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ABSTRACT

Distributed denial-of-service (DDoS) attacks are serious threats to the availability of a smart grid 
infrastructure services because they can cause massive blackouts. This study describes an anomaly 
detection method for improving the detection rate of a DDoS attack in a smart grid. This improvement 
was achieved by increasing the classification of the training and testing phases in a convolutional 
neural network (CNN). A full version of the variance fractal dimension trajectory (VFDTv2) was 
used to extract inherent features from the stochastic fractal input data. A discrete wavelet transform 
(DWT) was applied to the input data and the VFDTv2 to extract significant distinguishing features 
during data pre-processing. A support vector machine (SVM) was used for data post-processing. The 
implementation detected the DDoS attack with 87.35% accuracy.
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INTRODUCTION

A smart grid is an innovative electricity delivery system that uses a bidirectional communication 
network to connect the power providers’ control systems and the consumers’ smart meters (Yan, Qian, 
Sharif, & Tipper, 2013), (Beigi Mohammadi, Mišić, Mišić, & Khazaei, 2014). The purposes of the 
smart grid are (i) to increase the availability and the reliability of electricity, (ii) to control the system 
in real-time, (iii) to deliver power to users in a safe and secure infrastructure, (iv) to save energy, and 
(v) to reduce costs. However, hackers can attack the smart grid’s cyber layer, which consequently can 
affect its physical domain. These attacks can disrupt the smart grid’s benefits. A distributed denial of 
service (DDoS) attack is a common type of cyber-attack, which delays or blocks the communication 
in the smart grid, thus causing power outages (Asri & Pranggono, 2015). Cyber space infections can 
have serious impacts on the real world. A smart grid infrastructure and the supervisory control and 
data acquisition (SCADA) systems, used in power generation, water management and oil pipelines 
are examples of physical systems that are disrupted by cyber space infections (Nazir, Patel & Patel, 
2017), (Asri & Pranggono, 2015). When the operation of physical devices is altered by the attack, the 
standard cybersecurity problem becomes a cyber-physical security problem. Since the impact of the 
alteration may also affect the society in a city, or a region, or even a country, the problem escalates to 
a cyber-physical-social security. Such security systems should be treated using cognitive informatics 
and cognitive computing (Wang, 2002), (Kinsner, 2012).

Identifying normal burst-data behaviors of a network and the abnormal burst-data behaviors 
caused by DDoS attacks is very challenging. Both classes of network traffic have similar intrinsic 
characteristics. They are both stochastic time-series signals, non-periodic, broadband, self-affine, and 
multi-fractal. Therefore, to differentiate the two classes of traffic, distinguishing features must be 
extracted. Furthermore, the attack patterns are almost always changing and the new attack patterns 
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and behaviors must be detected in the smart grid, which is also a frequently-changing environment. 
Therefore, a learning method that can detect new attack patterns and behaviors in frequently changing 
environments must be used (Beqiri, 2009). A deep learning algorithm is a good candidate to learn and 
classify normal behaviors from anomalous behaviors in such an environment (Goodfellow, Bengio 
& Courville, 2016).

This paper reports on the improvement of an anomaly detection method that was developed 
previously by Ghanbari, Kinsner, & Ferens (2017). The original detection method had two steps: (i) 
the pre-processing step that used a discrete wavelet transform (DWT) and (ii) the processing step that 
used a convolutional neural network (CNN). To improve the detection rate of the original method, in 
this study we added a full version of the variance fractal dimension trajectory (VFDTv2) to extract 
features from the non-pure fractal data that rely on long-range dependence as proposed originally by 
Kinsner (2007, 2012, 2015). The VFDTv2 was adjusted to consider all points including the boundary 
points of a dataset not just the marginal points. Moreover, the variance equation of the data series 
was adjusted to consider all points. In addition, the pre-processing step was used to extract more 
distinguishing features. Also, we added a support vector machine (SVM) as a post-processing step.

Some algorithms have been proposed to detect anomalous behavior in computer networks and 
smart grid infrastructures. Barford, Kline, Plonka, and Ron (2002) proposed an anomaly detection 
algorithm based on signal processing. The algorithm derived and summed high frequency, mid 
frequency and low frequency part of signals. DDoS attacks were detected based on 1.5 and 2 
thresholds. However, the length of window and weighted sum for detection attack was static. Hu, Pota, 
and Guo (2014) offered an anomaly detection based on phase angle, current and voltage in a frame. 
The algorithm detected DDoS attacks based on unavailability or delaying phase angle. Due to their 
architecture, there might be instances where the attackers attack the root node, and take advantages 
of the bottleneck problem. Mohammadi et al. (2014) proposed a hierarchical IDS by considering 
several rules to detect known and unknown attacks. Khan, Ferens, and Kinsner (2015) offered an 
anomaly detection method to extract features of the Internet traffic time series by an autonomous 
sliding windowed the variance fractal dimension trajectory (VFDT) to extract the bursts of data 
sample, accurately. However, the current study applied the machine learning tools to distinguish DDoS 
attack from normal burst data behaviors with a higher detection rate. The paper that was developed 
previously reports on anomaly detection method (Ghanbari et al., 2017). The fundamental idea of 
this method was to enhance the sensitivity of detection by using distinguishing features by the DWT 
to increase the sensitivity of the CNN. However, the detection rate of 80.77% was not high enough 
in a smart-grid infrastructure.

The organization of this paper is as follows. Section 2 presents the dataset. Section 3 presents 
the proposed an anomaly detection method algorithm. Section 4 presents the simulation. Section 5 
presents the results and discussion, and section 6 offers some concluding remarks.

DATASET

The dataset that was used for training and testing in this research was downloaded from the Center 
for Applied Internet Data Analysis (CAIDA). CAIDA obtains different types of real time network 
traffic from around the world, and it has become one of the most reliable networks for downloading 
datasets. Commercial organizations, research sectors, and governments donate and collaborate with 
CAIDA while their privacy is protected (Center for Applied Internet Data Analysis, CAIDA, (2018). 
This center supports large-scale data collection for the scientific research community.

The dataset used in this research was chosen from CAIDA’s 2007 DDoS-attack traffic, and it 
contained UDP Flood, TCP, ICMP (Ping) Flood, and SYN Flood packets. Each packet in the dataset 
contains a source IP address, a destination IP address, length of packet, protocol and packet-arrival 
time. The number of packets with 0.1ms duration within the stationary frame size is shown in Figure 1.
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The Proposed Anomaly Detection Algorithm
The proposed anomaly detection algorithm consists of four steps: (i) preparing data, (ii) data pre-
processing, (ii) data processing, and (iv) data post-processing. These four steps are shown in Figure 2.

The DDoS detection algorithm used in this study is described below.

Preparing Data for Processing

1. 	 The raw data that contains a source IP address, a destination IP address, length of packet, protocol 
and packet- arrival time for each packet is fetched and tagged as normal or anomalous;

2. 	 A new attribute called a packet arrival time-series signal (ATS) is calculated by using the difference 
between a packet- arrival time at t and the packet-arrival time at t-1.

Pre-Processing
The ATS data is passed to the pre-processing step for feature extraction. The features are extracted 
in two different ways. Firstly, the ATS data is passed to the improved version of the variance fractal 
dimension (VFDv2) algorithm described in Part A below.

Secondly, the ATS data and the result of the VFDv2 algorithm are passed to the discrete wavelet 
transform (DWT). The wavelet coefficients of the ATS data and the output of the previous step are 
calculated by using the Daubechies wavelet transform. The wavelet coefficients can be obtained by 
convolution of the input signal and the Daubechies basis function within an adjustable window size. 
This can be achieved using Equation (1) (Gao & Yan, 2011), where s is the scaling parameter, τ  is 
shifting parameter, ψ(.)  is a discrete basis function and the symbol * denotes the complex conjugate:

wt s
s

x n
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( , ) ( ) *( )τ ψ τ= −
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Figure 1. The number of packets within a stationary frame size
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In addition, the size of the window is defined in which the data are stationary. The z-score 
normalization within the window size is used to normalize the output coefficients of the DWT.

Processing
The processing step involves the CNN that was developed and described in detail in Ghanbari et al. 
(2017). This CNN consists of the following six layers: (i) the input layer, (ii) the convolution layer, 
(iii) the rectified linear unit (ReLU) layer, (iv) the normalization layer, (v) the pooling layer, and (vi) 
the fully-connected layer, as shown in Figure 3.

The processing step is as follows:

1. 	 The raw data, the ATS data and the pre-processed data are sent simultaneously to the input layer 
of the CNN as one-dimensional time-series signals;

2. 	 The CNN is then trained. The logistic regression function is used as a convex cost function. 
Furthermore, the stochastic gradient descent algorithm is used to train the CNN to update its 
weights and biases through a backward propagation algorithm;

3. 	 Based on the learned parameters of the training phase, the output of the testing phase classifies 
the data into two classes: normal and anomalous behaviors.

This single-stage CNN comprises the processing step.

Post-Processing
The post-processing step is used to overcome the duration of training the CNN. In general, a CNN 
involves a large number of parameters, which decreases the training speed, so this study uses an SVM 
as the post-processing step.

The SVM algorithm obtains an optimal hyperplane to classify the data based on a large margin 
separation and a kernel function. The SVM tries to find the maximum distance between that hyperplane 
and the closest data point on either side of the hyperplane. The optimal hyperplane or the decision 
boundary is shown in Figure 4.

The SVM formulation is the equivalent of maximizing the margin while minimizing error. The cost 
function can be obtained using Equation (2) with the constraint shown by Equation (3) (Ferens, 2016):

Figure 2. The algorithm of DDoS attack detection
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The input of the SVM is the combination of the raw data, the ATS data, the pre-processed data, 
and the output of the processing step. The post-processing step increases the detection rate while 
reducing the detection processing time.

A FULL VERSION OF THE VARIANCE FRACTAL DIMENSION ALGORITHM

A fractal signal is a signal whose scaled-down version is similar to a part of itself (Kinsner, 2015). 
Also, a fractal signal is self-affine when different scales along different coordinates are used for a 
scale-down version of a signal. If the scales are the same, the signal is called self-similar. A network 
traffic signal is a nonstationary and a stochastic fractal signal. To analyze and measure a fractal 

Figure 3. A single-stage convolutional neural network architecture
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signal complexity, a fractal dimension can be calculated. A fractal dimension interprets degree of 
meandering of a fractal signal (Kinsner, 2015). In this study, a polyscale analysis algorithm is used 
to measure the fractal dimension of the network traffic signal and extract distinguishing features of 
intrinsic characteristics of the signal (Kinsner, 2015). In contrast with multiscale analysis, where 
there is no correlation between outcomes, a polyscale analysis measures a signal with various scales, 
and its outcome requires all the scales be used simultaneously (Kinsner, 2015). In addition, this full 
version of the variance fractal dimension (VFD) is introduced because the input data is a stochastic 
fractal. For deterministic fractals, the simplified version can be used.

To analyze and measure the complexity of the signal using the VFD algorithm, the variance of 
its amplitude increments over a time increment has a power law relation with that time increment 
(Kinsner, 2015):

var[ ( ) ( )] ~| |A t A t t t H
2 1 2 1

2− − 	 (5)

where var is a variance function (the second moment), A is the signal, H is the Hurst exponent, and 
t is used to represent time in a continuous signal. After sampling the data and obtaining the discrete 
signal, the Hurst exponent can be calculated from a log-log plot through the following equation:
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while n shows discrete time in a discrete signal.

Figure 4. Optimal hyperplane to classify the positive and negative data with the support vector machine algorithm (After Ferens 
(2016))
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The output of the VFD, which is a measure of signal complexity and shown by Dσ , can be 
obtained using Equation (7):

D E Hσ = + −1 	 (7)

where E is the Euclidean dimension, and it is equal to one for the time series data. The result of the 
VFD is a parameter, Dσ , which its value is limited between one and two that is shown by the following 
condition:

1 2≤ ≤Dσ 	 (8)

The real-time VFDv2 algorithm is characterized by a change in step 6 of the original VFD 
(Kinsner, 2015), as described below:

1. 	 Find a frame size, T, in which the input data series is stationary, otherwise, the algorithm’s result 
is invalid;

2. 	 Segment the data series according to the length of the frame size;
Find the number of samples in each frame, NT , in the current frame by Equation (9):

N
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	 (9)

where δn  is an interval between two successive sampled data.

Find the maximum volume element (vel) size, ∆tkmax
, in the current frame using Equation (10):

∆ =tk
k

max
max2 	 (10)

where 2
kmax  is the maximum number of samples in each interval, and kmax  can be obtained from 

Equation (11). A relationship between parameters is shown in Figure 5. As an example, it is indicated 
that the number of vels within the frame size 8192 is equal to 2048, when the vel size is equal to four. 
If the vel size is equal to eight, then the number of vels within the frame is equal to 1024, etc.

5. 	 To find the output of the VFDv2 for the data series (signal A) in each frame (NT ), parameters 
from Equations (11) to (14) are required. In the calculation program, a loop is designed to obtain 
the VFDv2 output within the lower bound, klow , and the upper bound, khi values as shown by 
Equation (11) to Equation (14):
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Klow ≥ 0 	 (14)

6. 	 To find the variance of the data series in the current frame, another nested loop is required. The 
parameters where described in Equations (15) and (16) are required to find the boundaries of 
the second loop:

nk
k= 2 	 (15)

N N nK T k= 

/ 	 (16)

Figure 5. Relationship between parameters ni, δn , NT
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The loop is repeated NK times, where NK represents the number of vels in the frame. Also, NK 
varies based on the values of nk  in each step, where nk  represents the size of vels in the frame. 
Therefore, by changing the vel size in each step, the concept of polyscale analysis is achieved using 
the VFDv2 algorithm. Equation (17) (Kinsner, 2015):

var( ) [( ) ( ) ]∆ ∆A N A N Ak K
jk

j

Nk

K jkj

Nk
=

= =− ∑ − ∆∑1
1

1
1

2
1

2 	 (17)

was adjusted to obtain the variance of the data series for stage k. Equation (18) is derived from 
Equation (17) for this study:
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where the amplitude increment ∆A  can be obtained from Equation (19):

∆ = − − =A A j n A j n j Njk k k k( . ) (( ). ) ,...,1 1 for 	 (19)

An important issue regarding Equation (18) is that all points other than boundary points of the 
dataset, within the current frame, should be considered. Therefore, based on this concept, the variance 
is introduced through Equation (18). Figure 6 shows an example regarding a sliding vel with size 
of 16 that covers all points of the dataset within the current frame of data to calculate the VFDv2.

Figure 7 shows an example of a range of vel sizes from 1 to 4, and the number of vels in a frame 
size with 8192 data points.

7. 	 Find the log-log plot values for each coordinate axes from Equation (20) and Equation (21):

X nk k= log[ ] 	 (20)

Y Ak k= ∆log[var( ) ]	 (21)

8. 	 Compute the slope, S, from the log-log plot based on the least squares fit by linear regression 
according to Equation (22):

Figure 6. A graphic illustration describing the concept of covering all points of data to calculate the VFDv2
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9. 	 Compute the Hurst exponent according to Equation (23) from the slope of Equation (22), which 
is extracted from Equation (6):

H S= ( )
1
2

	 (23)

10. 	Compute the VFDv2 based on Equation (7);
11. 	Obtain the dimension for the next frame, until the end of the time series is reached. By a chain 

of the VFDv2 outputs, a VFDTv2 is calculated.

SIMULATION

In this section, the simulation of the proposed DDoS attack detection algorithm is described. The 
code was written with MATLAB R2017a, and the CC Compute Cluster at the University of Manitoba 
distributed the computationally intensive work. The simulation of the proposed algorithm followed 
five steps, which are described below.

First Step: The data output was tagged based on the number of packets within 0.1 millisecond (ms). If 
there were fewer than 40 packets within 0.1ms, the data was considered normal, so it was tagged 

Figure 7. Relationship between a vel size and the number of vels in each frame to calculate the VFDv2 output
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as zero. If there were more than 40 packets within 0.1ms, the data was considered anomalous, 
so it was tagged as one.

Second Step: The VFDTv2 was used to measure the complexity of the ATS data. To overcome the 
nonstationary problem, the stationary-frame size was selected by calculating the first and the 
second moment of the ATS data. In general, a frame size can be selected when the mean and 
variance of each frame are within two ranges, with about a 95% confidence level (Kinsner, 2015). 
In this simulation, a frame size of 8192 samples was chosen, and the lower bound in each frame, 
klow , was assigned a zero value. At this point, the VFDv2 algorithm was performed to find a 

Dσ  for each frame. In addition, an overlapping scheme of the VFDv2 algorithm was used to 
extract underlying features in real time, so the samples from each frame and its adjacent frame 
were overlapped. In this simulation, an overlapping size of 8191 samples was chosen to achieve 
a 99.98% overlap. Therefore, sensitivity to anomalous behaviors was increased in real time and 
any deviation from normal behaviors was declared. Finally, a VFDTv2, which was obtained by 
a chain of VFDv2s in each frame, was calculated as the output at this step. The output of this 
step was concatenated with the data.

Third Step: The Daubechies wavelet transform 4 (db4) and the inverse Daubechies wavelet transform 
were calculated at each level. Different Daubechies db4 wavelet transform levels, ranging from 
level 1 to level 13, were applied to analyze the ATS data and the output of the VFDTv2 time series 
to find patterns. Different Daubechies db4 wavelet levels had different results and different sizes 
of output. Therefore, the output length of the db4 at each level was not the same as the input, 
so it was not possible to add these extracted features to the input, the ATS data and the output 
of the VFDTv2. To overcome this problem, the time series were reconstructed by the inverse 
Daubechies wavelet transform 4 at each of the 13 levels. As a result, the ATS data, the output 
of the VFDTv2, and the decomposed 13 distinct signals were concatenated with the raw data.

Fourth Step: The CNN parameters were trained. Based on the calculation described in step two, the 
stationary-frame size was calculated. Next, outputs of previous steps were normalized within 
the stationary-frame size. Accordingly, specific parameters and metadata to train the CNN were 
developed and were described in detail in (Ghanbari et al., 2017). More specifically, the learning 
rate (α) among a set of candidates: α = {0, … 0.1, …, 0.5, …,1} was found. In order to meet the 
convergence of error to 0 at early iterations, and to achieve the best detection rate, the learning 
rate, α, was set to 0.6. Using a part of the dataset, the CNN was trained to extract the features 
automatically, and obtain coefficients from the dataset. Next, using the remaining dataset, the 
CNN was tested with the obtained coefficients of the CNN training step.

Fifth Step: The data, the pre-processed data and the output of the training step were passed to the 
SVM for training the SVM parameters. The parameters were a vector of the weight coefficients, 
w, and a constant, b. Table 1 shows the parameters to train the SVM. The remaining raw dataset, 
the remaining pre-processed dataset, and the output of the CNN testing phase were passed to the 
SVM testing step, to classify normal and anomalous behaviors.

RESULTS AND DISCUSSION

In this section, the justification for each step and the results of the proposed anomaly detection 
algorithm are explained.

The VFDT was chosen for the pre-processing step because it is immune to noise, and it can be 
utilized in real time (Kinsner, 2015). The VFDv2 algorithm was introduced because the ATS data 
was not a pure fractal. Therefore, the average measure regarding all points of the ATS data with 
various scales should be considered. The result of the VFDv2 algorithm was between 1.1329 and 
1.1828 for klow = 0 , and the result of the VFDv2 was between 2.0069 and 2.0163 for klow = 1 , 
which are shown in Figure 8 and Figure 9 respectively. In addition, the sliding window VFDTv2 was 
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used to increase sensitivity of the VFDv2 algorithm to extract features from a short duration of DDoS 
attack.

The DWT was chosen in pre-processing step because it is sensitive to irregularities in signals. 
Firstly, the DWT coefficients with anomalous events have larger magnitudes when compared to 
the DWT coefficients without anomalous events. Secondly, the DWT reacts to the change in the 
first derivative (slope) of a signal, not to the change in the amplitude of a signal. The db4 as a basis 
function for the DWT is used because it is suitable to detect an anomaly with a low amplitude, short 
duration, fast calculation of DWT coefficients, fast rate of decay, and rapid oscillation in a signal 
(Safavian, 2006).

Training of a CNN has a long duration. In addition, the classification accuracy of a CNN is 
improved by increasing the number of its stages, which decreases the speed of the training. To 
overcome this problem, the SVM was considered to increase the detection rate.

Table 1. Specific parameters to train the SVM with one dimensional input

Figure 8. The trajectory regarding VFDv2 algorithm of the ATS data within the stationary frame and klow = 0
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In each proposed algorithm step, detection rates of DDoS attacks are evaluated using 50% of the 
dataset for training and 50% of the dataset for testing as shown in tables 2-7. When a single-stage 
CNN was considered, the detection rate was 56.1% (Ghanbari et al., 2017). However, when the 
db4 pre-processing step together with a single-stage CNN were considered, the detection rate was 
80.77%, which was an increase of 24.6% from the previous result. The detection rate was further 
improved to 81.73% when the db4, the VFDTv2 and a single-stage CNN were considered. As a 
result, the distinguishing features in the pre-processing step were sensitive to anomalous behaviors in 
comparison with normal behaviors. When we considered the db4 and the VFDTv2 as pre-processing 
step, a single-stage CNN, and the SVM as post-processing, the detection rate was 87.35%. Comparing 
the proposed algorithm result in Table 7 with our previous work (Ghanbari et al., 2017), the results 
in Table 3 show that an increase of 6.58% true positive detection rate was achieved. Consequently, 
using the SVM as a post-processing step increased the sensitivity to detect anomalous behaviors. We 
can now observe that the pre-processing step contributed significantly to the detection rate compared 
to the post-processing step in the proposed algorithm.

Finally, using the db4 and the VFDTv2 in the pre-processing stage, the one-stage CNN as a 
processing step with α = 0.6 using 80% of the dataset for training and 20% of the dataset for testing, 
and the SVM as post-processing, the detection rate was 68.19% as shown in Table 8.

DISCUSSION

Since the proposed detection DDoS attacks method is based on supervised learning, it needs tagged 
data as its input. To detect untagged data, an extension of the method is required such as one of the non-
supervised learning methods. In addition, since this research was conducted to detect vulnerabilities 
and attacks in a smart grid infrastructure, we have extended the method to assist in preventing the 
attacks, or mitigating the effect of the attacks. Therefore, a severity score, which is a measure of the 
risk regarding a vulnerability can be assigned to make a priority to response a threat for mitigating 
the effect of the threat (Suh-Lee & Jo, 2015).

Moreover, one common method to generate data artificially to expand datasets for training deep 
learning algorithms, and increasing classification rate is data augmentation. One important condition 

Figure 9. The trajectory regarding VFDv2 algorithm of the ATS data within the stationary frame and klow = 1
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is that the data augmentation should not affect constraint of the data. For example, flipping and 
stretching an image are data augmentation methods, so by applying the methods on a cat image, the 
result is still a cat. Therefore, data augmentation preserves constraint of data. However, the current 
study considers time-series signals that contain DDoS attacks. Data augmentation affects constraint 
of this data. For example, consider an Electrocardiography (ECG) signal. A healthy heart beats 
between 60 to 100 beats per minute (Hart, 2015), but with stretching, an ECG signal that shows one 
beat per minute does not belong to a healthy heart. As a result, the constraint of the signal is not 
preserved any more. Likewise, data augmentation cannot apply for time-series signals that contain 
DDoS attacks. (The time-series signals that contain DDoS attacks rely on long-range dependence 

Table 2. Simulation result of the one-stage CNN as a processing step (Ghanbari et al., 2017)

Table 3. Simulation result of the pre-processed data by the db4 and one stage CNN (Ghanbari et al., 2017)

Table 4. Simulation result of the preprocessed data using the db4, the VFDv2 and the one-stage CNN

Table 5. Simulation result of using the SVM
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Table 6. Simulation result of the pre-processed data using the db4 and the VFDv2, the one-stage CNN as a processing step 
with a set of candidate α and the SVM as a post-processing step

Table 7. Simulation result of the pre-processed data using the db4 and the VFDv2, the one-stage CNN as a processing step 
with α = 0.6 using 50% of the dataset for training and 50% of the dataset for testing and the SVM as a post-processing step

Table 8. Simulation result of the pre-processed data, a single-stage CNN using 80% of the dataset for training and 20% of the 
dataset for testing and the post-processing step
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that can be measured by the Hurst exponent. The closer to one the value of the Hurst exponent the 
greater the degree of long memory or long-range dependence (Zhou, Han, & Tang, 2011). In the 
current study, the time-series signals have the dimension between 2.0069 and 2.0163. According to 
Equation (23), the Hurst exponent has values between 1.00345 and 1.00815, which are close to one, 
so the data has a heavy tail. Internet traffic with this characteristic follows the Poisson distribution 
(Zhou et al., 2011)) and the Lévy distribution. (The ATS data, which is calculated as a new attribute 
in the current study, is based on the difference between packet-arrival times. Also, the data output was 
tagged as normal or anomalous based on the number of packets within 0.1 ms. Therefore, stretching, 
squeezing, cutting a chunk of data and other methods of data augmentation change the ATS data 
and the tagged output, so the constraints are not preserved. For example, one situation in which the 
constraints are not preserved is when data fails to follow the Poisson distribution.) Therefore, data 
augmentation does not apply to ECG and Internet traffic data. To increase anomaly detection, another 
CNN architecture should be applied.

EXTENSION OF THE WORK: MULTIFRACTAL DATA AUGMENTATION

Small data sets can lead to overfitting and poor generalization. Several techniques can be used to 
cope with the problem such as regularization, dropouts, and batch normalization (Xiang & Li, 2017). 
This can be applied even to generative adversarial networks (Goodfellow at al., 2014), such as the 
CycleGAN (Zhu, et al., 2017).

A small dataset can be expanded by simple or complex transformations of the original set. This is 
often done in 2D signals by simple techniques such as translation, flipping, rotation, scaling, zooming, 
cropping, interpolation, extrapolation, adding Gaussian noise. Data augmentation can also be done by 
transferring styles (e.g., texture/ambiance/appearance) from images in the dataset using neural networks 
(Pan & Yang, 2010). Generative adversarial networks (GANs) and conditional GANs (cGANs) can 
generate content from the existing data. The objective of a GAN is to train a parameterized function 
to map a source of noise to the input space of synthetic signals.

While most of the work has been done on images, one-dimensional signals (e.g., stock price index) 
are being now considered too (e.g., Lou, Qi, & Li, J., 2018). We are considering such transformations 
as they relate to time series. The major challenge of this data augmentation will be to preserve the 
multifractal nature of the Internet traffic and the long-range dependence. Some of the challenges 
may require adaptive multi-objective memetic optimization techniques such as reported in Dang & 
Kinsner (2016).

CONCLUSION

In this paper, an anomaly detection method was proposed to detect DDoS attacks. The aim of this 
paper was to achieve a higher accuracy detection rate. Therefore, by using distinguishing features of the 
data carrying anomalous behavior that causes to increase sensitivity of the CNN to classify the input 
data, enhanced sensitivity of detection was achieved. A higher accuracy detection rate was achieved by 
adding the full version of the variance fractal dimension trajectory, VFDTv2, as pre-processing step 
of the stochastic fractal input data and the SVM as post-processing step, and the proposed anomaly 
detection method detected the DDoS attack with 87.35% accuracy. This method of detecting DDoS 
attacks allows detection of anomalous behavior in real time, and adapts to various environments.
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