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ABSTRACT

Distributed wireless networks use low-power nodes, battery-powered routers, and base-station nodes. 
Routing strategies lose energy due to distance-dependent transmission and reception. Researchers 
design low-power routing solutions for wireless networks. Each technique has unique advantages, 
restrictions, and research options. Protocols vary in energy consumption, throughput, latency, packet 
delivery ratio (PDR), scalability, and computational complexity. Researchers can’t choose ideal 
context-aware network models due to diverse performance measurements. This article addresses 
application-specific deployment strengths to reduce uncertainty. This discussion may help researchers 
choose context-specific routing models. This article compares power-aware routing model performance 
measures. This comparison may be used to construct routing models for low-delay, high-throughput, 
high PDR installations, etc. This paper proposes an algorithm rank score (ARS) with performance 
metrics. Network designers may employ high-ARS routing models to achieve performance balance 
over numerous assessments.
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INTRodUCTIoN

Routing in wireless networks requires consideration of a wide variety of inter-domain models that 
include, clustering, geographical node placements, distance evaluation strategies, traffic management, 
energy considerations, etc. A typical wireless routing model is depicted in Malisetti and Pamula (2020), 
wherein entire flow of invitation-based routing is visualized. Here, cluster heads (CH) broadcast 
invitation requests, that contain CH location, energy levels, and other cluster-specific parameters. 
Nodes respond to these requests with Yes or No acknowledgements, which assist CHs to either accept 
the nodes or discard them from their cluster lists.

In order to facilitate the transmission of data from one node to another, CHs provide Time Division 
Multiple Access (TDMA) slots to approved nodes. To complete the node-to-node communication 
loops, the CHs transmit this information to other nodes or other CHs. In order to execute application-
specific routing and communication, models substitute context-specific characteristics like as 
throughput, PDR, routing overheads, etc. for distance and energy level measurements. In the next 
part, we’ll take a look at some of these models, their intricacies, benefits, and drawbacks, as well 
as potential directions for future study. To better match current routing models to their deployment 
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requirements, researchers may use this topic to suggest the best models for future deployments. To 
wrap things off, this article makes some intriguing insights about the analyzed models and proposes 
a variety of ways to enhance their real-time performance.

Researchers have suggested a broad range of low-power routing protocols, each with its own 
unique benefits, drawbacks, and study areas. Low-energy adaptive clustering hierarchy (LEACH), 
Hybrid Energy Efficient Distributed Clustering (HEED), Dynamic Clustering and Distance-Aware 
Routing (DDAR), etc., are only few of the protocols included in this category. In addition, these 
protocols use numerous machine learning models, such as swarm intelligence, bioinspired computing, 
neural networks, etc. Other statistical factors, such as energy consumption, communication delays 
and throughput as well as packet delivery ratio (PDR) and scalability are also different amongst these 
protocols. It is difficult for researchers and network designers to choose the best models for their 
context-aware network deployments because of the large range of performance measures. Thus, the 
motivation & contributions of this text are,

• An in-depth description of these models, together with the application-specific deployment 
strengths, is provided in this article in an effort to remove this uncertainty. Researchers will be 
able to narrow down a list of context-specific routing models based on this debate. Besides that, 
it compares the examined models with other power-aware routing models and assesses their 
performance on a variety of performance criteria.

• Researchers and network designers will be able to find routing models that are most suited 
for installations requiring features such as low latency, high throughput, high PDR, etc., after 
consulting this comparison.

• This paper also proposes a new algorithm rank score (ARS), which incorporates a variety of 
assessment indicators to provide a more complete picture of performance. Selecting routing 
models with high ARS performance allows network designers to implement routing models that 
maintain performance equilibrium throughout a variety of simulations and tests.

Based on these contributions, readers will be able to identify optimal models for their application-
specific & performance-specific deployments.

LITERATURE REVIEW

A wide variety of low power routing models are proposed by researchers over the years, and each of 
these models vary in terms of energy efficiency, routing delay, throughput, and other network related 
parameters. These models propose a set of optimization techniques, which assist in identification of 
suitable network parameters for high-efficiency route selections. For instance, work in Malisetti and 
Pamula (2020) proposes a quasi-oppositional butterfly optimization model (QOBOM) which assists 
in selection of cluster heads in heterogeneous sensor networks. It introduces a quasi-distance & energy 
metric variable during selection of cluster heads which assists in reducing energy consumption during 
network communications. The QOBOM method outperforms LEACH, Enhanced LEACH (ELEACH), 
Particle Swarm Optimization based clustering (PSOC), and Butterfly Optimization Model (BOM) in 
terms of overall network lifetime, but has higher computational complexity, which increases delay 
and reduces throughput in real-time deployments. To overcome this limitation, work in R. R. A. et 
al. (2019) proposes design of Cuckoo Search Optimization (CSO) Model that is validated for Rescue 
and Emergency Mobile Ad-hoc Networks (MANETs). Flow of the proposed CSO Model is depicted 
in R. R. A. et al. (2019), wherein it can be observed that initially an improved LEACH (I LEACH) 
model is used to cluster nodes into low, medium & high distance clusters. These clusters are processed 
via ICSO (improved CSO) model, which assists in shortest path selection and high-efficiency packet 
transmissions. The model showcases lower delay, and better energy efficiency when compared with 
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Hybrid Ant Colony Optimization (ACO) with Multiple Objective Genetic Algorithm (MGA), and 
Fuzzy Aided ACO (FACO), but has higher complexity than both the models.

Large-scale Internet of Things (IoT) and Vehicular Ad-hoc Networks cannot benefit from the 
ICSO model’s increased complexity (VANETs). Chithaluru et al. (2021) discusses a simplified 
LEACH model that makes use of energy-enhanced threshold routing, in which researchers have 
estimated energy threshold levels by selecting forwarding nodes. There are opportunistic forwarders 
nodes that can help reduce the amount of energy required for inter-node data transfers. Comparing 
the model’s energy performance to other LEACH algorithms, such as Quadrature LEACH, Node 
Ranked LEACH, and LEACH with GA and PSO, it is shown to be superior, making it an excellent 
choice for real-time network application situations. LEACH MTC (LEACH with Moving Target 
Constraint) is mentioned in (Fu et al., 2021) to help with Cluster Head selection even in settings with 
moving nodes, which further improves the performance of this model. For estimating the elliptical 
monitoring area and node movement directions, it makes use of an extended Kalman filter (EKF). 
It has a longer lifespan than the LEACH DBCH and LEACH RARE models, which use a distance-
based cluster head. Using a mix of multiple LEACH-based optimization models, researchers describe 
similar models in Devika et al. (2021); Cui et al. (2019), where PSO with Wolf Search Optimization 
(WSO) and PSO with Weighted Harmonic Centroid based Bat Optimization (PSO WHCBO) Methods 
are presented. There are a variety of fitness functions that take into account energy consumption as 
well as internode and intra-cluster distances, for example. Because of this, the model uses stochastic 
evaluations to choose the best nodes to utilize as cluster heads in routing and data transfer situations. 
Loganathan and Arumugam (2021) discusses a review of several PSO models, including Elephant 
Herding Optimization (EHO), Bacterial Foraging Optimization (BFO), Grey Wolf Optimization 
(GWO), and Firefly Optimization (FFO), and comes to the conclusion that PSO-based models beat 
the competition. When creating energy-conscious, distance-conscious, and QoS-aware clustering 
optimized network applications, PSO should be implemented. Other bioinspired models have been 
developed by researchers to aid in the deployment of low-complexity and high-throughput energy-
efficient network installations, similar to PSO. According to Bhola et al. (2019), a model like this 
is presented using GA-based LEACH, which focuses on residual energy and the number of nodes 
utilized during communication to determine route. When it comes to low-power and delay-aware 
communication, work in Nigam and Dabas (2021) suggests the use of PSO with k Means for clustering 
nodes at the node level. Based on intra cluster distances, node-to-base station distances, and residual 
energy levels, the EPSO (Extended PSO) model proposes a dynamic fitness function. However, the 
model’s increased complexity causes computational delays for large-scale network installations while 
also improving QoS performance over the original LEACH model.

Fuzzy logic with a competition radius is proposed in Adnan et al. (2021) as a way to minimize 
computing complexity when picking cluster heads. In order to maintain the network model’s QoS 
heterogeneity, these clusters comprise nodes with varying distances, residual energies, throughputs, 
and packet delivery ratios (PDRs). For example, the model is able to find cluster heads capable of 
communicating across short distances with high residual energy and a large number of nodes. This 
helps to cut down on energy waste and so extend the lifespan of networks at a medium to large scale. 
For energy efficiency, this model surpasses the EAMMH, TTDFP, and Energy-Aware Unequal 
Clustering Fuzzy (EAUCF) approaches. However, it does not take into account other QoS metrics 
like routing efficiency, network overhead, etc. when CH choices. Because of this, its use is restricted 
to small and medium-sized networks. Remaining energy levels and resilient routing may be considered 
in the usage of Artificial Neural Network (ANN) and Learning Automata for Multilevel Heterogeneous 
Network Routing (LA MHNR) in wireless networks to solve this constraint. Using spectrum sharing 
and continuous learning, these models seek to maximize network longevity while reducing computing 
costs. Like the REM LEACH and centralized energy-efficient clustering routing models (CEECR) 
presented in Aydin et al. (2021); J. Zhang and Yan (2019), researchers have expanded LEACH by 
using Mobile Receiver Selective Path Priority with residual energy maximization (REM LEACH) 
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and a centralized clustering routing model (CEECR). Large-scale homogeneous networks may use 
these models because of their low computing cost; however, heterogeneous networks cannot. Using 
a unique fitness function that integrates residual node energy levels with distance measurements and 
node density metrics, the work in C. Wang et al. (2020) suggests a Chaotic Genetic Algorithm (CGA) 
Model to solve this constraint. Evaluation of this fitness function can be done via equation 1, wherein 
multiple tunable factors (∂ ∅, , �and�a ) are used to control efficiency of selected cluster heads and 
routing paths.
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divided into clusters based on their distance from a base station, inter-node distance, total amount of 
wasted energy, and so on. A broad range of real-time deployments may benefit from this model’s 
superior performance, since it outperforms a number of current techniques. R LEACH with a caching 
technique and DCBSRP have been presented as extensions to these models in Y. Zhang et al. (2021); 
Adil et al. (2020) by researchers. Using caching and distance thresholding, these models help to 
reduce a network overhead, which tries to improve energy efficiency by minimizing inter-node distance 
during communications through caching. Because of their ability to continuously evaluate parameters; 
these models are well-suited for usage with high-performance computer nodes. Because of this, they 
cannot be utilized for broad purpose wireless sensor applications. This model’s scalability may be 
improved by using the Layered and Heterogeneous Routing (LHR) Model, which uses clustering of 
nodes based on stochastic energy. Nodes are separated into ‘normal’ and ‘advanced’ clusters as a 
result of this clustering process, making it easier for the model to choose cluster heads with a low 
level of complexity. Similar techniques for dynamic threshold-based clustering that attempt to minimize 
network redundancy during cluster head selection use energy-efficient scalable routing (EESR) with 
multiple hop communications (Ahmed Elsmany et al., 2019) and probabilistic perception layer (PPL) 
(Xu et al., 2019). They must be tested in bigger network contexts and expanded using bioinspired 
models like the Modified African Buffalo with Group Teaching Optimization (MAB GTO) (B. A. 
et al., 2021). These fitness functions are regularly updated to help in the dynamic selection of cluster 
heads, as represented in Figure 4 of this model. Flow of this model is Xu et al. (2019) Compared to 
LEACH, this model is more energy efficient and has a greater throughput; however the intricacy of 
this model makes it more difficult to implement and computationally slow. As a result of this continual 
selection of clusters, the model has a greater packet delivery ratio (PDR) performance.

Reinforcement Learning (RL) and ERQTM (Energy efficient Routing with QoS-supported 
Traffic Management) are two examples of similar models that have been presented by researchers 
(C. C. Wang et al., 2020) (Samarji & Salamah, 2021). The MDRM and ERQTM models provide 
improved network performance under real-time situations, making them ideal for large-scale network 
installations. Researchers have recommended the usage of Energy-aware Routing Protocol with 
delay awareness (ERP DA) and Energy Harvesting Intelligent Relay Selection Protocol (EH-IRSP) 
for low-delay and high-throughput applications in (Liu et al., 2021) (Khan et al., 2021). Researchers 
have discussed the use of Q-Learning-Based Data-Aggregation-Aware Energy-Efficient Routing 
Protocol (Q DAA EERP), Connectivity and Energy Aware Layering Routing (CELR), Energy-Aware 
Geographic Routing (EAGR), Energy and Collision Aware WSN Routing Protocol (ECARP), and 
EERP with discrete points of interest (DPOI) for 3D network scenarios (Yun & Yoo, 2021) (Han 
et al., 2021) (Sangaiah et al., 2021) (Patel et al., 2021). Energy-based routing and machine learning 
approaches for reducing computational redundancy are included in these models, which help to create 
high-efficiency and low-power routing models.
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Work in Jurado-Lasso et al. (2021); Rathee et al. (2021) proposes the usage of SDM WSN and 
ACO QEBSR, both of which enable network designers to fine-tune clustering and routing processes. 
Joint Topology Construction with Hybrid Routing Strategy (JTC HRS) and the Destination Oriented 
Routing Algorithm (DORA) are proposed for large-scale network applications in Yu et al. (2021); 
K. Wang et al. (2021) as possible solutions to this problem. For routing and communication reasons, 
both of these models use several distance metrics and Quality of Service (QoS) criteria to identify 
high-performance nodes. These models’ extensions include Wireless Energy Balancers (WEBs) 
Alabdali et al. (2021), Compressive Sensing (CS) Lin et al. (2021), Balanced Residual Energy (BRE) 
with LEACH Daanoune et al. (2019), Assistant Cluster Heads (ACHs) based on LEACH Kumar 
et al. (2020), and Multiple Weight (MW) LEACH (el Khediri et al., 2020). Each of these models 
works by selecting multiple routing nodes with backup provisioning to help with fault tolerance 
in practical routing scenarios. These models enhance network performance, but they diminish the 
efficiency of node use since the backup nodes are typically inactive and only communicate when 
the main nodes have problems. There must be stochastic optimization approaches that are able to 
discover idle nodes and use their computing and routing skills in order to overcome this barrier. The 
use of Slime Mould Algorithm (SMA) with LEACH, improved clustering dynamic threshold (ICD) 
with k Means for energy-based clustering, and Energy efficient Least Edge Computation routing 
protocol (ELEC) for improving node efficiency during network communications are three examples 
of such models discussed in (Thi Quynh & Viet, 2021) (Ding et al., 2021). It is possible to identify 
nodes that may be utilized for residual communications using these models. These residual nodes 
use Time Division Multiple Access (TDMA), allowing for communication and backup. Researchers 
have suggested ways to improve continuous performance by extending existing models, such as the 
TLCM (two-level clustering mechanism) Bany Salameh et al. (2021), the PE-LEACH (partitioned-
based energy-efficient – LEACH) Mohapatra and Rath (2019), and the LMNN LEACH (Levenberg-
Marquardt Neural Network-based LEACH) (Mittal et al., 2020). In order to improve their long-term 
network performance, these models strive to learn iteratively via regular checks on energy use. As 
a result, academics have developed a broad range of clustering models, each with its own set of 
machine learning-based optimization features. In the following portion of this article, the models’ 
performance is evaluated in terms of energy efficiency, computational complexity, fault tolerance, 
scalability, and QoS performance.

PERFoRMANCE EVALUTIoN & CoMPARISIoN

A thorough examination of several energy efficient wireless network models reveals a wide range of 
implementations, applications, and performance measurements for these systems. For the purpose 
of evaluating this performance, this section compares models based on their energy efficiency, 
computational complexity, fault tolerance, scalability, and quality of service performance, and then 
fuzzified these metrics into Fuzzified Low Range (FLR), Fuzzified Medium Range (FMR), Fuzzified 
High Range (FHR), and Fuzzified Very High Range (FVHR) ranges. These metrics are then used 
to calculate the performance of each model. Comparing evaluated models on a single quantifiable 
scale makes it easier for readers to see how they perform in various network circumstances after the 
fuzzification process. Readers will be able to compare node-level and network-level data, as shown 
in Table 1, as a result of this comparison.

Based on this evaluation, and figure 1., it can be observed that BOM (Malisetti & Pamula, 2020), 
ICD (Ding et al., 2021), QOBOM (Malisetti & Pamula, 2020), E LEACH (Malisetti & Pamula, 
2020), PSOC (Malisetti & Pamula, 2020), FACO (R. R. A. et al., 2019), and Q LEACH (Chithaluru 
et al., 2021) have lowest computational complexity, thus can be used with networks that require low-
overhead communication interfaces.

Similarly, by referring Table 1 and figure 2., it can be observed that Adaptive Rank (Chithaluru 
et al., 2021), EAMMH (Adnan et al., 2021), ANN (Mehmood et al., 2020), REM LEACH (Aydin et 
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Table 1. Performance evaluation of different energy aware protocols

Model Computational 
Complexity

Energy 
Efficiency

Fault 
Tolerance

Quality of Service 
Performance

Scalability

QOBOM (Malisetti & Pamula, 2020) FMR FHR FLR FMR FLR

E LEACH (Malisetti & Pamula, 
2020)

FMR FMR FLR FMR FLR

PSOC (Malisetti & Pamula, 2020) FMR FMR FLR FMR FMR

BOM (Malisetti & Pamula, 2020) FLR FMR FLR FMR FMR

ICSO LEACH (R. R. A. et al., 2019) FHR FMR FMR FMR FLR

ACO MGA (R. R. A. et al., 2019) FVHR FMR FMR FHR FMR

FACO (R. R. A. et al., 2019) FMR FHR FLR FMR FLR

Adapt. Rank (Chithaluru et al., 2021) FHR FVHR FMR FHR FMR

Q LEACH (Chithaluru et al., 2021) FMR FMR FMR FHR FLR

NR LEACH (Chithaluru et al., 2021) FMR FMR FHR FMR FHR

GA LEACH (Chithaluru et al., 2021) FHR FHR FHR FMR FMR

PSO LEACH (Chithaluru et al., 
2021)

FHR FMR FLR FMR FHR

LEACH MTC (Fu et al., 2021) FHR FHR FHR FMR FVHR

PSO WSO (Devika et al., 2021) FVHR FHR FLR FHR FHR

PSO WHCBO (Cui et al., 2019) FVHR FHR FMR FHR FMR

GA LEACH (Bhola et al., 2019) FHR FHR FLR FMR FMR

EPSO (Nigam & Dabas, 2021) FHR FMR FMR FLR FMR

Fuzzy LEACH (Adnan et al., 2021) FMR FHR FLR FHR FLR

EAMMH (Adnan et al., 2021) FVHR FVHR FMR FHR FVHR

TTDFP (Adnan et al., 2021) FHR FHR FHR FHR FVHR

EAUCF (Adnan et al., 2021) FHR FHR FMR FMR FHR

ANN (Mehmood et al., 2020) FVHR FVHR FMR FHR FHR

LA MHNR (Tanwar et al., 2019) FVHR FHR FHR FHR FHR

REM LEACH (Aydin et al., 2021) FMR FVHR FMR FHR FHR

CEECR (J. Zhang & Yan, 2019) FMR FHR FMR FHR FHR

CGA (C. Wang et al., 2020) FVHR FHR FHR FHR FHR

R LEACH (Y. Zhang et al., 2021) FHR FHR FMR FMR FHR

DCBSRP (Adil et al., 2020) FHR FVHR FMR FHR FHR

LHR (Huo et al., 2020) FMR FHR FLR FHR FMR

EESR (Ahmed Elsmany et al., 2019) FVHR FHR FLR FHR FVHR

PPL (Xu et al., 2019) FHR FHR FMR FHR FMR

MAB GTO (B. A. et al., 2021) FVHR FHR FMR FVHR FHR

MDRM RL (C. C. Wang et al., 2020) FVHR FVHR FMR FHR FHR

ERQTM (Samarji & Salamah, 2021) FHR FHR FMR FHR FMR

ERP DA (Liu et al., 2021) FHR FHR FLR FHR FHR

EH IRSP (Khan et al., 2021) FVHR FHR FMR FHR FMR

Q DAA EERP (Yun & Yoo, 2021) FVHR FVHR FHR FHR FHR

CELR (Han et al., 2021) FHR FHR FHR FMR FMR
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Figure 1. Computational complexity of different models

Figure 2. Energy Efficiency of different models

Model Computational 
Complexity

Energy 
Efficiency

Fault 
Tolerance

Quality of Service 
Performance

Scalability

EAGR (Sangaiah et al., 2021) FHR FMR FHR FMR FHR

ECARP (Patel et al., 2021) FHR FHR FHR FMR FHR

EERP DOI (Xu et al., 2021) FVHR FMR FMR FHR FLR

SDM WSN (Jurado-Lasso et al., 2021) FMR FHR FHR FMR FHR

ACO QEBSR (Rathee et al., 2021) FHR FVHR FMR FHR FHR

JTC HRS (Yu et al., 2021) FVHR FHR FMR FHR FHR

DORA (K. Wang et al., 2021) FMR FHR FMR FMR FHR

WEBs (Alabdali et al., 2021) FMR FVHR FLR FMR FLR

CS (Lin et al., 2021) FMR FHR FMR FLR FMR

BRE LEACH (Daanoune et al., 
2019)

FHR FHR FLR FHR FMR

ACHs (Kumar et al., 2020) FMR FHR FHR FMR FHR

MW LEACH (el Khediri et al., 
2020)

FHR FVHR FMR FHR FHR

SMA LEACH (Thi Quynh & Viet, 
2021)

FHR FHR FMR FHR FMR

ICD (Ding et al., 2021) FLR FMR FMR FHR FMR

ELEC (Us Sama et al., 2020) FVHR FVHR FLR FHR FMR

TLCM (Bany Salameh et al., 2021) FHR FHR FMR FHR FMR

PE LEACH (Mohapatra & Rath, 
2019)

FHR FVHR FHR FMR FHR

LMNN LEACH (Mittal et al., 2020) FVHR FVHR FVHR FHR FHR
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al., 2021), DCBSRP (Adil et al., 2020), MDRM RL (C. C. Wang et al., 2020), Q DAA EERP (Yun 
& Yoo, 2021), ACO QEBSR (Rathee et al., 2021), WEBs (Alabdali et al., 2021), MW LEACH (el 
Khediri et al., 2020), ELEC (Us Sama et al., 2020), PE LEACH (Mohapatra & Rath, 2019), and 
LMNN LEACH (Mittal et al., 2020) have highest energy efficiency, and thus must be used for low-
power and high lifetime network deployments. These models must be combined to form hybrid 
energy aware interfaces.

Similarly, from Table 1 and figure 3., it can be observed that LMNN LEACH (Mittal et al., 2020), 
LEACH MTC (Fu et al., 2021), LA MHNR (Tanwar et al., 2019), CGA (C. Wang et al., 2020), Q 
DAA EERP (Yun & Yoo, 2021), CELR (Han et al., 2021), EAGR (Sangaiah et al., 2021), ECARP 
(Patel et al., 2021), SDM WSN (Jurado-Lasso et al., 2021), ACHs (Kumar et al., 2020), and PE 
LEACH (Mohapatra & Rath, 2019) have highest fault tolerance performance, thereby making them 
useful for energy efficient, and secure routing scenarios.

Based on Table 1 and figure 4., it can also be observed that MAB GTO (B. A. et al., 2021), ACO 
MGA (R. R. A. et al., 2019), Adaptive Rank (Chithaluru et al., 2021), Q LEACH (Chithaluru et al., 
2021), PSO WSO (Devika et al., 2021), PSO WHCBO (Cui et al., 2019), EAMMH (Adnan et al., 
2021), ANN (Mehmood et al., 2020), LA MHNR (Tanwar et al., 2019), REM LEACH (Aydin et al., 
2021), CEECR (J. Zhang & Yan, 2019), CGA (C. Wang et al., 2020), DCBSRP (Adil et al., 2020), 
LHR (Huo et al., 2020), EESR (Ahmed Elsmany et al., 2019), PPL (Xu et al., 2019), MDRM RL (C. 
C. Wang et al., 2020), ERQTM (Samarji & Salamah, 2021), ERP DA (Liu et al., 2021), EH IRSP 
(Khan et al., 2021), and Q DAA EERP (Yun & Yoo, 2021) have better QoS than other models, and 
thus can be used for high-performance communication interfaces.

Figure 4. QoS performance of different models

Figure 3. Fault tolerance performance of different models
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Also, by referring Table 1 and figure 5., it can be observed that LEACH MTC (Fu et al., 2021), 
EAMMH (Adnan et al., 2021), TTDFP (Adnan et al., 2021), EESR (Ahmed Elsmany et al., 2019), 
NR LEACH (Chithaluru et al., 2021), PSO LEACH (Chithaluru et al., 2021), PSO WSO (Devika et 
al., 2021), EAUCF (Adnan et al., 2021), ANN (Mehmood et al., 2020), LA MHNR (Tanwar et al., 
2019), REM LEACH (Aydin et al., 2021), CEECR (J. Zhang & Yan, 2019), CGA (C. Wang et al., 
2020), and R LEACH (Y. Zhang et al., 2021) have better scalability performance than other models, 
thereby making them useful for large-scale deployment scenarios. But these individual evaluations 
will assist readers to identify single parameter optimized models.

To further facilitate model evaluation, all the parameters are combined to form an algorithmic 
rank score (ARS), which can be evaluated via equation 2 as follows,

ARS
CC

E F Q S
= + + + + …( )5

5 5 5 5
2  

Based on this score, rank is evaluated for all models, and can be observed from Table 2 as follows,

Figure 5. Scalability performance of different models

Figure 6. ARS performance of different models



International Journal of Intelligent Information Technologies
Volume 18 • Issue 3

394

Table 2. ARS performance of different models

Rank Model ARS

1 ICD (Ding et al., 2021) 5.10

2 REM LEACH (Aydin et al., 2021) 4.87

3 BOM (Malisetti & Pamula, 2020) 4.70

4 CEECR (J. Zhang & Yan, 2019) 4.67

5 SDM WSN (Jurado-Lasso et al., 2021) 4.67

6 ACHs (Kumar et al., 2020) 4.67

7 LMNN LEACH (Mittal et al., 2020) 4.60

8 DORA (K. Wang et al., 2021) 4.47

9 DCBSRP (Adil et al., 2020) 4.45

10 ACO QEBSR (Rathee et al., 2021) 4.45

11 MW LEACH (el Khediri et al., 2020) 4.45

12 PE LEACH (Mohapatra & Rath, 2019) 4.45

13 LEACH MTC (Fu et al., 2021) 4.45

14 EAMMH (Adnan et al., 2021) 4.40

15 Q DAA EERP (Yun & Yoo, 2021) 4.40

16 Q LEACH (Chithaluru et al., 2021) 4.27

17 NR LEACH (Chithaluru et al., 2021) 4.27

18 LHR (Huo et al., 2020) 4.27

19 Adapt. Rank (Chithaluru et al., 2021) 4.25

20 TTDFP (Adnan et al., 2021) 4.25

21 ECARP (Patel et al., 2021) 4.25

22 ANN (Mehmood et al., 2020) 4.20

23 LA MHNR (Tanwar et al., 2019) 4.20

24 CGA (C. Wang et al., 2020) 4.20

25 MAB GTO (B. A. et al., 2021) 4.20

26 MDRM RL (C. C. Wang et al., 2020) 4.20

27 WEBs (Alabdali et al., 2021) 4.07

28 CS (Lin et al., 2021) 4.07

29 EAGR (Sangaiah et al., 2021) 4.05

30 EAUCF (Adnan et al., 2021) 4.05

31 R LEACH (Y. Zhang et al., 2021) 4.05

32 PPL (Xu et al., 2019) 4.05

33 ERQTM (Samarji & Salamah, 2021) 4.05

34 ERP DA (Liu et al., 2021) 4.05

35 CELR (Han et al., 2021) 4.05

36 SMA LEACH (Thi Quynh & Viet, 2021) 4.05

37 TLCM (Bany Salameh et al., 2021) 4.05

38 EESR (Ahmed Elsmany et al., 2019) 4.00

39 JTC HRS (Yu et al., 2021) 4.00
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Based on this evaluation and figure 6 it can be observed that ICD (Ding et al., 2021), REM LEACH 
(Aydin et al., 2021), BOM (Malisetti & Pamula, 2020), CEECR (J. Zhang & Yan, 2019), SDM WSN (Jurado-
Lasso et al., 2021), ACHs (Kumar et al., 2020), LMNN LEACH (Mittal et al., 2020), DORA (K. Wang et 
al., 2021), DCBSRP (Adil et al., 2020), ACO QEBSR (Rathee et al., 2021), MW LEACH (el Khediri et al., 
2020), PE LEACH (Mohapatra & Rath, 2019), LEACH MTC (Fu et al., 2021), EAMMH (Adnan et al., 
2021), and Q DAA EERP (Yun & Yoo, 2021) have better overall performance, and can be used for high 
energy efficiency, low complexity, high fault tolerance, high QoS and high scalability application scenarios.

CoNCLUSIoN ANd FUTURE WoRK

This comprehensive examination of several energy-conscious routing models for wireless networks shows 
that LEACH-based solutions outperform their competition. CH routing nodes are selected based on their 
energy levels. PSO-based LEACH, GA-based LEACH and other bioinspired models are examples of 
LEACH variants that are more energy efficient. In terms of computing complexity, these models were 
found to be BOM, ICD, QOBOM, E LEACH, PSOC, FACO, and Q LEACH. The models with the 
maximum energy efficiency, such as ACOs, WEBs and MW LEACH, may be employed for low-power 
wireless sensor networks. The maximum fault tolerance has been found in the LMNN LEACH, LEACH 
MTC, LA MHNR, CGA, Q DAA EERP, CELR, EAGR, ECARP, SDM, WSN, ACHs, and PE LEACH 
models, while the QoS of the MAB, GTO, ACO, MGA, Adaptive Rank, Q LEACH models, PSO WSO 
models, PSO WHCBO models, EAMMH models, ANN, LA These models must be integrated to produce 
high QoS and superior fault tolerance performance under varied network scenarios. All these metrics 
were combined to form an Algorithmic Rank Score, which indicated that ICD, REM, BOM CEECR, 
SDM, WSN and the like had better overall performance and could be used for high energy efficiency, 
low complexity high fault tolerance, high QoS and high scalability application scenarios, such as high-
energy efficiency low complexity, high fault tolerance high QoS, and high scalability applications. To 
increase network performance in real-time deployment settings, researchers may mix these models in 
the future to produce hybrid LEACH approaches that should deliver higher lifespan with high QoS 
performance under multiple use cases.

Rank Model ARS

40 QOBOM (Malisetti & Pamula, 2020) 3.87

41 PSOC (Malisetti & Pamula, 2020) 3.87

42 FACO (R. R. A. et al., 2019) 3.87

43 Fuzzy LEACH (Adnan et al., 2021) 3.87

44 BRE LEACH (Daanoune et al., 2019) 3.85

45 PSO WHCBO (Cui et al., 2019) 3.80

46 EH IRSP (Khan et al., 2021) 3.80

47 ELEC (Us Sama et al., 2020) 3.80

48 PSO WSO (Devika et al., 2021) 3.80

49 E LEACH (Malisetti & Pamula, 2020) 3.67

50 PSO LEACH (Chithaluru et al., 2021) 3.65

51 GA LEACH (Chithaluru et al., 2021) 3.65

52 GA LEACH (Bhola et al., 2019) 3.65

53 ACO MGA (R. R. A. et al., 2019) 3.60

54 ICSO LEACH (R. R. A. et al., 2019) 3.45

55 EPSO (Nigam & Dabas, 2021) 3.45

56 EERP DOI (Xu et al., 2021) 3.40
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