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ABSTRACT

The combinatorial optimization problem is attracting research because they have a wide variety of 
applications ranging from route planning and supply chain optimization to industrial scheduling and 
the IoT. Solving such problems using heuristics and bio-inspired techniques is an alternative to exact 
solutions offering acceptable solutions at fair computational costs. In this article, a new hierarchical 
hybrid method is proposed as a hybridization of Ant Colony Optimization (ACO), Firefly Algorithm 
(FA), and local search (AS-FA-Ls). The proposed methods are compared to similar techniques on 
the traveling salesman problem, (TSP). ACO is used in a hierarchical collaboration schema together 
with FA which is used to adapt ACO parameters. A local search strategy is used which is the 2 option 
method to avoid suboptimal solutions. A comparative review and experimental investigations are 
conducted using the TSP benchmarks. The results showed that AS-FA-Ls returned better results 
than the listed works in the following cases: berlin52, st70, eil76, rat99, kroA100, and kroA200. 
Computational investigations allowed determining a set of recommended parameters to be used with 
ACO for the TSP instances of the study.
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INTRODUCTION

The advent of self-driving cars, intelligent transportation systems, and internet of things devices 
routing challenges, recalled the interest in combinatorial optimization problems, COP. Among 
them, the traveling salesman problem is still attracting interest since it can stand for many industrial 
applications such as internet of things networks routing, components placements on board for 
electronics manufacturing, transportation systems (Bajracharya,2016), containers management & 
logistic optimization chains, robotics (Rajasekaran et al., 2014), etc. Bio-inspired techniques such as 
Flower Pollination algorithm by (Yang, 2009), Particle Swarm Optimization by (Kennedy & Eberhart, 
1995), Ant Colony Optimization by (Dorigo & Birattari, 2007), Firefly Algorithm by (Yan, 2010) and 
Article Bee Colony algorithm by (Karaboga, 2005) showed their capacities to solve such problems.
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Hybrid heuristics are in general built by combining several heuristics algorithms in order to tackle 
the weaknesses of each one and to improve the quality of the solutions essentially in engineering design 
problems (Moussa et al., 2015; Pradhan, 2017). Hybridization is already based on a collaboration 
schema between heuristics. Hierarchical heuristics can be seen as: low level hybrids and high-level 
hybrids. In low-level hybridization, an internal function, or sub-processing, of a heuristic is replaced 
by another heuristic. In high level hybridization, two heuristics are hybridized without affecting their 
respective internal functionality. The hierarchical mechanism is involved when heuristics are executed 
sequentially; the output of the first heuristic is used by the second one, while the co-evolutionary 
mechanism leads to an evolution in which agents from different heuristics cooperate to explore the 
space of solutions in parallel (Rokbani et al., 2013), and where authors proposed an early hybridization 
of ACO and PSO, to overcome the sensibility of ACO to parameters.

In (Wahid et al., 2018), the authors proposed a combination between the FA, the genetic algorithm, 
GA, and the Pattern Search, PS, with application to standard mathematical functions. In this approach 
GA was used to generate a set of solutions that were later evolved for a fixed number of iterations 
by the firefly algorithm. The evolved solutions were evaluated and if an optimum solution was not 
found, the GA was recalled to modify the population on the basis of its classical operators, crossover, 
and mutation. The pattern search was introduced to moderate the solution obtained by the FA. The 
proposed hybridization was tested using the standard test functions such as the Ackley, Rosenbrock, 
and the Sphere functions.

A hybridization schema based on the Ant Colony System, ACS, and the Firefly algorithm, 
FA, was proposed in (Goel & Maini, 2017) with application to Vehicle Routing Problem, VRP. 
A Hybrid Ant Firefly Algorithm, HAFA, consisting in using ACS to generate the initial problem 
solutions’ representing the pool for FA was used to improve the search space exploration ability. The 
best solution found by the FA was used to update the pheromone trail. Here, the authors proposed a 
discrete version of FA to adapt it to the discrete problem. A combination of ACO and FA has been 
proposed in (Olief et al., 2016) in which ACO looked for the global solution and the FA focused on 
local optima using its neighborhood mechanism for TSP. The FA was the first method to search for 
local best tours and then the ACO was involved to search for the best tour on top of the FA results. In 
(Ariyantne et al., 2016), the authors used the firefly algorithm to optimize ACO settings. They aimed 
to find the global best path by optimizing α, β, and ρ; while not using any local search mechanism. 
In (Kumbharana & Pandey, 2013) the authors proposed the use of FA to solve the TSP. The fireflies 
were in this approach encoded in a discrete finite space representation, as vectors of (n) positions. 
When a firefly was supposed to move based on the distance to its neighbor, the Hamming distance 
was used to look after the best configuration among a given set of cities. The mechanism efficiently 
allowed avoiding minima. The method was applied to several TSP problems limited to 51 cities, 
including the city10, 16, 23, 30, and Eli51 TSP instances.

Making ACO self-adaptive using heuristics or bio-inspired techniques was proposed by (Rokbani 
et al., 2013) where particle swarm optimization was used to adapt the ACO parameters dynamically. 
The hybrid strategy was named ANT Supervised by PSO, since PSO is assumed to a supervisor of the 
ACO heuristic. Ant supervised by PSO with a local search mechanism including 3Opt was proposed 
in (Mahi et al., 2015) AS-PSO-2Opt while in (Kefi et al., 2016) the same architecture is used with 
the 2 Opt local search policy, AS-PSO-2OPT. The classical AS-PSO was applied to the standard 
TSP test instances. Several variants of PSO where investigated including fuzzy PSO and simplified 
PSO such in (Rokbani et al., 2019a). The gravitational PSO with a local search mechanism was also 
investigated in (Rokbani et al., 2019b).

In this study, a new hierarchical hybrid algorithm based on the combination of ACO with FA 
and local search, AS-FA-Ls, is designed. The proposed methods are compared to similar techniques 
using TSP test problems.

The remainder of this paper is organized as follows: Section 2 details the problem to be solved, 
the TSP. Section 3 reviews the key aspects of ACO and presents the FA as well as the local search 
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heuristic. In Section 4, the architectural scheme of the proposed methods is presented. Section 5 is 
reserved to the experimental investigations and comparative results while conclusions and further 
works appear in Section 6.

The Traveling Salesman Problem
Combinatorial optimization problems from a class of problems consisting in solving discrete 
optimization tasks by minimizing or maximizing a cost Function with respect to specific constraints. 
Such problems are widely found in industrial and robotics applications. The TSP is an optimization 
problem in which a salesman aims to visit a set of cities and return to his initial city. He is required 
to pass each city exactly once and the cost of the travel, which can be related to the total distance of 
the tour, is supposed to be minimized. Several meta-heuristics algorithms have been applied to solve 
TSP. TSP Fitness Y consists in finding the best global tour passing all cities and return to the start 
point such as in (Ilhan, 2017) (Laporte et al., 1990), see Equation (1).
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Ant Colony Optimization
Ant Colony Optimization is a discrete heuristic inspired from natural ants organisation (Dorigo & 
Gambardella, 1997; Dorigo & Birattari, 2007). Ants are assumed to move in a search space composed 
of a grid of nodes and arcs, such as the one showed in Figure 1. The ants deposit a pheromone amount 
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when they pass an arc joining a pair of consecutive positions. The ants move from an initial position, 
the location of the nest, towards a source of food and then move back to their starting position. This 
makes the ACO heuristic suitable for solving the TSP. At the end of the optimization, the trail with 
the maximum deposit of pheromone is assumed to be the best path joining a pair of locations. The 
ants are supposed to move from a node to another based on a probabilistic rule, where P

i j
k
,

 is the 
probability that an ant, k, will be passing the arc (i, j) joining node (i) to node (j), τ
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The ant select its movement from a city, i, according to the probability are P
i o
k
,

, P
i j
k
,
�, P

i l
k
,
�, and 

P
i m
k
,
�, as illustrated in Figure 1.
The pheromone acts as a marker helping in search space exploration. It provides a global map 

of the most visited arcs within a discrete search space. Such, arcs are associated with the optimum 
trajectory. The iterative pheromone deposition process is managed by Equation (7) where ρ  is the 
pheromone decay coefficient such as in (Dorigo & Gambardella, 1997).
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Firefly Algorithm
Firefly is a swarm intelligence algorithm inspired by the firefly’s behaviour. Yang proposed this 
algorithm in (Yang, 2010). In nature, fireflies flash the light using bioluminescence processes 
essentially for reproduction needs. The females use this mechanism to attract males while in the 
artificial Firefly Algorithm, this process is simply assumed to a communication medium. The FA 
expects all individuals to be unisex with attractiveness is decreasing with distance. The light intensity, 
I, is in FA defined by Equation (8).

I I e r= −
0�

γ 	 (8)

Where γ is the light absorption coefficient, I0 is the initial intensity, and r is the distance between 
two fireflies.

The attractiveness of a firefly (i) is calculated according to Equation (9) where ²
0

 is the initial 
attractiveness and γ   is the light absorption coefficient:
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The distance r between two fireflies i and j is given by Equation (10):
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Firefly positions are updated according to Equation (11), where α is the mutation coefficient 
and λ is a random value:

x x rand x x
i i i j
= + ( ) −( )+β α λ* * 	 (11)

The FA processing starts by defining fitness function with respect to the solve problem (Rokbani 
et al., 2015), as well as the brightness of the firefly and the maximum number of iterations and the way 
the random initial population is generated. The optimization process starts with a random population 
of fireflies. Then, the positions of the individuals are iteratively updated according to Equation (11). 
The process ends if a stopping criterion or the maximum number of iterations number is achieved. 
A simplified pseudo code of the FA is given in Figure 2.

The 2 Options Local Search Policy (2Opt)
The K option (K-Opt) is a local search algorithm which removes for each node in a graph K connections 
and reconnects them in other positions (Croes, 1958). The most important feature of K-Opt, is that 
it is an iterative method which can be inserted within a heuristic without modifying its structure 
(Helsgaun, 2009). A popular K-opt variant is the 2Opt such as in (Dorigo & Stutzle, 2004). It consists 
in removing 2 arcs (connections), which means that 4 nodes are free, and will be reconnected; see 
Figure 3 (left). The nodes are then reconnected and the obtained path is retained only if it decreases the 
global distance used to interconnect the nodes like in Figure 3 (right). The 2 Opt variant is interesting 
since the processing involved is limited to four nodes, making the possible connections equal to four 
(4), among them two (2) are removed because of integrity violation; the nodes are not fully connected. 
The remaining two possibilities are simple to process since one is already the starting configuration. 
This explains how the proposal is effective in terms of time and computing.

Figure 1. Probabilistic engagement Ant Strategy
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The Hybrid AS-FA-Ls Proposal
ACO is a discrete heuristic so naturally adapted to solve combinatorial and discrete optimization 
problem, while ACO parameters are continuous in nature. This motivates the use of a continuous 
heuristic to fit the ACO parameters. The proposed methods are based on a couple of heuristic, ACO, 
and a meta-heuristic, FA. The heuristic acts as a solver while the meta-heuristic is in charge of 
parameters fitting (α, β and ρ). The flowchart in Figure 4, details the proposed approach.

The FA particle is set to ACO parameters (α, β, ρ)T, The FA swarm size is set equal to the number 
of ACO instances, the maximum number of FA iterations is set to a fixed value (for example, 100), 
the initial light absorption coefficient is fixed to one, the attractiveness, and the mutation coefficient 
are initially set to random values. The ACO parameters are initialized and the ACO population size 
is set equal to the number of cities. The maximum number of ACO iterations is fixed; FA fitness 
function is set to the TSP tour distance which is to be minimized such as in Equation (1).

Figure 2. Simplified FA pseudo code

Figure 3. Local Search policy (2Opt)
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EXPERIMENTAL INVESTIGATIONS

Experimental Protocol
The experimental protocol is based on a statistical analysis of the performances of the hybrid 
methods proposed in this study on the TSP problem. It is then compared to related works. A Matlab 
implementation and simulations are used to evaluate the performances in term of solution quality 
and convergence rate. The experiments were conducted using Matlab software, R2013a, running on 
a personal computer with i7-8709 CORE INTEL processor with 3.10 GHz processor speed and 8GB 
RAM size. For any given TSP instance, the route length over N cities is computed using Equation 
(1), for comparisons the best tour length as well as the average tour length (avg) and the standard 
deviation (SD) are used, (Hunt et al., 2014).

The following TSPLib as in (Reinelt, 1991) test TSP instances were used: eil51, berlin52, st70, 
eil76, rat99, kroA100, eil101, ch150, kroA200.

The standard deviation, SD, is calculated using the Matlab predefined function “std”, where T 
is the number of iterations, x

t
 is the best position in each iteration t, µ  is the average solution (avg), 

see Equations (12) and (13). Both (Avg) and (SD) are computed over 100 tests.
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To compare the proposal to similar techniques the result error is computed; it stands for the 
difference between the averages found solution, Avg, to the best-known solution, BKS (Reinelt, 
1991) as in Equation (14).

Error Avg BKS BKS= −( )÷( )� � *100 	 (14)

The heuristics parameters used for the simulations are listed in Table 1.

Results and Discussions

Optimum Tour Length
Compared to the state of art results, AS-FA-Ls gives better results than the listed solvers for the 
following cases: berlin52, st70, eil76, rat99, kroA100, and kroA200, see Table 2, last line for 
comparative results.

For example, using the FA as in (Kumbharana & Pandey, 2013) and (Ariyantne et al., 2016), 
The AS-FA-Ls, give a better result for berlin 52 and Kroa 100: for the remaining of the test instances 
AS-FA-Ls returned fair solutions for all test benches used in this study especially for berlin52, st70 
and kroA100, see Table 3 for detailed results.

Figure 5 (a) shows berlin52 best tour which is obtained at a fitness of 7794; the optimum tour 
for the st70 problem is 683, shown in Figure 5 (b). For the eil76 test problem an optimum solution 
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is observed with a tour length of 549, see Figure 5 (c). The best Tour of rat99, illustrated by Figure 
5 (d), is equal to 1258.

A couple of Kroa test instances were also investigated. In particular, Kroa 100 and Kroa 200, 
with tour lengths of 21821 and 29532, respectively. The method achieved better results than reference 
methods listed in Table 3 but did not reach the best-known solutions. Kroa 100 and 200 best tours 
are respectively visible on Figures 5(e) and 5(d), respectively.

Ability of Self-Tuning ACO Parameters
The berlin52 TSP instance, shown in Figure 6, was selected to investigate the ability of FA to tune 
ACO parameters. The instance was selected on the basis of good results with an error of about (0.46), 

Figure 4. ACO-FA -Local Search (2Opt) flowchart
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achieved by AS-FA-Ls. The dynamic evolution of ACO parameters by the FA is illustrated in Figure 
7. The figure illustrates that the FA has introduced a great diversity of values and their combinations 
to ACO parameters.

The Analysis showed that the ACO (ρ) parameter is stabilized at the value of (0.7) at the level 
of iteration (60), see Figure 7 (c). At the same time high search diversity is observed for α, and β 
parameters as it can be observed in Figures 7 (a) and 7 (b). The same behaviour was observed also 
for other TSP instances used in this research.

A part of the study consisted also in gathering the set of best parameters that the proposed 
optimization methods used for ACO. There is no set of generic parameters suitable for all test TSP 
instances. Different sets of best performing parameters can be considered for each one of them. The 
recommended parameters for investigated TSP instances are listed in Table 4. The investigations 
showed that a redundant α  parameter is (0.7) which is observed in 5/9 times while the value of 7 is 
returned in the remaining cases, � 0 5 9, ,� �  while �� . ,� . ,� .ρ = ( )0 07 0 03 0 0963 . This justifies the 

Table 1. Operated test conditions for AS-FA-Ls

Firefly Algorithm

Iterations 100

Population 10

Parameters

α
0
2= ∗ rand

β
0
0 2= ∗. rand

γ = 1

Table 2. Comparisons of the proposed algorithm with other techniques (BKS: Best Known Solution)

Problem 
BKS

eil51426 berlin527542 st70 
675

eil76538 rat991211 eil101629 kroA10021282 ch1506528 kroA20029368

ACO-ABC 
(Gunduz et 
al., 2015)

Avg. 443.39 7544.37 700.58 557.98 - 683.39 22435.31 6677.12 -
SD 5.25 0.00 7.51 4.10 - 6.56 231.34 19.30 -

Error (%) 4.08 0.03 3.79 3.71 - 8.65 5.42 2.28 -
PSO–ACO–
3Opt (Mahia 
et al., 2015)

Avg. 426.45 7543.20 678.20 538.30 1227.40 632.70 21445.10 6563.95 29646.05
SD 0.61 2.37 1.47 0.47 1.98 2.12 78.24 27.58 114.71

Error (%) 0.11 0.02 0.47 0.06 1.35 0.59 0.77 0.55 0.95
AS-PSO 
2opt (Kefi et 
al., 2016)

Avg. 428 7542 678 541 1236 632 21457 6560 29837
SD 9.97 202.62 15.92 12.16 31.74 12.29 391.85 171.90 359.28

Error (%) 0.23 0.0 0.44 0.55 2.08 0.47 0.82 0.49 1.60
ACSFA 
(Ariyantne et 
al., 2016)

Avg. 432.6 - - - - - 21390.71 - -
SD - - - - - - - - -

Error (%) - - - - - - - - -
SAS-PSO-Ls 
(Twir and 
Rokbani, 
2017)

Avg. 426 7542 675 543 - 645 21305 6606 29924
SD 9.6403 206.1429 20.6865 13.1426 - 12.1358 674,4597 176.5837 631.5875

Error (%) 0 0 0 0.92937 - 2.5437 0,10807 1.1949 1.8932

FA-TSP 
(Kumbharana 
& Pandey, 
2013)

Avg. 435.60 - - - - - - - -
SD - - - - - - - - -

Error (%) - - - - - - - - -

AS-FA-LS Avg. 428 7542 675 541 1213 639 21282 6571 29532
SD 8.3575 - 15.1956 11.1445 29.1416 12.1791 437.8311 159.1596 628.9033

Error 
(%)

0.46948 0 0 0.55762 0.16515 1.5898 0 0.6587 0.55843
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need for self-adaptation mechanisms for ACO solvers and confirms the pertinence of the proposed 
hybridization and other complex algorithmic schemes. The set of recommended parameters for ACO 
found by the FA are listed in Table 3 for each problem of the TSP instances used in this study.

AS-FA-Ls converges convergences in 50 iterations with a possible acceptable solution -an error of 
less then 1%. The best obtained solutions for large TSP instances like Kroa 200 needed 200 iterations. 
The Results presented in Table 3 are obtained with the maximum number of iterations fixed to 100. 
The obtained errors ranged from 1.58 to 0.

Figure 8 shows how the tour length which is also set to be the cost or fitness function of FA 
evolved while solving the berlin52 TSP instance.

The investigations regarding the execution time of the proposed for the Berlin 52 TSP instance, 
showed that the method is relatively fast, and that the processing time for 10 FA search agents is 
about 277s, while it rises to 314s and 384s for 20 and 30 agents, respectively. The full results are 
shown in Table 4.

The processing time increases as the number of agents’ increase, in a non-linear manner, since 
the increase in the number of agents also increases the possibility to find a good set of parameters 
allowing an early convergence.

CONCLUSION AND PERSPECTIVES

This study investigated a hybrid self-adaptive algorithm for an NP-Hard Combinatorial Optimization 
problem, the TSP. The proposed method, AS-FA-Ls have performance comparable to the state-of-
art algorithms. Globally, AS-FA-2opt is achieving fair solutions for the TSP problems used in the 
experimental evaluation including berlin52, St70, eil76, KroA100, kroA200, etc.

Figure 5. Best tour obtained using AS-FA-Ls
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Clearly, AS-FA-Ls returned better results than the reference methods in the following cases: 
berlin52, st70, eil76, rat99, kroA100 and kroA200.

The analysis of the results allowed determining a set of recommended parameters to be used 
with ACO for the TSP instances used in this study.

Future investigations will focus on the impact of the local search strategy including similar 
techniques such as K-means, Greedy search, or Variable Neighborhood Search (VNS). The comparative 
evaluation of similar hybridizations based on bio-inspired and heuristic technique may also subject 
to investigations…

Figure 6. berlin52 optimum tour obtained AS-FA-Ls
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Figure 7. Convergence of ACO parameters (berlin52) using AS-FA-Ls

Table 3. Optimized ACO parameters for each test bench (AS-FA-Ls)

Problems ± ² Á

eil51 7 9 0.03

berlin52 0.7 5 0.7

st70 7 0 0.096375

eil76 7 5 0.7

rat99 0.7 9 0.7

eil101 7 5 0.03

kroA100 0.7 9 0.7

ch150 0.7 9 0.7

kroA200 0.7 9 0.7
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Figure 8. Evolution of the fitness function berlin52 using AS-FA-Ls

Table 4. Execution time for AS-FA-Ls

Maximum Iterations = 100

Swarm size =10 Execution time in (s)

10 277.5886

20 314.5676

30 384.4568
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