets (e.g., documents) or non-IR datasets (e.g., those 
taken from the UCI repository as numerical ones). Therefore, when both IR and non-IR datasets 
are taken into account, the claim for the superiority of one algorithm over another over both data 
types is still under investigation, or at least not adequately convincing.

2. 	 If previous studies did exist, they tended to employ tiny non-IR datasets and were rarely found to 
conduct clustering trials using more than one similarity metric. The Euclidean distance, or cosine 
similarity measure, was almost exclusively utilized in the vast majority of earlier publications. 
Thus, there is still strong evidence that any metric recorded will be the best fit in all circumstances. 
The choice of an appropriate distance metric or similarity measure is based on the situation and 
the dataset’s characteristics.

3. 	 Because of the lengthy execution time, some crucial measures, such as the silhouette, have hardly 
ever been leveraged to assess the effectiveness of clustering methods focused primarily on huge 
data. To the best of the authors’ knowledge, besides presenting a new hierarchically-driven 
clustering algorithm, no other works have offered a thorough evaluation of multiple clustering 
algorithms along with several similarity measures over various datasets in the same pattern the 
authors did in this study. The main goal of summarizing the findings of such in-depth analysis 
is to offer comprehensive knowledge of the clustering technique on both IR and non-IR datasets.

In summary, the primary contributions of this work are the development of a novel neighboring-
aware hierarchical-based clustering approach (NHC). The NHC distinguishes itself from its rivals with 
three features: The proposed neighboring-aware strategy helps find the most coherent clusters; (2) 
the filtering and merging techniques help reach the desired number of clusters during the clustering 
process; (3) the robustness and efficiency of the NHC was thoroughly tested using multiple similarity 
measures over several real-world numerical and textual datasets (from various applications), which 
had not been done in any previous study in the literature; (4) the authors analyzed, compared, and 
benchmarked the clustering results of the proposed algorithm against well-known state-of-the-art 
clustering techniques. Based on the observed results, the NHC can be regarded as a solution that 
strikes a balance between the effectiveness of hierarchical clustering and the efficiency of partitional 
clustering. It combines the efficient clustering solutions attained by the hierarchy with the quick 
computation speed of partitional methods. Furthermore, as similarity metrics are important for 
clustering, the authors used four similarity measures to monitor the performance of the algorithms 
in different settings. Most importantly, the researchers compared all of the algorithms in terms of run 
time to ascertain their efficiency. The primary goal of the first phase was to compare the NHC with 
three popular clustering algorithms: K-means, Bisect K-means techniques, and AHC. The second 
phase focused on evaluating the NHC algorithm’s performance against six cutting-edge clustering 
algorithms. The algorithms the authors used for comparison are incredibly relevant to this study. 
Throughout this research, the authors referred to numerical datasets (acquired from the UCI repository) 
as non-IR datasets, whereas they referred to document collections (text datasets) as IR datasets.

The rest of this paper is organized as follows: The second section provides the the literature review; 
the third section offers a description of the proposed methodology of the NHC algorithm; the fourth 
section presents the experimental setup; the fifth section provides the outcomes of two evaluation 
phases; the sixth section consists in the authors’ brief explanation and discussion of the behavior of all 
algorithms; finally, the seventh section offers the authors’ conclusions and future research directions.

Related Work

Over the past few decades, data clustering was extensively studied in a variety of fields. The two 
main categories of clustering algorithms are hierarchical and partitioning methods (Abdalla et al., 
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2023; Arthur & Vassilvitskii, 2007; Fernández & Gómez, 2021; Hussain & Haris, 2019; Kuwil et al., 
2019; Salem et al., 2018; Wang et al., 2013). Hierarchical algorithms function by grouping the data 
points (e.g., documents) into cluster trees (Fernández & Gómez, 2021). Depending on whether the 
hierarchical division is built from the bottom up or from the top down, the hierarchical algorithms 
can be further divided into agglomerative and divisive clustering. On the other hand, k-means and its 
variations (Abdalla et al., 2023; Kuwil et al., 2019) are the most widely used partitioning algorithms 
(Hussain et al., 2019), which is one-level partitioning.

Document clustering is still the most often used method in the fields of IR and natural language 
processing to assemble semantically linked data or documents that have a similar or closer topic 
of interest. In the same regard, some scholars put out studies for the clustering of numerical data 
(Hussain et al., 2019; Kuwil et al., 2019; Yang, 2022; Zhang et al., 2015). For instance, Kuwil et al. 
(2019) used the Euclidean distance to propose the critical distance clustering algorithm (CDC). The 
CDC features a straightforward but adaptable design. Comparable techniques, including MST-based 
clustering, k-means, and Dbscan, were demonstrated to be slightly inferior to the CDC in some cases 
(e.g., education and oil datasets). The fundamental advantage of the CDC is that no predetermined 
guidelines are needed. Therefore, in this study, the authors included the CDC in their comparison 
analysis. Based on the local data gravity, Zhang P. et al. (2019) proposed the neighboring graphic 
hierarchical clustering (NGHC) as a hierarchical clustering of complicated design. Zhang P. et 
al. separated the dataset into groups using the gravity-based clustering method in the NGHC as 
intermediate findings. Then, they used a new linkage measure to combine those intermediary groups. 
They would combine the data gravitation between the two groups in this way until they obtained the 
appropriate findings. Nevertheless, the authors utilized only two datasets for evaluation, and they 
did not specify whether the gravity-based clustering method is the best option for either type of data.

On the other extreme, Hussain et al. (2019) developed the k-means-based co-clustering (kCC) 
algorithm as an improved variant of k-means through embedding higher-order statistics and data 
dualism principles. The researchers chose multiple points to represent each cluster’s centers during 
the initialization phase. They also created neighborhood walk statistics as a semantic similarity for 
center re-estimation as well as cluster assignment in the iterative process. They evaluated kCC’s 
effectiveness across several text datasets; the results revealed that it performed competitively against 
its rivals. Thus, in this study, the authors included kCC in their experimental investigation. On the 
other hand, some researchers focused on document clustering (Steinbach et al., 2000; Liu & Frank, 
2022) and represented features in the term frequency-inverse document frequency (TF-IDF) matrix. 
Steinbach et al. (2000) published a technical study on the behavior of clustering algorithms in the 
clustering of IR datasets. They emphasized that bisecting k-means is superior to k-means and, in some 
situations, equal to or better than AHC. However, as the authors previously indicated, Steinbach et 
al. made these judgments only based on document collections (i.e., IR dataset). Nasim and Haider 
(2020) conducted an experimental investigation to determine the ideal clustering technique for Bahasa 
Indonesia. They tested three clustering algorithms, namely, k-means, k-means++, and AHC. The 
outcomes demonstrated that AHC was outperformed by the k-means and k-means++ algorithms. 
However, due to the short corpus Nasim and Haider employed (approximately 100 documents), their 
study is untrustworthy.

Other authors researched how similarity measures affect data clustering (Ljubešić et al., 2008; 
Patil & Thakur, 2018; Strehl et al., 2000). However, in these studies, they used only small datasets in 
the experiments; also, the findings showed that cosine and Jaccard similarity performed best, while 
Euclidean distance performed the worst for data clustering. On the same page is using the k-means 
clustering approach and Kullback-Leibler divergence (KLD) (Huang, 2008) that expanded (Strehl et 
al., 2000). Results showed that Jaccard similarity was more cohesive and KLD was more accurate 
for clustering, while Euclidean distance was the worst. This goes in direct and complete opposition 
to the overwhelming majority of clustering literature, which identified Euclidean as one of the 
most competitive metrics for clustering analysis (Abdalla & Amer, 2021). For example, Ljubešić et 
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al.’s (2008) trials using eight similarity measures demonstrated that Jenssen-Shannon divergence, 
Manhattan, and Euclidean distances performed better than more common measures, such as cosine 
and Jaccard similarity. The authors’ findings in this study come to support Ljubešić et al.’s (2008) 
and Abdalla and Amer’s (2021) outcomes, in which Euclidean and Manhattan have been shown 
to be more competitive than cosine and KLD. Forsyth and Sharoff (2014) presented a method for 
assessing the effectiveness of similarity metrics using human judgment. Results showed that Pearson 
correlation outperformed both cosine and KLD. Moreover, the usage of tiny datasets with only about 
43 documents in several works (Ahlgren & Colliander, 2009; Ahlgren & Jarneving, 2008), rendered 
them incomparable and less robust for large-scale document clustering.

Meanwhile, several recent studies assessed these algorithms while collecting tweets (Curiskis et 
al., 2020; Selvam et al., 2018). These studies demonstrated the superiority of TF-IDF-based k-means 
over AHC, bisecting k-means, and even k-medoids clustering methods (Shamir & Tishby, 2010). 
For instance, Nasim and Haider (2020) assessed three clustering algorithms (i.e., k-means, bisecting 
k-means, and affinity propagation) employing a variety of feature representations, such as TF-IDF 
and word embedding, across the corpus of Urdu tweets. The outcomes demonstrated that the k-means 
algorithm based on TF-IDF behaved the best. Nevertheless, Nasim and Haider examined a small 
corpus of tweets in Urdu, making their study unreliable. Shamir and Tishby (2010) applied k-means 
clustering to Urdu documents using several similarity measures, including cosine similarity, Jaccard 
similarity, and Levenshtein distance. Results showed that the Jaccard-based k-means algorithm 
behaved the best and was shown to be more effective, chiefly in terms of purity scores. Contrarily, 
Amalia et al. (2020) evaluated AHC and k-means algorithms using several similarity measures in 
document collection. Their study showed that AHC is better than k-means. As noted, some works 
showed k-means better, while others drew AHC as the best. Thus, results are conflicting and insights 
are contradicting, which makes it highly difficult for the user to choose the best-fit combination for 
the clustering analysis.

Meanwhile, Goyal et al. (2015) used the k-means clustering technique to examine two similarity 
measures, that is, cosine and fuzzy similarity measures. According to the findings, the fuzzy similarity 
measure performs better in terms of time and clustering solution quality than the cosine similarity 
measure. Xu and& Tian (2015) outlined are a few issues in text clustering. They examined the 
benefits and drawbacks of a few important algorithms. The foundation for the proposal of an efficient 
clustering algorithm was feature selection and similarity measures. Nguyen et al. (2019) presented 
variable entropy and variable mutability, which are two novel similarity measures based on the 
data’s variability. The authors used a hierarchical approach to cluster data, and they compared their 
algorithm to 11 other ones. Exactly as in this study, Nguyen et al. (2019) proved that the properties 
of the dataset affect how well similarity-based algorithms function given the experimental findings. 
In other words, neither an optimal clustering technique nor a dominant similarity metric exist. The 
target application has a significant impact on how well the clustering method and similarity metric 
perform together. Finally, it is important to note that the authors did not include MST-based techniques 
in general (Şaar & Topcu, 2022) or those that use metaheuristics or evolutionary algorithms (Halim 
& Uzma, 2018), as a comprehensive analysis of data clustering algorithms is outside the purview of 
this work. Therefore, the authors included and discussed the research that is most important to the 
study in this paper.

As the authors discussed above, in extant literature, scholars consistently presented several 
clustering algorithms and similarity measures, notably the partitional and hierarchical methods, for 
the purposes of clustering analysis. Therefore, choosing an appropriate algorithm that best reflects the 
intended performance of the clustering process while taking similarity measures and dataset topology 
into consideration is a difficult challenge for the interested user. In addition, no comprehensive 
empirically focused investigation on the effectiveness and performance of clustering and the optimal 
combination (i.e., clustering method and similarity measure) has been conducted over a variety of 
datasets from various domains (IR and non-IR). Finally, the vast majority of older publications avoided 
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the run-time comparison, which is very alluring for gauging clustering effectiveness. Given the above-
outlined challenges and limitations, in this research, the authors were motivated, to present a novel 
and highly competitive data clustering method, the NHC. Besides presenting the NHC, the authors 
conducted a thorough evaluation for the NHC vs. nine clustering algorithms utilizing four similarity 
measures over eight (small, middle, and large-sized) datasets. In addition, the authors employed four 
evaluation metrics, namely, purity, entropy, silhouette index (SI), and adjusted rand index (ARI), to 
assess performance. This research sought to provide a fair evaluation of all considered algorithms 
on datasets that are both textual (IR) and non-textual (non-IR).

Methodology

In this section, the authros describe the proposed NHC algorithm in detail and the tools needed to 
run experiments, including algorithms compared, similarity measures, dataset descriptions, and 
evaluation metrics.

The Proposed NHC Algorithm
The NHC method is built to act hierarchically while taking the surroundings of each data point into 
account at each stage of the clustering process. Through computational means, the target dataset’s 
similarity measure matrix is used to obtain the neighborhood definition. Assuming a dataset D with 
a point collection P = {P1, P2, …, Pn}, where n is the total number of data points (i.e., size (D)), 
regardless of the types of the target points (e.g., text or numerical), after encoding data points in the 
viable system model, the first stage of the NHC is to compute the similarity matrix SM:

SSP SM
i

N

j

M i

ij
=

= =

−

∑∑� �
1 1

	 (1)

Then, using the similarity summation of all pairwise SSP, the next step is to compute the 
threshold Thv, using which the point’s neighboring property is decided. The threshold value can be 
found using SSP as follows:
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Then, to construct the neighboring matrix, each data point’s value P must exceed Thv to be 
defined as a neighboring point, and thus the point cell will be marked by value of “1;” otherwise, it 
is zero value. Equation 4 draws the neighboring matrix NM of points (i.e., Pi and Pj):
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Definition One: The neighborhood of point Pi is  NP P
i( ) , which is defined as follows:

NP P P P C P P C P NLM P P Thv whereh j
i i i j j i i j( ) = ∈ ( )∧ ∈ ( )∧ ( ) ≥ ≥{ | , ; ≥≥ 1} 	 (5)

where C P
j( )  and C P

i( )  signify that both Pi and Pj have already been placed in the same cluster, 
and their NLM value is greater than Thv which is decided by Equation 4. The parameter h is the 
maximum number of neighbors of point Pi.

Definition Two: Let P be the group of N points in D; for any point PiÎP, there exists a specific 
number h < n such that:

Neighbor P p
i

j

h

j
� �( ) =

=1
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where Pj ≠ ϕ, for j=1,.., h; and |Pj|=h≠0 (h<n as |Pj |< |P|) is the number of neighbors of Pi.

Definition Three: Using the NM matrix, the link matrix will be constructed by multiplying NM and 
its transpose matrix to create all possible links between each point in D and its neighbors, as 
given in Equation 7:

LM NM NMT= ×   	 (7)

The link degree, in the LM matrix, further expresses the strength of the connection degree between 
each point Pi and its neighbors. In other words, it reflects the mutual neighbor degree between each point 
Pi and the points in its neighborhood. The maximum the link degree is between Pi and Pj, the highly likely 
to have Pj a neighbor of Pi. This step would help to group the most similar points in one cluster, and isolate 
in other clusters those points whose similarities are either weak or do not reach the data-driven threshold.

Remark One: LM (Pi) reflects the connection strength between Pi and those points in its neighborhood. 
The larger the LM (Pi) is, the stronger the connection degree (and then the higher the similarity 
based on CSM) between Pi and all its neighbors.

Definition Four: The combined similarity matrix (CSM, see Equation 8) of link and similarity matrices 
(assuming LM is already normalized to have a normalized matrix NLM) is defined as follows:

CSM SM NLM= × + ×     α β 	 (8)

The values of both parameters a  and b  are determined by the next definition:

values and
SM NLM

Otherwise
� � � �
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
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0 33 0 67
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�	 (9)

The authors did not choose a  and b  parameters’ values (0.67 and 0.33) at random. To get the 
highest potential performance for clustering solutions, they conducted a detailed experimental research 
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on both numerical and textual datasets with all conceivable values (i.e., 0.5 and 0.5). As the findings 
below show, although values of (0.5, 0.5) give a competitive performance in certain circumstances, 
values (0.67 and 0.33) give a higher performance in most cases. According to the values of each 
component of the equation, both a  and b  are assigned the values (0.67 and 0.33) interchangeably, 
depending on which one is the maximum (0.67) or minimum part (0.33). The rationale behind this 
assignment is to maximize the similarity between each pair (so the max part of the equation is further 
maximized, “rewarded”) so that each region (clusters in the region) will contain only and only those 
points of the highest similarity. Each point pair in CSM can therefore be shown as having the highest 
nearest neighbor connection, as they are already closer and more similar.

Remark Two: The CSM of Pi is proportional to both or either part of the CSM equation. Both parts are 
either link connection strength or similarity degree, which Equations 8 and 9 seek to maximize.

Clustering Process
After finding the CSM matrix, the clustering process will go as follows: Assuming P data points, P = 
{P1, P2, …, Pn}, where n is the number of the whole data points under consideration, the key aim is to 
construct clusters C = {C1, C2, C3, …, Cm}, where m is the number of all clusters. Initially, the value 
of m is dynamically left to the mechanism of the clustering algorithm without any restriction on the 
cluster size or width. Then, in the filtering phase, those clusters will be shrunk to m’, where m’< m. 
The goal is to find as few clusters as possible while maintaining them to be balanced, middle-sized, 
and highest density. Each Pi and Pj of the maximum value in the CSM matrix, in their respective vector 
of the CSM, will be selected from that vector (among N vectors) to establish clusters (as initial seeds) 
one by one. To consider the pair to establish a cluster, their CSM value must exceed the threshold 
value, which is set, according to the authors’ experimental study, at 45%. In other words, the CSM’s 
value must be greater than, or equal to, 0.45, leading to having a smaller number of clusters than those 
produced by AHC. This step contributes effectively in reducing the hierarchical complexity, as the 
AHC suffers the initial number of clusters “N” which is equal to the size D. While the first pair (e.g., 
Pi and Pj) will create the first cluster, each successive pair will either join the first cluster or create a 
new one, just like in the AHC. These pairs are considered the centers of their clusters, using which 
all members/points will be pulled into those clusters hierarchically. On the other hand, these pairs 
and the already-allocated points are not allowed to be reconsidered as centers or even recontained 
in any succeeding cluster. It is a kind of rough clustering, as each point belongs to only one cluster. 
Such a procedure, besides the threshold mechanism and merging/filtering technique, contributes to 
reducing the clustering time to less than that consumed by the AHC. The authors’ findings show 
that the NHC has a smaller runtime than most of the hierarchical clustering algorithms used in the 
comparison study.

Filtering Process
The ultimate aim of the filtering process is to produce m’ clusters (m’ < m) in which the data points 
have the strongest connection. This process seeks to merge some clusters while maintaining others 
unmerged. Yet, the decision to merge or leave the cluster unmerged needs to be made statistically 
to ensure that the NHC’s performance is kept uncompromised. To merge cluster Ck over cluster 
collection C, Ck’s points will be distributed the same way initial clustering was done. Each point will 
be assigned to the cluster whose centers’ connection is the strongest. A data-driven threshold called 
the split-cluster threshold SCT is used to declare the decision. The SCT is computed by taking the 
average size of all clusters produced. Then, for any cluster Ck, where K < m, whose size is less than 
SCT, Ck will be scattered over all other clusters whose size is bigger than SCT (Equation 10):
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Experimental Setup

In this section, the authors draw the experimental setup, including the models compared (either hierarchical 
or partitional ones), the similarity measures, dataset descriptions, and finally evaluation metrics.

Algorithms Compared
The NHC algorithm is assessed against nine clustering algorithms; three of them are traditional ones 
(i.e., AHC, k-means, and bisect k-means) and others are state-of-the-art (SOTA) rivals, with some of 
them being hierarchical and others being partitional. The algorithms are listed as follows.

Hierarchical Clustering Group
AHC is the standard algorithm of its kind, which is widely known in the clustering literature (Abdalla 
et al., 2023; Fernández & Gómez, 2021).

The NBC (Zhang et al., 2015) is an advanced hierarchical clustering algorithm using which the 
large dataset is divided into distinct groups using the nearest-neighbor boundary clustering algorithm, 
which then locates each point’s nearest neighbor inside the groupings. The authors’ experimental 
analysis shows that the NBC is faster than the AHC and the NHC and close to partitional clustering.

The NGHC (Zhang P. et al., 2019), depending on the gravitation of the local data, presents 
the hierarchical clustering strategy. According to the results, the NGHC, NHC, and GCC function 
similarly in a few instances.

The CDC (Kuwil et al., 2019) features a straightforward but adaptable design. The CDC 
performed marginally better than its competitors, MST-based clustering, k-means, and Dbscan. The 
fundamental advantage of the CDC is that no parameters in advance are required. However, the 
CDC has been ineffective and inefficient when dealing with large datasets. The CDC was created 
to function better with smaller datasets. Based on the authors’ experimental results, the CDC has a 
competitive performance with NHC over small datasets, yet is inferior (even to AHC and k-means) 
over big datasets.

Partitional Clustering Group
K-means is the well-known approach from the clustering literature that the authors applied in this study.

Bisect k-means (Zhang W. et al., 2019), the k-means variant, is the bisecting k-means algorithm 
that starts with a single cluster of all the points, similar to the AHC. In this investigation, the authors: 
(1) Selected a cluster to split, which was the cluster with the highest SSE for the subsequent division; 
(2) using the fundamental k-means approach, they identified two subclusters during the bisecting 
step; (3) they performed step two 10 times; then, they took the division that produced the clustering 
of the highest similarity; (4) they repeated steps 1–3 till the k clusters were met.

It is important to note that there have been several methods for determining which cluster should 
be divided in each phase. For instance, the cluster with the greatest size, the cluster with the least 
overall similarity, or the cluster with the highest SSE, which the authors used in their approach. The 
authors investigated each situation and discovered that the greatest SSE scenario produced the best 
bisect k-means results.

The GCC (Kuwil et al., 2017) is a gravity center clustering presented as an advanced version 
of the CDC to tackle the CDS’s limitation over middle-sized and big datasets. Experiments show 
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that the GCC behaves better than the k-means and bisect k-means in most cases. On the other hand, 
according to the results, the GCC has comparable efficacy with the AHC and the kCC in some cases.

The kCC (Hussain & Haris, 2019) is an advanced variant of k-means that comes to solve the 
initialization step of k-means. Results show that the kCC has highly competitive performance compared 
with the GCC and the NHC.

The Vector Space Model and Term Weighting
To make numerical datasets feasible to handle, the datasets are transformed into data vectors 
represented in matrices similar to the viable system model. The chosen numerical datasets, as published 
by UCI, do not have any missing values and do not need any preprocessing because they are made 
to allow for clear and direct clustering. On the other hand, the textual datasets are transformed into 
data vectors, which are represented as features in the vector space model (Abdalla & Amer, 2021). 
The weight of each feature is expressed using the TF-IDF weighting schema.

The Similarity Measures
Euclidean distance (Euc), using the frequency of N terms that would represent the N dimension, 
treats each feature as a point in 2D space. Based on Equation 1, Euclidean distance computes the 
relationship between each pair of points (x, y) in this space using their coordinates:

D x y x y x y xn yn
Euc

, ) ) )( ) = ∑ − + − +… −1 1 2 22 2 2 	 (11)

Cosine similarity (Equation 12), using the dot product and the magnitude of both vectors of both 
points (x, y), calculates the pairwise similarity between each pair of points:
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Manhattan (Man) calculates the total absolute differences in the vector coordinates of the two 
points; it is how defined as follows:

Manhattan distance x y x y
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The KL in Equation 14 seeks to identify the difference between the probability distributions:
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Datasets Description
Tables 1 and 2 show the characteristics of the corpus the authors used (IR and non-IR datasets) in 
this study.
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Evaluation Metrics
Data clustering includes two kinds of evaluation metrics, namely, internal and external, or intrinsic 
and extrinsic metrics. The internal metrics are used to signal how well the clustering algorithm 
optimized a particular representation, as these metrics depend highly on the feature representations. 
Accordingly, internal metrics cannot be used for comparison between different representations. 
In other words, the internal metrics address the separation and cohesion of clusters. However, as 
advantages of these metrics, they do not ask for the labels. In this study, the authors used the SI as 
a representative of these metrics. The SI computes how much similarity each data point has to its 
cluster (cohesion) compared with the different clusters (separation). Simply put, the SI is computed 
using the mean intracluster distance and the mean nearest-cluster distance for each data point in the 
relevant cluster. Its value is restricted between 1 and -1, where 1 is the best value and -1 is the worst 
value. SI is defined by the next formula:

SI
i n

i n
=

−

( )max ,
	 (15)

where i is the mean intracluster distance and n is the mean nearest cluster distance. A silhouette 
cluster needs at least two clusters to be calculated.

In contrast, the external metrics compare the clustering to an external knowledge source such as 
labels. Entropy, purity, and ARI are examples of these metrics that the authors used in this research.

Purity (Pu) is defined as the fraction of the entire number of data points that are classified 
correctly and computed in the following Equation:
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=
∑
1
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i
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j i j
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�
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Table 1. Non-IR Datasets Description, UCI Repository

Dataset Dataset 
ID Source #attributes #instances

Glass D1 https://archive.ics.uci.edu/ml/datasets/glass+identification 10 214

Iris D2 http://archive.ics.uci.edu/ml/datasets/Iris/ 4 150

Wholesale D3 https://archive.ics.uci.edu/ml/datasets/wholesale+customers 8 440

Wine D4 https://archive.ics.uci.edu/ml/datasets/wine 13 178

Table 2. IR Datasets Description

Dataset Dataset 
ID Source #documents #classes #words

BBC D5 http://mlg.ucd.ie/datasets/bbc.html 2225 5 9635

Hitech D6 http://sites.labic.icmc.usp.br/ text _ collections/ 2301 6 12,942

Computers D7 http://sites.labic.icmc.usp.br/ text _ collections/ 9500 19 5011

Web-KB D8
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/
www/wwkb/index.html 4199 4 33025

https://archive.ics.uci.edu/ml/datasets/glass+identification
http://archive.ics.uci.edu/ml/datasets/Iris/
https://archive.ics.uci.edu/ml/datasets/wholesale+customers
https://archive.ics.uci.edu/ml/datasets/wine
http://mlg.ucd.ie/datasets/bbc.html
http://sites.labic.icmc.usp.br/
http://sites.labic.icmc.usp.br/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/index.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/index.html
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The best value of purity is 1, and the worst value is 0. The highest purity value is 1, which 
indicates that each document is already in its cluster, and the worst value is 0.

Entropy (Ent), on the other hand, is used to measure the extent to which a cluster contains a 
single class and not multiple classes. It is formulated as follows:

Ent c c
i

c

i i
= ( )

=∑� * log �
� �1

	 (17)

Unlike purity, the best value of entropy is 0, and the worst value is 1. Finally, the ARI accounts 
for the adjustments in the rand index, which finds the similarity between the true labels and the 
predicted labels of clusters. It is defined as follows:

ARI
n n

n n n n
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+ + +
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�11 00
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where n
11

 signals the number of data pairs which are in the same cluster, n
00
� gives the number of 

data pairs which are not in the same cluster(s), n
10

 gives the number of data pairs which are in the 
certain cluster (e.g., A), but in other cluster (e.g., B), and finally, n

01
 gives the number of data pairs 

which are in the certain cluster (e.g., B), but in other cluster (e.g., A). The ARI value is restricted 
between 0 and 1, where 1 signals the perfect match between true and predicted clusters.

Results

Using k {2, 4, 8, 16, and 32} as the number of clusters, the following Tables 3—12 contain the 
experimental findings of all tests the authors performed over the target datasets. This section includes 
two subsections, which detail the first and second evaluation phase, respectively. In the first evaluation 
phase, the authors compared the NHC against the AHC, k-means, and bisect k-means (Tables 3–10). In 
the second evaluation phase, the authors compared the NHC against relevant SOTA algorithms(Tables 
11 and 12). The bold values in Tables 3—12 represent the relative clustering algorithm’s highest 
performance for each measurement on the associated dataset. In each table, if the relative algorithm 
gives the same value for any metric using both measures, all values are bolded in this case.

First Evaluation Phase
Table 3 shows that partitional clustering with purity is the best (the NHC is better than the AHC, 
though). Hierarchical with entropy is better than partitional (with the NHC being the best). While 
the AHC is the worst, the NHC has competitive performance with partitional concerns concerning 
ARI and SI.

Just like Table 3, Table 4 shows that partitional clustering with purity is the best (the NHC is still 
better than the AHC, though). However, hierarchical clustering with entropy is still outperforming 
partitional ones (with the NHC being the best). While the NHC is the best in most cases, the AHC 
has competitive performance with partitional concerns concerning ARI. With SI, k-means, followed 
by the NHC, have the best performance.

Unlike glass and IRIS, the results of wholesale in Table 5 show that hierarchical clustering with 
purity is better than partitional ones. However, partitional with entropy is the best.

Unlike glass, IRIS, and wholesale, Table 6 proves that hierarchical clustering with purity and 
entropy outperforms partitional clustering. The partitional clustering with the ARI is the best. In 
general, the NHC with Manhattan and Euclidean has outstanding performance. The NHC achieves 
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the hybrid performance of both hierarchical and partitional clustering algorithms in most cases. Over 
small datasets, the NHC shows good performance compared with its traditional rivals.

Excluding entropy in which the NHC has outstanding performance, Tables 7 and 8 allow to 
conclude that partitional clustering is better than hierarchical clustering. With text datasets, in general, 
partitional clustering outperforms hierarchical clustering in terms of purity and SI, yet it outperforms 
hierarchical clustering with entropy. In both cases, the NHC and bisect k-means are better than the 
AHC and k-means in most cases.

Table 3. Averaged Results of K (2, 4, 8, and 16) Over Glass

Metric/ 
Algorithm

AHC K-means Bi-sect Kmeans NHC

Pu Ent ARI SI Pu Ent ARI SI Pu Ent ARI SI Pu Ent ARI SI

Euc 0.55 3.50 0.278 0.113 0.697 4.92 0.397 0.563 0.687 4.92 0.379 0.563 0.597 3.01 0.379 0.313

Cosine 0.50 4.65 0.244 -0.040 0.752 5.02 0.415 0.729 0.794 4.99 0.544 0.648 0.552 4.31 0.440 -0.091

KL 0.41 2.30 0.060 0.015 0.704 4.73 0.352 0.147 0.718 5.02 0.455 0.090 0.504 2.24 0.351 0.190

Man 0.51 3.55 0.236 0.148 0.711 4.90 0.418 0.532 0.691 4.93 0.383 0.531 0.511 3.22 0.279 0.221

Table 4. Averaged Results of K (2, 4, 8, and 16) Over IRIS

Metric/ 
Algorithm

AHC K-means Bi-sect K-means NHC

Pu Ent ARI SI Pu Ent ARI SI Pu Ent ARI SI Pu Ent ARI SI

Euc 0.68 3.89 0.556 0.342 0.842 4.47 0.518 0.464 0.833 4.62 0.537 0.491 0.693 3.420 0.576 0.354

Cosine 0.67 4.31 0.547 0.619 0.864 4.632 0.630 0.682 0.794 4.99 0.544 0.648 0.691 4.337 0.550 0.648

KL 0.67 4.57 0.531 0.763 0.862 4.441 0.617 0.704 0.857 4.607 0.596 0.702 0.710 4.341 0.560 0.779

Man 0.69 3.92 0.557 0.349 0.842 4.706 0.547 0.498 0.691 4.93 0.383 0.531 0.699 3.901 0.550 0.360

Table 5. Averaged Results of K (2, 4, 8, and 16) Over Wholesale

Metric/ 
Algorithm

AHC K-means Bi-sect Kmeans NHC

Pu Ent ARI SI Pu Ent ARI SI Pu Ent ARI SI Pu Ent ARI SI

Euc 0.682 0.981 0.007 0.730 0.018 5.818 0.001 0.395 0.017 5.863 1.308 0.355 0.699 0.930 0.012 0.751

Cosine 0.677 0.940 -0.01 0.013 0.021 5.587 0.001 0.604 0.020 5.710 2.290 0.512 0.679 0.922 -0.01 0.040

KL 0.677 0.940 -0.01 0.123 0.020 5.588 0.001 0.508 0.021 5.708 0.000 0.492 0.672 0.909 -0.01 0.120

Man 0.682 0.969 0.007 0.719 0.017 5.291 0.000 0.401 0.019 5.85 0.000 0.324 0.687 0.952 0.031 0.730

Table 6. Averaged Results of K (2, 4, 8, and 16) Over Wine

Metric/ 
Algorithm

AHC K-means Bi-sect Kmeans NHC

Pu Ent ARI SI Pu Ent ARI SI Pu Ent ARI SI Pu Ent ARI SI

Euc 0.398 2.66 -0.0 0.368 0.056 4.621 0.001 0.368 0.058 4.848 -4.61 0.378 0.402 2.002 -0.0 0.379

Cosine 0.404 1.26 -0.0 -0.13 0.056 4.607 0.001 0.455 0.056 4.663 0.001 0.381 0.410 1.503 -0.0 -0.17

KL 0.40 1.63 -0.1 0.03 0.06 4.84 0.01 0.46 0.06 4.89 0.005 0.4141 0.4082 1.6881 -0.0 0.0320

Man 0.422 0.94 -0.0 0.43 0.059 4.61 0.01 0.33 0.06 4.84 0.001 0.3194 0.4310 0.9045 -0.0 0.4405
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Unlike Table 8, results in Table 9 show that the NHC is highly competitive with partitional 
clustering in terms of purity and SI. However, the NHC is still superior regarding entropy.

Results in Table 10 show that the NHC is highly competitive with partitional clustering in terms of 
purity, yet inferior regarding SI. However, just like in Tables 7—9, the NHC is still superior regarding 
entropy. It is worth noting that, over IR datasets, the NHC is inferior to partitional algorithms with 
any metric over any dataset, and it is possible to note that the NHC is still better than its hierarchical 
rivals in most cases.

Second Evaluation Phase
To evade overloading this work with detailed results, the authors used Euclidean for the second phase 
of evaluation as all SOTA algorithms used Euclidean in their works. For the number of clusters, the 
authors used the same k values over each corresponding dataset as given in the first phase of evaluation. 
It is worth indicating that the authors used the parameter settings in all compared algorithms as drawn 
in their published papers.

Table 11 evidences that the NHC and the NGHC have similar performance trends, chiefly over 
small datasets. In general, the NGHC is better than the GCC and the NBC, yet slightly inferior to the 

Table 7. Averaged Results of K (4, 8, 16, and 32) Over BCC

Metric/ 
Algorithm

Purity Entropy SI

AHC k-means Bisect-
k-means NHC AHC k-means Bisect-

k-means NHC AHC k-means Bisect-
k-means NHC

Euclidean 0.2356 0.8561 0.7966 0.2366 2.1552 7.3761 7.4535 2.0052 -0.0039 0.0135 0.0121 -0.0131

Cosine 0.2356 0.8539 0.8747 0.2396 2.1552 7.3987 7.4319 2.0052 -0.0079 0.0261 0.0225 0.0272

KL 0.2346 0.2351 0.2357 0.2376 2.1552 2.2047 7.7055 2.1542 0.0 0.0 0.0 0.0

Manhattan 0.2360 0.4348 0.6081 0.2368 2.1709 7.6329 7.5702 2.1712 0.2577 0.0481 0.0083 0.2577

Table 8. Averaged Results of K (4, 8, 16, and 32) Over Computers

Metric/ 
Algorithm

Purity Entropy SI

AHC k-means Bisect-
k-means NHC AHC k-means Bisect-

k-means NHC AHC k-means Bisect-
k-means NHC

Euclidean 0.0541 0.1453 0.1733 0.0582 2.1584 6.8965 8.9251 2.0280 0.4634 -0.0225 -0.0207 0.4901

Cosine 0.0541 0.3126 0.3074 0.0590 2.1552 8.8794 8.8845 2.0276 0.0 0.0 0.0 0.0

KL 0.0541 0.0542 0.0542 0.0542 2.1552 2.3268 9.1585 2.1370 0.0 0.0 0.0 0.0

Manhattan 0.0542 0.1151 0.1166 0.0566 2.1689 9.1259 9.0461 2.1690 0.5677 0.0399 0.0497 0.5677

Table 9. Averaged Results of K (4, 8, 16, and 32) Over Hitech

Metric/ 
Algorithm

Purity Entropy SI

AHC k-means Bisect-
k-means NHC AHC k-means Bisect-

k-means NHC AHC k-means Bisect-
k-means NHC

Euclidean 0.2664 0.2854 0.3307 0.2783 2.1552 7.7083 7.6827 2.1002 0.5838 -0.0589 -0.0083 0.5903

Cosine 0.2676 0.5571 0.5693 0.2770 2.1920 7.5228 7.4589 2.1919 -0.0071 0.0203 0.0176 -0.0040

KL 0.2681 0.2664 0.2664 0.2801 2.1552 2.1552 7.7393 2.0098 0.0 0.0 0.0 0.0

Manhattan 0.2660 0.2610 0.2600 0.2660 2.1552 7.7379 7.7373 2.1544 0.6555 0.1878 0.1944 0.6555
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NHC in most cases. On the other hand, the kCC has competitive performance compared to the NHC 
in terms of SI and purity, yet is greatly inferior to the NHC in entropy.

Table 12 shows that the NGHC is competitive with the GCC and the kCC regarding purity. The 
NGHC and the NHC are superior to all rivals regarding entropy. Finally, both the GCC and the NHC 
have the best performance with SI. The authors could also infer that there is no dominant clustering 
algorithm over all datasets with all evaluation metrics. Nevertheless, based on the discussion of results 
in Tables 11 and 12, it is possible to note that the NGHC, NHC, and kCC are superior algorithms 
in the great majority.

Overall, the NBC has almost equivalent performance to the AHC. These findings are consistent 
with Zhang et al.’s (2015) findings. The authors’ experimental analysis shows that the NBC is by far 
faster than the AHC and significantly faster than the NHC (Figures 3 and 4). Further, according to the 
results, the NGHC, NHC, and GCC function similarly in a few instances. On the other hand, except 
for Hitech, the CDC is inferior to all hierarchical clustering algorithms. The degraded performance 

Table 10. Averaged Results of K (4, 8, 16, and 32) Over Web-KB

Metric/ 
Algorithm

Purity Entropy SI

AHC k-means Bisect-k-
means NHC AHC k-means Bisect-k-

means NHC AHC k-means Bisect-k-
means NHC

Euclidean 0.391 0.652 0.677 0.401 2.158 7.999 8.104 2.083 0.001 0.009 0.008 0.001

Cosine 0.391 0.679 0.683 0.401 2.158 7.997 8.036 2.159 0.001 0.019 0.012 0.011

KL 0.393 0.393 0.392 0.401 2.155 3.084 8.339 2.026 0.002 0.002 0.001 0.000

Manhattan 0.393 0.397 0.399 0.408 2.256 5.140 8.338 2.054 0.428 0.134 0.124 0.430

Table 11. NHC Against SOTA Clustering Algorithms Using Euclidean Over Small Datasets

Purity Entropy SI

N
BC

N
G

H
C

C
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G
C

C
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C
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N
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C
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K
C

C

N
H
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N
BC

N
G

H
C

C
D

C

G
C

C

K
C

C

N
H

C

D1 0.55 0.59 0.55 0.69 0.69 0.60 3.39 3.01 3.39 4.878 4.90 3.001 0.121 0.30 0.17 0.56 0.56 0.31

D2 0.68 0.69 0.69 0.82 0.82 0.69 3.69 3.42 3.41 4.49 4.55 3.42 0.320 0.35 0.31 0.44 0.52 0.35

D3 0.68 0.68 0.68 0.01 0.01 0.70 0.98 0.93 0.98 5.93 5.99 0.93 0.731 0.74 0.73 0.39 0.31 0.75

D4 0.39 0.40 0.39 0.05 0.06 0.49 2.66 2.44 2.65 4.50 4.590 2.004 0.35 0.36 0.35 0.37 0.38 0.38

#Win 0 0 0 1 1 2 0 1 0 0 0 3 0 0 0 0 2 2

Table 12. NHC Against SOTA Clustering Algorithms Using Euclidean Over IR Datasets

Purity Entropy SI
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D5 0.22 0.23 0.21 0.85 0.78 0.25 2.13 2.00 4.39 7.20 7.53 2.01 -0.00 -0.01 -0.03 0.014 0.010 -0.01

D7 0.05 0.05 0.04 0.14 0.18 0.06 2.21 2.31 5.64 6.12 9.03 2.13 0.458 0.461 0.411 -0.02 -0.01 0.490

D6 0.26 0.28 0.27 0.28 0.33 0.28 2.15 2.10 3.01 7.10 6.09 2.10 0.589 0.590 0.584 -0.05 -0.01 0.590

D8 0.39 0.39 0.37 0.64 0.65 0.40 2.14 2.17 4.65 7.10 7.01 2.08 0.000 0.001 0.001 0.009 0.008 0.001

#Win 0 2 0 1 3 0 0 2 0 0 0 3 0 0 0 2 0 2
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of the the CDC, chiefly over big datasets, is due to the fact that the CDC was devised to function 
better with smaller datasets. Based on the authors’ experimental results, the CDC has had competitive 
performance with the NHC over small datasets but is inferior (even to the AHC and k-means) over 
big datasets. The authors also noted that, unlike partitional algorithms, hierarchical clustering has 
stable results over all datasets.

Moreover, experiments show that the GCC behaves better than k-means and bisect k-means, in 
most cases. Finally, given its competitive results, the kCC (Hussain & Haris, 2019) has experimentally 
proven its power to solve the initialization step of k-means. Results show that the kCC has comparable 
performance compared with both the GCC and the NHC. Overall, the best clustering variations are 
the NHC as a hierarchical-based algorithm and the kCC as a partitional type.

Discussion

Based on their experimental study, the authors found that hierarchical clustering has a competitive 
performance; however, in most cases, it has shown poor performance (excluding the NHC) on both 
non-IR and IR datasets compared with the GCC and the kCC. That is because of the hierarchical 
nature, which makes it unable to fix any mistakes that would happen while clustering the documents, as 
Fernández & Gómez. (2021) and Zhu et al. (2018) discussed. On the other hand, partitional clustering 
(e.g., k-means and bisect-k-means) also has some deficits, which the GCC and the kCC come to 
cover. Among these deficits are the centroid initialization, and in practice, k-means sometimes fails 
to produce the desired number of clusters or secure the clusters that meet the document classes. On 
the other extreme, according to the authors’ experiments, the bisecting k-means and kCC have been 
able to produce clusters of almost uniform sizes when k-means and the GCC produced clusters of 
different sizes.

These key characteristics make bisecting k-means and the kCC the best options for big data 
clustering, when partitional clustering is under consideration. As a compromised solution, the authors 
empirically found that the NHC algorithm is highly attractive, combining the robust architecture of 
hierarchical clustering with the good performance of partitional ones. Experimental results obtained 
in this work confirm the authors’ claims, as the NHC has produced a competitive performance that 
outperforms both hierarchical partitional algorithms in most cases. It is worth indicating that, during 
experimental evaluation, the authors found that both K-means and bisecting k-means were faster than 
both the NHC and the AHC, with bisecting k-means being the fastest clustering algorithm. This is 
another characteristic that makes the bisecting k-means a better option for clustering big data. Thus, 
one of the authors’ ultimate aims for the next work is to make the NHC as efficient as possible.

Run Time Comparison
In this subsection, the authors briefly draw a comparison between all algorithms in terms of their 
run time on the non-IR datasets. If the algorithm has been slow or fast on this type of dataset, this 
would surely mean that this algorithm is slow or fast on IR datasets as well. As a result, the authors 
restricted the comparison to non-IR datasets to robustly conclude the fast and slowest algorithm. 
They selected the IRIS and glass datasets for this comparison.

First, they conducted a comparative analysis of the NHC against its traditional rivals (i.e., AHC, 
k-means, and bisect k-means). With regard to the first phase of evaluation, Figures 1 and 2 illustrate the 
averaged run time in seconds of four algorithms (i.e., AHC, NHC, k-means, and bisect k-means) for 
three k values (i.e., 2, 4, and 8). The results show that the NHC could be used to address the quadratic 
run time of hierarchical clustering. The NHC seems to be significantly close to partitional ones, chiefly 
k-means. However, bisect k-means is the fastest algorithm when the AHC is the lowest one. As to the 
impact of similarity measure, it is possible to conclude that cosine contributes significantly to the 
degraded speed of all algorithms, which is in contrast to the Euclidean and Manhattan contributions. 
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While Manhattan has the most positive role in the efficiency of algorithms, KL, on the other hand, 
has been able to draw itself as a compromised solution between cosine and Euclidean.

On the other hand, with regard to the second phase of evaluation, Figures 3 and 4 show the 
averaged run time in seconds of nine algorithms (i.e., AHC, NBC, NHGC, CDC, NHC, k-means, 
bisect k-means, GCC, and kCC) for three k values (i.e., 2, 4, and 8). The findings in Figures 1–4 
showcase that the AHC, followed by the CDC, NGHC, and NHC, are the slowest algorithms when 
the bisecting k-means, followed by k-means and the kCC, are the fastest. Surprisingly, the NBC 
is seen as the compromised solution between hierarchical and partitional algorithms, as it is the 
second-fastest one after the bisect k-means. The bisect k-means has been seen as the fastest because 
of its attractive mechanism, as it always works in one single cluster in each successive iteration. This 
comes in contrast to the k-means and kCC, which always work on the whole dataset in each iteration. 
Finally, it is noted that Euclidean-based algorithms are faster than cosine-based algorithms, since 
Euclidean is faster than cosine.

In brief, hierarchical clustering has shown competitive performance on non-IR datasets. However, 
in most cases, excluding the NHC, hierarchical clustering has shown poor performance on the IR 
dataset, compared with both the kCC and bisecting K-means. This is because of the nature of the 
AHC, which makes it unable to fix any mistakes that would happen while clustering the documents, 
as Fernández & Gómez. (2021) and Zhu et al. (2018) discussed. Such a limitation has been addressed 
by considering both local and global information about each point in the NHC using the NLM matrix. 

Figure 1. Run Time in Second, Glass Dataset

Figure 2. Run Time in Second, IRIS Dataset
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This is one reason behind the competitive performance of the NHC. On the other hand, the k-means 
and bisect k-means also have some deficits, which the GCC and kCC come to address. Among these 
deficits are the centroid initialization, and, in practice, k-means sometimes fails to either produce 
the desired number of clusters or the clusters that meet the document classes. On the other extreme, 
according to the authors’ experiments, the bisecting k-means were able to produce clusters of almost 
uniform sizes when k-means produced clusters of different sizes. These key characteristics make 
the bisecting k-means even better than the kCC and GCC for document clustering when partitional 
clustering is under consideration. Finally, it is worth indicating that, during experimental evaluation, 
the authors found that partitional clustering was faster than hierarchical ones, with the bisect k-means 
being the fastest clustering algorithm. This is another characteristic that makes the bisecting k-means 
a better option for clustering big data in particular.

On the other hand, unlike hierarchical clustering algorithms, which only address the local 
neighbors at each clustering step, the NHC, via the NLM matrix, considers both the local and global 
neighbors, making it effectively successful in separating the overlapping clusters with both small 
and big datasets. Finally, the authors conducted a rigorous run-time comparison on two small non-IR 
datasets between all algorithms; the statistics of the comparisons showed that the bisecting clustering 
was the fastest algorithm, while the AHC algorithm was the slowest. Moreover, the Euclidean-based 
algorithms were faster than those that used the cosine similarity measure.

Comment on the Behavior of Clustering Algorithms
In this study, hierarchical clustering demonstrated competitive performance on non-IR datasets. 
However, in most situations, except for the NHC, hierarchical clustering performed poorly 

Figure 3. Run Time in Second, Glass Dataset

Figure 4. Run Time in Second, IRIS Dataset
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on the IR dataset, when compared to both the kCC and bisecting k-means. This is due to the 
nature of the AHC, which makes it unable to correct any errors that may occur during clustering 
documents (Fernández & Gómez, 2021; Zhu et al., 2018). The authors used the NLM matrix 
to account for both local and global information regarding each point in the NHC, addressing 
this constraint. This is one of the reasons for the NHC’s strong competitive success. On the 
other hand, the k-means and bisect k-means have several shortcomings that the GCC and kCC 
attempt to overcome. Among these shortcomings is centroid initialization, and, in reality, the 
k-means occasionally fails to yield either the appropriate number of clusters or clusters that 
meet the document classes. On the other hand, the authors’ investigations showed that the 
bisecting k-means might yield clusters of nearly uniform sizes, when the k-means produced 
clusters of varying sizes (Steinbach et al., 2000). These fundamental qualities make the bisecting 
k-means superior to the kCC and GCC for document clustering, when partitional clustering 
is taken into account. Finally, during the experimental evaluation, the authors discovered that 
partitional clustering was faster than hierarchical clustering, with the bisect k-means being 
the fastest clustering algorithm. This is another feature that makes the bisecting k-means a 
superior choice for clustering large datasets.

Most notably, hierarchical clustering is commonly regarded as clustering of higher quality, 
although it is limited due to its “quadratic” time complexity. In contrast, the k-means and its derivatives 
have a linear time complexity, but are depicted as having inferior clusters. Driven by these arguments, 
this work delivers a detailed comparative empirically-oriented analysis on both document and 
nondocument data, setting it apart from previous efforts, particularly when nine clustering algorithms 
and four similarity metrics are used. The study intends to confirm or deny these assertions about which 
similarity measure will give the highest performance on these algorithms based on the results and 
discussion below. It is worth indicating that the ultimate aim of this study was to enrich the literature 
with a new, simple, yet robust, and dynamic clustering algorithm to further enhance and simplify the 
entire process of data clustering.

Merits and Limitations of the Neighboring-Aware 
Hierarchical-Based Clustering Approach
Merits
Unlike hierarchical clustering algorithms, which only address the local neighbors at each clustering 
step, the NHC via the NLM matrix considers both the local and global neighbors, making it effectively 
successful in separating overlapping clusters with both small and big datasets. It is worth considering 
that, overall, the NHC achieves the maximum silhouette coefficient and lowest entropy (with low 
standard deviations), which means that the NHC has the power to find the optimal number of clusters. 
Moreover, the maximum silhouette coefficient value denotes the well-separated and compact clusters 
with the highest “possible” density.

Limitations
The NHC is similar to hierarchical clustering, which is usually thought of as the clustering of the 
better quality; it is restricted due to its “quadratic” time complexity. However, the NHC’s run time is 
still better than that of the AHC, NGHC, and CDC algorithms. Therefore, one of the authors’ future 
goals is to make the NHC as efficient as possible. Moreover, given that the scope of this study was 
limited to numerical and textual datasets, the authors did not run the NHC on different-topology 
datasets (i.e., image and gene datasets). Such implementation is out of the scope of this research, as 
all considered algorithms run only on either numerical or textual datasets, or even both. Thus, the 
authors plan to record its performance on as many different topology datasets as to make a universally 
applicable competitive clustering algorithm.
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Brief Insights and Recommendations
Based on the results and discussion on the target datasets above, the authors generally recommend the 
best similarity measure, according to the general averaged results, to be used so the corresponding 
evaluation metric would get its maximum performance.

Recommendations on non-IR datasets are: Cosine and Manhattan for purity, and Manhattan and 
KL for entropy; Euclidean and KL for SI; for the ARI, Euclidean, and cosine with k-means variations.

Recommendations on IR datasets are: Cosine and Euclidean for purity; KL and Manhattan for 
entropy; for SI, Euclidean and Manhattan have the best performance, chiefly with the NHC.

Future Research Directions

In their follow-up work, the authors plan to expand this study by leveraging parallel and distributed 
computing (Zhang W. et al., 2019) to make the NHC maximally efficient, while maintaining its 
efficacy, making the NHC effectively applicable for big datasets. Further, given that the performance 
of their proposed algorithm showed to be promising, the authors established it can be used in the 
future for several applications, including distributed database applications (Amer et al., 2020). Finally, 
despite using big datasets such as computers and Web-KB, the authors plan to further evaluate the 
NHC on bigger datasets.

Conclusion

In this study, the authors aimed to enrich the clustering literature with a new effective hierarchical 
clustering variation. The introduced variation is a straightforward, yet reliable, NHC. To determine the 
NHC’s effectiveness, the authors investigated the performance of the NHC along with nine clustering 
algorithms belonging to the hierarchical and partitional clustering types using four similarity measures 
and distance metrics (i.e., Euclidean distance, cosine similarity measure, KL, and Manhattan) over 
eight datasets. The authors diversified the datasets by taking them from different resources, including 
IR and ML repositories (e.g., UCI). Over these datasets of various sizes from various applications, the 
researchers carried out a thorough two-phase evaluation of the NHC, using various similarity metrics 
and distances. They first compared the NHC against three conventional clustering algorithms and 
empirically observed it was highly effective. Then, the authors tested the NHC against six relevant 
rivals, demonstrating its extremely competitive performance.

The experimental study showed that hierarchical clustering, including the NHC, has competitive 
performance on non-IR datasets. The authors developed the NHC to be universally applicable to 
any dataset of any kind. However, in most cases, excluding the NHC, hierarchical clustering has 
shown poor performance on the IR dataset, compared with both the kCC and bisecting k-means. 
Nevertheless, due to its effective design, the NHC, which is a hierarchical-driven algorithm, showed 
to be powerful and highly competitive, compared to all clustering algorithms, including the traditional 
and SOTA ones. On the other extreme, according to the authors’ experiments, besides being the fastest 
algorithm, the bisecting k-means was able to produce clusters of almost uniform sizes, when the 
k-means produced clusters of different sizes (Steinbach et al., 2000). These key characteristics make 
the bisecting k-means even better than the kCC and GCC for document clustering, when partitional 
clustering is under consideration. The results also evidenced that the dataset’s characteristics and 
similarity measures have a great impact on the performance of any clustering algorithm. For example, 
on small IR datasets (Tables 3—6), the k-means and bisect-k-means behaved better than both the 
AHC and NHC, excluding entropy. On the other hand, on the IR dataset, the NHC behaved the best 
in most cases, chiefly with entropy. The NHC generally behaved the best.
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