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ABSTRACT

With the expansion of the logistics network, enterprise logistics distribution faces increasing 
challenges, including high transportation costs, low distribution efficiency, and unstable distribution 
networks. To address these issues, this study focuses on optimizing enterprise logistics distribution 
using a double-layer (DL) model. In this paper, we propose a DL model for optimizing enterprise 
logistics distribution. The DL model is designed to find the optimal solution using the particle swarm 
optimization (PSO) algorithm. By leveraging location data from the region, the DL model evaluates 
and compares alternative distribution centers to determine the most efficient distribution strategy. The 
results demonstrate that the DL site selection model developed in this study effectively addresses the 
tasks of logistics center location and distribution optimization among alternative distribution centers. 
Comparison tests reveal that the distribution path proposed by the DL model is more accessible and 
cost-effective compared to alternative approaches.

KEywORDS
Double Layer Model, Logistics Enterprises, Path Planning, PSO

With the incessant evolution of technology, the logistics industry is undergoing profound 
transformations and innovations. The advent of novel technologies has opened expansive vistas and 
opportunities for the evolution of the logistics sector. Notably, the expeditious advancement of the 
Internet of things (IoT) technology has furnished more comprehensive data support and intelligent 
solutions for logistics management. IoT technology connects diverse physical devices to the Internet, 
facilitating seamless interconnection and information dissemination among these devices. Through 
the implementation of IoT technology, logistics companies can attain real-time monitoring and 
management across transportation vehicles, goods, and personnel (Tsai & Wang, 2019; Xu et al., 
2023). This not only enhances the efficiency of logistics transportation but also ensures the safety 
and stability of goods, thereby providing logistics companies with more dependable and efficient 
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operational methodologies. Simultaneously, the integration of artificial intelligence (AI) technology 
has found widespread application in the logistics industry. Overall, the progression of IoT and AI 
technologies will usher in more innovation and breakthroughs for the logistics industry, propelling 
its advancement toward intelligence and digitization (Ślusarczyk et al., 2020; Xu et al., 2022).

AI technology can adeptly process and analyze vast volumes of data, furnishing logistics 
enterprises with more precise and efficacious decision support. Through the implementation of 
AI technology, logistics enterprises can actualize intelligent prediction and scheduling of goods, 
optimizing capacity utilization and resource allocation in the transportation process (Li et al., 
2020; Woschank et al., 2020). Additionally, emerging technologies like drones and autonomous 
driving extend the horizons for the logistics industry. Drones enable swift transportation of 
goods, significantly enhancing the efficiency of logistics distribution, while autonomous 
driving technology facilitates self-directed control and management of vehicles, thereby 
improving the safety and stability of transportation. Technological advancement in the logistics 
industry is profound, exerting extensive impact and inducing transformative changes. With the 
continual emergence and integration of novel technologies, the logistics industry is poised for 
accelerated and efficient development. Consequently, logistics enterprises must promptly seize 
the opportunities presented by technological development, incessantly undertaking technological 
upgrades and innovations to meet customer demands and enhance enterprise competitiveness 
(Oleśków-Szłapka et al., 2019).

The paramount objective of employing emergent technologies is to expedite the delivery 
of goods to the customer, making the meticulous selection of the distribution center’s optimal 
location a primary concern in alignment with the company’s strategy. In the logistics and 
distribution industry, the decision of selecting a central location holds pivotal importance 
(Zdravković et al., 2022). This choice significantly impacts the operational efficiency and cost of 
the logistics network. The selection of a location should be informed by various factors, including 
the origin and destination of goods, the number and distribution of customers, transportation costs, 
accessibility to transportation and logistics facilities, among others. An optimal central location 
should aim to minimize the transportation distance and time, thereby enhancing efficiency and 
reducing costs, while also ensuring the reliability and flexibility of the supply chain (Shamout et 
al., 2022; Yang et al., 2022; Chen et al., 1998). Consequently, when making decisions regarding 
a central location, logistics companies should meticulously consider various factors, carefully 
weighing the pros and cons to guarantee the selection of the optimal central location and attain 
a competitive advantage. Therefore, this article introduces the digital learning (DL) model in 
game theory for the location study of logistics distribution centers, aiming to achieve location 
optimization. Contributions are as follows:

1.  Develop a DL site selection model tailored to the requirements of distribution center site selection, 
where the overarching goal is to minimize costs at the upper level and maximize satisfaction at 
the lower level.

2.  Utilize the particle swarming optimization (PSO) method to solve the DL site selection model 
and identify the optimal location for distribution centers.

3.  Analyze the strengths and weaknesses of various site selection locations, assessing the 
computational efficiency of different solution methods through model calculations.

The remainder of the article is organized as follows. Section 2 introduces related works for the 
site selection problem. Section 3 discusses the double layer model and its solution process. Section 
4 illustrates the results of the experiment. Section 5 explores the development trends for logistics 
enterprises and site selection. The conclusion is presented at the end of the article.
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RELATED wORKS

Following the elucidation of the significance of path planning for logistics enterprises, this article 
undertakes an exhaustive examination of the extant research on distribution center location selection 
and the application of the two-layer model. This provides a pertinent research foundation for the 
subsequent analysis presented in this article.

Distribution Center Site Selection Study
Logistics distribution center site selection models are classified into three primary types: (1) continuous 
models; (2) discrete models; and (3) expert consultation methods.

The continuous model approach to site selection posits that the distribution center’s alternative 
location can be chosen freely, unencumbered by the constraints of intricate terrains and landscapes 
like rivers, lakes, and mountains. A principal method within this category encompasses the center 
of gravity (Boyacı & Şişman, 2022). While the continuous model demonstrates flexibility and finds 
widespread use, real-world applications often encounter challenges. For instance, the center of gravity 
method may propose new distribution centers in unsuitable areas due to complex topography, leading 
to high costs for establishing new distribution centers. Decision-makers, after considering various 
factors, may need to discard initially identified optimal solutions, thereby contributing to wasted 
time. Brimberg and Mehrez (1994) were pioneers in formulating the site selection problem at a single 
location, known as the Weber problem. Weber’s mathematical model aimed to minimize the distance 
from the new warehouse to each customer, marking the initiation of site selection theory research. 
Building upon previous literature, the Weber problem has been enhanced, utilizing the circularity 
principle to correct the initially chosen distribution center location and achieve an extremely small 
sum of distances.

Contrarily, the discrete model approach to site selection posits that the location of a distribution 
center is discontinuous. Decision-makers identify a limited number of alternative addresses suitable 
for a new distribution center based on local information and site visits. Discrete models are formulated 
to minimize model costs, similar to the Weiszfeld method. Prominent discrete models include the 
Kuehn-Hamburger model (Kuehn & Hamburger, 1963), the Baumol-Wolfe model (Baumol & Wolfe, 
1958), and the Elson model (Roehlen et al., 2022). Aikens (1985) developed nine distinct mathematical 
models based on various objectives and costs, providing solutions to various siting problems, including 
dynamic regularization and the 0-1 model.

While the continuous model and discrete model provide some guidance, persistent issues like 
high model complexity and limited solutions remain. Consequently, further research is imperative for 
the location selection of distribution centers, aiming to enhance the accuracy and practicality of these 
models. Potential research directions include, but are not limited to: optimizing existing models to 
address practical application challenges; developing new site selection models that consider a broader 
array of factors and constraints; and integrating expert consultation methods by incorporating expert 
knowledge and experience to enhance the model’s reliability and applicability.

In summary, comprehensive and in-depth research is essential for the location selection of 
distribution centers to propel the advancement of this field and tackle challenges in practical 
applications.

Application of DL Model
The DL planning model has gained widespread utilization in siting studies due to its comprehensive 
consideration of the interests of all parties. The DL objective model holds distinct advantages for 
models with intricate paths and multifaceted analysis requirements. Building upon the analysis 
of electric vehicle location issues, Current et al. (1985) asserted that many location problems 
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fundamentally entail multiobjective optimization challenges. They introduced four essential location 
optimization goals: (1) cost minimization; (2) demand orientation; (3) profit maximization; and (4) 
environmental impact reduction. Hodgson and Rosing (1992) formulated a multiobjective siting 
optimization model aimed at maximizing intercepted user traffic and minimizing the sum of distances 
between the demand generation point and the charging station. Wang and Wang (2010) delved into the 
charging station siting problem using a coverage-based approach, weighing economic considerations 
like cost-effectiveness. They developed a multiobjective siting model that minimized construction 
costs while maximizing the coverage of people, applying it to a real case in Taiwan. Wei et al. (2016) 
introduced a spatiotemporal demand coverage method, utilizing a spatiotemporal distribution path tool 
for analyzing periodic interactions between user demand, electric cabs, and charging stations. They 
established a multiobjective siting model maximizing the service levels of electric cabs and charging 
stations, employing electric cab data for arithmetic analysis. Taniguchi (2009) applied a DL planning 
model to study the siting problem of public infrastructure like distribution centers. In comparison 
to earlier models, the DL planning model incorporates a more extensive array of factors influencing 
site selection, demonstrating increased complexity. The addresses selected are more accurate and 
realistic, accompanied by comprehensive basic information. While computationally intensive, the 
DL planning model, historically challenging to solve, has become more manageable with the advent 
of modern software like Matlab and Lingo (Wang et al., 2022).

Studies pertaining to the distribution center location and DL model reveal an increasing complexity 
of the DL model in tandem with enhanced computational power, leading to improved solution 
accuracy and broader application scope. Consequently, optimizing and arranging distribution centers 
in enterprise logistics distribution emerges as the optimal solution for addressing these challenges 
through the establishment of a multilayer model.

MODEL DESign Of DiSTRiBUTiOn CEnTER ESTABLiShMEnT 
BASED On SiTE SELECTiOn MODEL

To guarantee high-precision location selection for distribution centers while mitigating model 
complexity and accounting for practical application speed, a classic double-layer mathematical model 
was employed for the planning research of distribution centers. The subsequent chapter will provide 
a comprehensive explanation of the specific methods employed, elucidating the detailed process of 
solving the model through classic metaheuristic algorithms.

Basic Mathematical Model of DL Planning
The distribution center location problem is conceptualized as a multiobjective optimization challenge, 
aiming to maximize benefits and efficiency by formulating optimized mathematical models across 
various locations (Khudhair et al., 2020). This article adopts a perspective that treats the distribution 
center location problem as a master-slave game, wherein the location decision-maker serves as 
the leader making the initial decision, while taking into account customer responses. In this game 
scenario, the customer, as the follower, responds differently based on the decision-maker’s choices. 
The leader influences the customer’s distribution cost through the pricing and quality of distribution 
services, subsequently impacting the customer’s choice of supplier. However, the leader cannot dictate 
the customer’s independent choice, as the customer selects an efficient and cost-effective logistics 
service provider based on their own needs, comparing services and prices across different suppliers 
(AbdulRahman et al., 2020). The illustrative depiction of a typical distribution system problem is 
presented in Figure 1.

In contrast to traditional models, the DL planning model incorporates a two-level structure. In 
the upper-level model, the site selection decision-maker opts for a suitable location to establish a 
distribution center within a specific region, targeting the lowest total cost (comprising transportation 
cost, distribution cost, fixed cost, and warehouse management cost) under a predetermined investment 
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budget. Simultaneously, in the lower level, the customer aims to solve the distribution from each 
distribution center to the customer, striving for the lowest total cost, typically the cost borne by the 
consumer for logistics and distribution services. The model encompasses the game dynamics between 
the location decision-maker and the customer, considering the interests of both parties and aligning 
with real-world scenarios (Zou et al., 2021).

The upper and lower decision-makers independently control their respective decision variables 
x  and y .

The mathematical model for the upper-level planning by modeling is shown in Equation 1.

U F x yx: min ,� � s.t. G x y,� � � 0  (1)

The mathematical model for the lower-level planning by modeling is shown in Equation 2.

L f x yy: max ,� � s.t. g x y,� � � 0  (2)

y y x� � �  can be obtained by solving the lower model. U  and the L  form a DL programming 
model. F  is the upper objective function. x  is the variable controlled by the upper layer, and the 
constraint on the variable x  The constraints on the variables are G f;  is the lower objective function. 
y  idoes the lower-level control the variable level, and the constraint on the variable is y . The 

constraint on the variable is g . Moreover, the relationship between the variables controlled by the 
lower level and the variables controlled by the upper level can be characterized by the reaction function 
(i.e., y y x� � � ).

In this article, the upper-level and lower-level functions are established per the specified 
requirements. The decision-making department of the logistics enterprise is tasked with selecting 
the optimal solution, determining the most suitable location to establish the distribution center to 
minimize the total cost. The upper-level objective function is formulated accordingly in Equation 3 
to reflect this goal.

Figure 1. Distribution Center System
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Equation 3 consists of four parts: (1) total distribution cost; (2) total transportation cost; (3) total 
cost of establishing the distribution center; and (4) storage management cost of the distribution center. 
The customer wants prompt delivery of the goods; thus, optimizing for higher satisfaction with time 
efficiency is crucial. Additionally, customers often want to pay lower costs. Thus, the lower-level 
objective function is shown in Equations 4 and 5.

max S
x

x s
i j ij i j

ij ij�
�� ��1

 (4)

minT H x
i j

ij ij���  (5)

where S represents satisfaction and T denotes cost. Once the objective function is established, 
corresponding constraints must be introduced. These constraints primarily encompass inbound and 
outbound balance constraints of distribution centers, supply capacity constraints, capacity constraints, 
distribution center constraints, and investment constraints. Additionally, for Equation 4, it is imperative 
to ensure that sij is maximized to achieve the highest possible satisfaction, thus concluding the 
construction of the DL site selection model (Ringe et al., 2020).

PSO-Based Model Solving and Optimization
PSO is a population intelligence-based optimization algorithm that emulates the behavior of a 
population of organisms, guiding a swarm of particles toward the optimal solution by continuously 
updating the velocity and position of each particle. In PSO, particles represent potential solutions, with 
each particle’s position signifying a point in the feasible solution space, and its velocity indicating the 
search direction and speed of the solution. PSO is advantageous in that it does not require information 
about the gradient of the solution function, making it suitable for tackling nonlinear, nonconvex, and 
high-dimensional optimization problems (Jain et al., 2022).

The application of PSO in the two-layer site selection model offers several advantages, including 
robust global search capability, simple and straightforward implementation, suitability for nonlinear 
problems, strong adaptability, and parallelism. It effectively enhances the optimization efficiency and 
performance of the model, providing an efficient solution for addressing intricate logistics allocation 
challenges. The PSO algorithm is widely employed for its rapid convergence and ability to search for 
a global optimal solution, particularly in problems like function optimization. For the given objective 
function, the process of searching for the solution can be described in the following steps.

Step 1: Determine the objective function and Constraints. In a DL optimization model, upper- and 
lower-level problems usually exist. The objective function of the upper level depends on the 
solution of the lower level. Thus, the objective function and constraints of the two layers need 
to be defined separately.

Step 2: Initialize the Position and Velocity. Suppose the particle swam has n particles, where each 
particle has m dimensions, representing each particle as an m-dimensional vector. Initially, the 
positions and velocities of the particle swarm can be generated randomly or according to certain laws.
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Step 3: Calculate the Fitness. Based on the upper objective function, each particle’s fitness at the 
current position can be calculated. If constraints exist, it is also necessary to check whether each 
particle satisfies the constraints.

Step 4: Update the Velocity and Position. The equations for updating the velocity and position of 
the particle swarm are shown in Equations 6 and 7.

v t v t c r p x t c r g x tij ij ij ij ij ij�� � � � � � � � �� � � � � �� �1
1 1 2 2

�  (6)

x t x t v tij ij ij�� � � � � � �� �1 1  (7)

where v tij ( )  denotes the velocity, x tij ( )  denotes the position o, pij  denotes the historical optimal 
position, and gij  denotes the global optimal position and searches around the global optimal position. 
ω , c1 , and c2  are the inertia factor, individual learning factor, and social learning factor, respectively. 
r1  and r2  are random numbers between [0,1].

Step 5: Update the Historical Optimal Position and Global Optimal Position. Each particle will 
record its own historical optimal position pi , and the global optimal position g is the optimal 
value of all particles’ historical optimal positions.

Step 6. Determine Whether the End Condition is Met. The stopping conditions of the particle swarm 
algorithm can be set according to the actual situation, such as reaching the maximum number 
of iterations, reaching a certain accuracy of the objective function value, and not changing the 
objective function value for several consecutive iterations.

Step 7. If not stopping, return to step 3. Recalculate the fitness of each particle. Repeat steps 4, 5, and 6.

The objective function of the upper-level problem relies on the solution of the lower-level problem. 
Following the elucidation of the upper level, the lower-level model can be addressed through the 
subsequent steps. This involves initializing the feasible solution of the model, calculating particle 
fitness, and updating particle velocity and position. Simultaneously, the global optimal solution is 
employed to optimize the model. Based on this foundation, iterative processes are conducted to attain 
the optimal solution for the DL model.

ExPERiMEnT RESULT AnD AnALySiS

The authors conducted an analysis of the location selection for logistics distribution centers in the 
region, utilizing the two-layer site selection model established in Chapter 3. Collaborative efforts with 
local logistics enterprises were undertaken to procure relevant data, facilitating the computation and 
validation of the model. The data collection primarily focused on pertinent information regarding the 
location of logistics centers in the local area over the past five years, encompassing freight volume, 
distribution distance, center cost, and other relevant details. A total of five express logistics centers 
were included in the data collection to finalize the model construction. The specific results obtained 
are as follows.
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Costing of Different Distribution Centers
In their experiments, the authors performed calculations based on the upper layer cost function of the 
proposed DL model. The results obtained are shown in Figure 2. In Figure 2, the authors utilized the 
established DL model and modeled it based on cost and satisfaction. They compared the logistics cost 
calculation for each location center after optimizing its final cost. The figure reveals substantial cost 
variations for different customers across different logistics centers, with the highest cost observed at 
customer 3 in distribution center 1, significantly surpassing the costs at other distribution centers. To 
provide a clearer depiction of the costs for each distribution center, the authors computed the sum of 
costs for the five primary customers, and the results are presented in Figure 3.

Figure 3 underscores the remarkable cost efficiency of distribution center 2, boasting the lowest 
total cost among the evaluated distribution centers. In the strategic site selection process, the company 

Figure 2. Cost Calculation in Different Centers

Figure 3. Total Cost for Different Centers
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made a judicious decision to utilize the same address for operating a secondary distribution center 
dedicated to logistics warehousing. This approach not only showcases a meticulous cost-effective 
strategy but also attests to the organization’s adept handling of logistics management. The emphasis 
on a shared address for dual functionality underscores the company’s commitment to optimizing 
resources and enhancing overall operational efficiency, contributing to a competitive edge in the 
logistics distribution landscape.

Satisfaction Calculation for Different Distribution Centers
After completing the estimation of distribution costs based on the upper model data, the authors 
analyzed the satisfaction of different centers. The results are shown in Figure 4.

Satisfaction, an important objective function of the lower model, can be found in Figure 4. 
Its distribution is more dispersed, with satisfaction rarely exceeding 90%. Therefore, the authors 
calculate the average satisfaction rate of customers under different distribution centers to achieve a 
fairer judgment. The average satisfaction rates of different distribution centers are shown in Figure 5.

Figure 5 illustrates the average satisfaction rates for various distribution centers. Notably, 
distribution center 2 maintains the highest satisfaction level, validating the high precision of 
the proposed model. Conversely, distribution center 5 exhibits equally high satisfaction levels, 
yet its associated costs are elevated. This highlights the effectiveness of the DL model in 
achieving the target alignment of multiple demands, where a balance between satisfaction and 
cost optimization is crucial.

Comparison of Different Site Selection Models
After the site selection was completed, the authors conducted a comparative analysis of the 
total cost and satisfaction level of distribution center 2 under different models. The results are 
shown in Figure 6.

In comparing different models, the authors chose the classical transportation planning method, the 
Capacitated Facility Location Problem method, and the Baumol-Wolfe method for comparison. These 
methods can solve linear and nonlinear problems and have wide applications in path optimization. 
The comparison experiments found that while different models can accurately identify the distribution 
center 2, their final calculation results deviate greatly. Notably, the model proposed can be found to 
have the smallest deviation from the real results.

Figure 4. Satisfaction of Customers Concerning Different Distribution Centers
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Comparison of Model Solving Under Different Methods
PSO is employed in solving the model parameters according to the constraints. However, in the 
solution of such problems, methods like simulated annealing, enumeration, and genetic algorithms are 
widely used in the optimization of model parameters. Therefore, the authors compared the solution 
time under different methods. The results are shown in Figure 7.

Due to the low complexity of the model itself, the calculation speed is faster on all modern 
computers, and the PSO method chosen is the most efficient and fastest. This better realizes the 
calculation and solution of the DL model.

Figure 6. Comparison With Other Models

Figure 5. Result for Customer Satisfaction Concerning Different Distribution Centers
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DiSCUSSiOn

The establishment of an enterprise logistics distribution center involves various factors, with 
construction cost, distribution cost, and customer satisfaction being crucial indicators for evaluating 
the center’s performance. This article introduces a DL site selection model where the upper-level 
model optimizes the enterprise’s primary concern, which is the cost issue, as an objective function. In 
contrast, the lower-level model achieves the objective optimization of customer satisfaction based on 
construction and distribution costs to derive the optimal model (Ucero et al., 2023). As an adaptable and 
effective decision analysis model, the DL model exhibits better moderation and scalability compared 
to single-tier models like Baumol-Wolfe. While a single model can handle relevant data calculations 
in traditional decision-making studies, its accuracy and positional deviation are significant, making 
direct application in actual engineering challenging (Rekik & El Alimi, 2023). Therefore, utilizing 
a DL structure model not only satisfies the lowest cost but also ensures maximum satisfaction, 
exhibiting superior independence and scalability compared to a single objective function. The PSO 
method, a classical optimization approach, enables the attainment of optimal solutions through 
relatively simple calculations, and the results outperform methods like GA and SA. Consequently, 
the proposed model framework holds considerable advantages in addressing such complex problems 
(Noorollahi et al., 2022).

The optimized DL site selection model yields dual benefits for route optimization in distribution. 
First, it enhances customer satisfaction and user experience by reducing delivery distance and 
time, improving delivery timeliness and reliability. Second, the optimized path planning minimizes 
transportation and labor costs, reduces fuel consumption and vehicle maintenance expenses, 
contributing to an overall reduction in enterprise expenditures. This improves operational efficiency 
and enhances cost control capabilities.

For logistics enterprises, optimizing distribution through the utilization of AI and IoT technology 
is paramount. The future of logistics involves increased automation, utilizing technologies like self-
driving vehicles, robots, and drones to enhance distribution efficiency and reduce costs. Additionally, 

Figure 7. Model Calculation Time With Different Solutions
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environmental considerations will drive the adoption of green practices, promoting the use of electric 
vehicles and renewable energy to reduce environmental pollution. Furthermore, with the ongoing 
integration of the global economy, logistics and distribution will become more globalized. Logistics 
enterprises will strengthen international cooperation, expand global logistics networks, and elevate 
the level and capacity of global logistics and distribution services.

The future trends in logistics and distribution point toward automation, intelligence, green 
practices, globalization, and personalization. To remain competitive, logistics enterprises must embrace 
technological and service innovations, continuously improving efficiency, quality, and service levels.

Beyond path optimization, the dual-layer site selection model holds broad benefits and application 
prospects. It can optimize the design of supply chain networks, including the location and quantity 
of warehousing facilities and the layout of supply centers, enhancing supply chain efficiency 
and flexibility. Additionally, the dual site selection model can be applied to urban planning and 
infrastructure construction, aiding decision-makers in planning urban development, optimizing traffic 
flow and resource utilization, and enhancing the quality of life and sustainability of cities.

With the ongoing advancements in data science and optimization technology, the dual-layer site 
selection model is poised to play an increasingly significant role in various fields, providing accurate 
and effective support for decision-making in complex problem scenarios.

COnCLUSiOn

This study tackles the optimization challenges and site selection dilemmas encountered by logistics 
enterprises through the introduction of a dual-layer site selection model. The model strives to minimize 
costs at the upper level while maximizing customer satisfaction at the lower level. Leveraging the PSO 
algorithm for model solving ensures that the selected optimal addresses closely align with practical 
site selections. Empirical testing underscores the significant improvement in customer satisfaction 
achieved through the proposed distribution paths, with an average satisfaction rate exceeding 80%. 
Comparative analysis establishes the superior performance of the dual-layer model compared to 
single-model approaches. Consequently, the double-layer site selection model emerges as a promising 
tool for providing decision support and optimization solutions in enterprise logistics distribution.

However, it is crucial to acknowledge the model’s limitations, including potential complexities 
in implementation and data requirements. Future advancements should prioritize enhancing the 
model’s robustness, scalability, and adaptability to diverse logistics scenarios. Integrating emerging 
technologies like machine learning and real-time data analytics could further elevate the model’s 
capabilities and broaden its applications in the dynamic logistics landscape.
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