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ABSTRACT

To improve the accuracy of image classification, a kind of improved model is proposed. The shortcut 
is added to GoogLeNet inception v1 and several other ways of shortcut are given, and they are 
GRSN1_2, GRSN1_3, GRSN1_4. Among them, the information of the input layer is directly output 
to each subsequent layer in the form of shortcut. The new improved model has the advantages of 
multi-size and small convolution kernel in the same layer in the network and the advantages of shortcut 
to reduce information loss. Meanwhile, as the number of inception blocks increases, the number of 
channels is increased to deepen the extraction of information. The GRSN, GRSN1_2, GRSN1_3, 
GRSN1_4, GoogLeNet, and ResNet models were compared on cifar10, cifar100, and mnist datasets. 
The experimental results show that the proposed model has 3.07% improved to ResNet on data set 
cifar10, 2.08% on data set cifar100, 17.69% improved to GoogLeNet on data set cifar10, 28.47% on 
data set cifar100.
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INTRODUCTION

Deep learning is a research hot spot at present, and its research results have been widely used in image 
recognition, speech recognition, and other fields. This paper concerns the study of the application of 
deep neural network algorithm in image classification. An improved neural network model based on 
GoogLeNet and residual neural network ResNet is proposed. First, the mainstream algorithms of deep 
neural network in image recognition is introduced in this paper and the analysis of the advantages 
and disadvantages of GoogLeNet series algorithm and residual neural network algorithm. Based on 
the advantages of the two kinds of algorithms, an improved model GRSN is proposed by introducing 
the shortcut into the GoogLeNet inception block algorithm. Secondly, the detailed network structure 
and parameter setting of GRSN is shown. In addition, the experimental analysis is carried out. Then, 
the over-fitting situation is optimized. Finally, the conclusion and prospect are given.

The BP neural network proposed by Rumelhart and McClelland in 1986 is a fully connected 
network, but this network cannot provide great performance or high accuracy in image recognition. 
To address this problem, the CNN (Convolution Neural Network) was proposed, which imitates the 
higher sensitivity to main features of human eyes and adopts a shared weight structure to significantly 
reduce the weight parameters and improve the performance and accuracy of image recognition. In 
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1998, LeCun proposed the LeNet, which is a typical CNN structure, and it consists of two convolution 
layers, two pooling layers, and two fully-connected layers. When this network was applied to the 
handwritten digit recognition of people in the United States, the error rate was lower than 1%. 
However, its recognition performances on Chinese characters and more complex images need to 
be enhanced. In 2012, the AlexNet developed by Hinton and his student Alex Krizhevsky won the 
International Conference on Computer Vision (ICCV) contest. Their algorithm adds more layers 
and adopts a parallel structure to run on GPU, so its image recognition performance is significantly 
improved. VGG uses small convolution kernels to increase the numbers of layers and channels of the 
network (Simonyan, 2014). The GoogLeNet algorithm won the championship in the same year. In 
this algorithm, the inception structure block is introduced, and the convolution kernels of different 
sizes are used in the same layer of the network to extract a feature of different sizes and improve 
the perception of the model. By introducing the 1*1 convolution kernels, dimension reduction can 
also be achieved. There are four versions of GoogLeNet: v1, v2, v3 and v4, and the main difference 
between these versions is in the inception module.

The recognition accuracy of the algorithm can be improved by increasing the number of network 
layers. LeNet has 5 layers, AlexNet has 8 layers, VGG has 16 layers and 19 layers structure, and 
inception v1 has 22 layers. However, He Kaiming, the designer of ResNet, conducted an experiment on 
the cifar10 data set and found that the image recognition error rate of a 56-layer convolution network 
was higher than that of a 20-layer convolution network (He et al., 2016). Therefore, it will lead to 
the degradation in the performance of the neural network model by simply increasing the network 
layers, causing the later features to lose the original information of previous features. To address this 
problem, he proposed adding a bypass between the two blocks. In addition to the ResNet algorithm, 
the residual neural network algorithms also include DenseNet and DarkNet. The main differences 
between these algorithms are in terms of shortcut and residual block. In the deep residual network 
ResNet, a shortcut is added between every two blocks, while in the deep residual network DenseNet, a 
shortcut is added to each subsequent block. Therefore, the accuracy of DenseNet is further improved.

The performance of a residual neural network (RNN) can be generally improved from three 
aspects: residual unit, residual connection (Zhou, 2022) and the overall network structure (Guo, 2020). 
For residual unit, investigation and improvement are mainly carried out in terms of the convolution 
layer, BN normalization layer, activation function, shortcut, and the overall structure of the residual 
unit; the residual connection is mainly improved upon from the perspectives of the add-type residual 
connection, Concat-type residual connection and topology. The overall structure of the residual neural 
network is improved upon from various aspects, including the parallel residual network, multi-scale 
residual network, random deep network, multi-path residual network, and wide residual network. At 
the same time, RNN has also been combined with the Inception structure and attention mechanism, 
as Chen et al.(2018), Fei et al.(2019), Zong et al. (2020), Jie et al.(2017), Woo et al.(2018), Guan et 
al. (2020), Wang et al.(2020), Cheng et al. (2022), and Qiao et al.(2021) discussed in their research 
and applied in various fields. Chen et al. (2018) proposed the DRINet for segmentation of medical 
images, and they used a residual Inception module to aggregate feature maps from different branches, 
which improved the segmentation performance of their model. Fei et al. (2019) etc. proposed a residual 
Inception encoder-decoder network for medical imaging synthesis, and in this model, the residual 
Inception block consists of a path with two 3×3 convolution layers and an Inception shortcut with 1×1 
convolution layer, which has solved the problem that the input and output feature maps have different 
channels. Zong et al. (2020) proposed hard exudate segmentation of images. This network uses U-Net 
as the backbone, and each unit in the shrinking and expanding paths is composed of residual units 
with Inception modules, which can not only reduce the number of parameters, but also improve the 
representation ability of the network by introducing more linear mappings.

The improvement of the GoogLeNet algorithm mainly includes improvement of the network 
structure and optimization of the network parameters, such as improvement of the structure of the 
inception block and improvement of the convolution size and the corresponding parameters. Zhang 
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and Yu (2021) employed the improved GoogLeNet network structure for recognition of table tennis 
motions. Moreover, the GoogLeNet algorithm can also be combined with other algorithms to improve 
certain application performances. For example, in the paper Image Registration and Fusion of High 
Sensitive Ultraviolet Image Based on GoogLeNet Model and WT-Canny written by Hou Sizu and 
Liu, Y. T. (2021), the method has not only incorporated the idea of GoogLeNet network model, 
but also introduced methods such as transfer learning and wavelet transform to improve the image 
recognition performance. Han et al. (2019) proposed an improved GoogLeNet network structure, 
and also introduced the idea of transfer learning to improve the recognition performance for remote 
sensing images. Furthermore, to address the redundant parameters and large computational overhead 
of GoogLeNet algorithm, Peng et al. (2019) introduced the pruning algorithm to simplify the network 
structure and reduce the number of parameters.

Due to their respective advantages, the GoogLeNet algorithm and ResNet algorithm can be 
combined. At present, there are not many improved algorithms combining these two algorithms. 
Among such improved algorithms, the most famous are the Inception-Resnet-v1 network and the 
Inception-Resnet-v2 network. The Inception-Resnet-v1 network model integrates the residual idea 
into Inception-v3, while the Inception-Resnet-v2 network model incorporates the residual idea on 
the basis of Inception-v4. Wang et al. (2022) proposed introducing the attention mechanism based on 
the Inception-ResNet-v2 algorithm to learn the importance of different channel features. Moreover, 
Wu et al. (2020) proposed combining Inception with the ResNet network structure and incorporating 
the Stem, SE-Block, and Reduction modules to improve the classification performance of lung CT 
images. Wang (2020) proposed incorporating the basic structure of CNN to the residual network, 
while Liu and Huang, L. C.(2020) proposed combining the two networks of GoogLeNet and ResNet 
to improve the accuracy. Habibzadeh et al. (2018) proposed using a pre-trained Inception-ResNet for 
the classification of four major white blood cells, and Inception-V1-ResNet achieved an accuracy of 
99.84%. Szegedy et al. (2017) incorporated a residual module into the Inception structure and found 
that the residual module can increase the speed of training Inception network but cannot significantly 
improve the accuracy. Zhuang et al. (2017) integrated Google Inception v3 with different Long Short 
Term Memory (LSTM) networks to construct ConvDLSTM; the model was uniformly trained on a 
crowd image set, and the temporal and spatial information was unified in a neural network structure, 
which can effectively detect the crowd information. Zhang et al. (2019) proposed the fusion of an 
improved Inception module and ResNet.

The fusion of network structures is not simply combining different networks, but also involves 
improving the network structure and parameter settings. Based on the above studies, an improved 
model GRSN is proposed in this work.

THE IMPROVED MODEL GRSN

The Theory of Improved Model GRSN
Combining the advantages and disadvantages of the GoogLeNet and residual neural network 
algorithms, an improved network structure GRSN based on GoogLeNet and residual neural network 
is proposed.

The core block of ResNet is shown in Figure 1. The output result H(x) is composed of the upper 
stacked convolution output F(x), and the output of the direct upper layer X. It effectively alleviates 
the model degradation caused by the increase of neural network model layers and makes the neural 
network develop to a deeper level.

In view of the loss of information with the increase of the number of network layers, a shortcut 
to reduce the loss of information is proposed, so that the information of the upper layer can directly 
reach the next layer without matrix multiplication and nonlinear transformation. It is possible to 
increase the number of layers, thus improving the accuracy of image recognition. The problem of 
gradient extinction or gradient explosion is largely avoided as the number of network layers increases 
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in Residual networks, which makes it possible to train extremely deep networks. Although the layers 
of residual neural network are deepened, the width is narrow, and multi-scale feature extraction is 
worse than inception block.

The disadvantage of GoogLeNet algorithm is that the width of network structure is wide, but the 
depth is insufficient, and the efficiency of parameter calculation is low. The inception block structure 
of GoogLeNet v1 algorithm is shown in Figure 2. Convolution kernels of different sizes are used in 
the same layer network to extract features of different sizes. However, with the increase of the number 
of layers, the information is lost in deep neural network.

Combined with the advantages of multi-size and small convolution kernels in GoogLeNet 
algorithm and information loss reduced in the residual network ResNet algorithm, an improved 
deep neural network structure GRSN is proposed. That is to say, the shortcut is added on the basis 
of inception block, which not only retains the advantages of GoogLeNet algorithm, but also has the 
advantages of residual neural network algorithm. Since convolution kernels of different sizes are used 
in the same layer, features of different sizes are extracted, which improves the perception of the model 
and the accuracy of image recognition. On the premise of the same performance, small convolution 
is adopted to reduce the weight parameters, the computation, and the network complexity. At the 
same time, the inter layer residual shortcut is increased to reduce the loss of information, making it 
possible to increase the number of layers, thus further improving the accuracy of image recognition.

Compared with GoogLeNet and ResNet in accuracy, the improved model GRSN has better 
performance and accuracy than GoogLeNet and ResNet.

Structure of Improved Model GRSN
In the improved model GRSN, the Residual block is replaced by the inception module—that is, in 
Figure 1 the Residual block is replaced by the inception block in Figure 2, as shown in Figure 3.

Figure 1. The core block of ResNet

Figure 2. The core block of GoogLeNet Inception v1
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A shortcut is added into the inception block, and the information from the previous layer is added 
to the inception block via the shortcut. It needs to be discussed how many inception blocks are added 
to a shortcut from the previous layer and to which layer the shortcut outputs to. In fact, there is a 1×1 
convolution kernel in each inception block, as shown in Figure 2, which means that input information 
of the previous block is added to each inception block to reduce the loss.

In this paper, several simple models are studied and experiments carried out, as shown in Figures 
4–7. In the model in Figure 4, shortcut from the input layer is added to the inception block in each 
layer (Huang et al., 2021). In Figure 5, shortcut from the input layer is added to the inception block 
for every two layers. In Figure 6, shortcut from the input layer is added to the inception block for 
every three layers. And in Figure 7, shortcut from the input layer is added to the inception block 
for every four layers. More inception blocks can be added to the models in Figures 4, 5, 6, and 7, 
but we skip more blocks here. In these figures, x represents the image input, which can also be an 
intermediate layer. In GoogLeNet, there are four versions of inception block (v1, v2, v3, and v4), 
and the v1 inception block is used in the improved model of GRSN. The model improved according 

Figure 3. The core block of GRSN

Figure 4. Structure 1 of improved model GRSN
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to the structure in Figure 4 is GoogLeNet-v1-Resdual Network, abbreviated as GRSN. The models 
improved according to the structures of Figures 5, 6, and 7 are GRSN1_2, GRSN1_3 and GRSN1_4, 
respectively. Our work can also be applied to v2, v3 and v4 of GoogLeNet Inception.

After being processed by the inception block, the size of the input image may change, so the sizes 
may not match by superimposing the input and output images. When they do not match, the image 

Figure 5. Structure 2 of improved model

Figure 6. Structure 3 of improved model



International Journal of Cognitive Informatics and Natural Intelligence
Volume 16 • Issue 1

7

size can be adjusted via the 1×1 convolution kernel, so the structure in Figure 4 can be modified to the 
structure in Figure 8. Similarly, in Figures 5, 6, and 7, the sizes might not match after superimposing 
the input and output images, and in this case, the image sizes can also be modified using the 1×1 
convolution kernel, as shown in Figures 9, 10, and 11, respectively.

After improvement of the GoogLeNet model by adding shortcut, the subsequent experiments 
prove that the performances of models in Figures 8–11 are all improved, but the improvement of the 
model in Figure 8 is the most significant.

Specific Network Structure of GRSN
The batch normalization (BN) can accelerate the convergence of data and alleviate over-fitting, 
which is generally performed after the convolution layer and before the activation layer. The dropout 
operation is mainly to alleviate over-fitting. During the training of the neural network, some neurons 
are temporarily discarded from the neural network according to a certain probability. When the 
neural network is used, the discarded neurons are reconnected. Pooling operation is used to reduce 
the amount of feature data in CNN.

On the basis of Figures 4 and 8, the specific structure of GRSN is presented in Figure 12 in 
further details (assuming the input size is 32×32×3). The network structure of GRSN mainly includes 
the following parts:

1. 	 The inception block structure of GoogLeNet is used in our model. The inception block obtains 
features of different sizes using multi-dimensional convolutions, which can enhance the 
performance. Sixteen convolution kernels of sizes 1×1, 3×3 and 5×5 are used. By using small 
convolution kernels, the same size of the receptive field as the large convolution kernel can be 
obtained, but it requires less parameters, thus improving the operating efficiency. The inception 
block has a step size of 1, and adopts zero padding.

Figure 7. Structure 4 of improved model GRSN
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2. 	 The wider and the deeper the model is, the more network model parameters there will be. Limited 
data will be provided for training, which tends to cause over-fitting. Therefore, after each inception 
block, by adding the ReLU activation function, the BN (batch normalization) operation and the 
Dropout function, it can reduce over-fitting, and improve accuracy and efficiency.

Figure 8. Structure 1 of improved model GRSN

Figure 9. Structure 2 of improved model GRSN
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3. 	 By incorporating the residual idea of ResNet to our network structure, the information from 
the input layer can be directly added to each inception block. The original input information is 
directly transmitted to the subsequent layers. The purpose is to reduce the problems of information 
loss and gradient disappearance due to increase of layers. In fact, the residual unit in the GRSN 

Figure 10. Structure 3 of improved model GRSN

Figure 11. Structure 4 of improved model GRSN
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model consists of the activation function, the BN layer, the Dropout function, and the inception 
block. Shortcut is added to each residual unit layer. It is worth noting that the output size of the 
network may change after each residual unit. If the input image and the output image have the 
same size, they can be added directly; if they have different sizes, they need to be adjusted by 
1×1 convolution.

4. 	 With the increase of network layers, the number of channels is also increased; this results 
in more diverse features extracted from the model. Due to this reason, the accuracy is 
significantly increased. For example, in the first two residual units of network, the image 
size is adjusted via 64 1×1 convolutions. After these two residual units, the channel number 
is doubled, and the size needs to be adjusted via 128 1×1 convolutions. After 4 residual 
units, the size needs to be adjusted via 256 1×1 convolutions, and so on. Due to hardware 
limitations and limited memory, in our network structure the channel number will not be 
doubled after 6 residual units. Therefore, after 6 residual units, all sizes are adjusted using 
256 1×1 convolutions.

5. 	 The SOFTMAX function is employed in the last fully connected layer.

The other models have similar specific structures, only with a different shortcut, so we will not 
elaborate on these models here.

Parameter Settings of GRSN
For the input image of size 32*32*3, the parameters of the first five layers of GRSN are listed in 
Table 1, and the parameters of other layers can be derived similarly. The parameter changes are 
shown in Table 1.

Table 1. Parameters of the first five layers of GRSN

Structure Convolution 
Kernel Size Strides The Number 

of Fillers
Channel 
Numbers Output Size

input 3 32×32×3

The first Inception block
1×1 
3×3 
5×5

1 all zero 
padding 16 64×32×32

The 2nd Inception block
1×1 
3×3 
5×5

1 all zero 
padding 16 64×32×32

Double the number of 
channels 32

The 3rd Inception block
1×1 
3×3 
5×5

1 all zero 
padding 32 128×32×32

The fourth Inception block
1×1 
3×3 
5×5

1 all zero 
padding 32 128×32×32

Double the number of 
channels 64

The fifth Inception block
1×1 
3×3 
5×5

1 all zero 
padding 64 256×32×32
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Figure 12. Detailed structure of GRSN
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EXPERIMENTAL ANALYSIS

Experimental Environment
The experimental environment is shown in Table 2.

Experimental Data
In order to better compare the performance of the algorithm, we use three typical general data sets, 
namely MNIST, cifar10, cifar100.

The MNIST data set is composed of handwritten digits of 250 different people. There are 70000 
28×28 grayscale pictures of handwritten digits 0 to 9 in MNIST datasets, including 60,000 training 
sets and 10,000 test sets.

The cifar10 data set has a total of 60,000 images and tags, of which 50,000 images and tags are 
used for training, and 10,000 images and tags are used for testing. The data set includes 10 categories, 
including dog, cat, bird, airplane, frog, horse, boat, deer,truck and automobile. with 6000 pictures 
in each category.

The cifar100 data set contains 100 categories, each with 600 32×32 pixel color pictures. These 
100 categories are further divided into 20 super categories, such as fish, flowers, household furniture, 
and fruits and vegetables.

Experiment Process
Three comparative experiments were performed. The settings of hyper-parameters should be 
determined based on comparisons of many experiments. In the GRSN network model, batch_size is 
set to 128, the parameter of the last Dropout layer is set to 0.5, and the parameters of other Dropout 
layers are set to 0.05. The Adam optimizer is used to optimize the model, and the cross-entropy loss 
function is employed. During the experiment, the accuracy and performance of various models on 
the test set were compared, and the images were converged.

Comparison of the Classification Accuracy of Various 
Network Models on Data Set Cifar10

1. 	 The accuracy of GRSN models with 6, 7, 8, and 9 residual blocks on the cifar10 data set 
were tested, and these models are GRSN_6blocks, GRSN_7blocks, GRSN_8blocks, and 
GRSN_9blocks. In this experiment, the amount size of data sent in each round was 128. With 
the increase of layers, the channel number also increased, shortcut was added to each block, 
data in the data set was not enhanced, and the other parameters were the same. As shown in the 
figure 13, the accuracy presents an increasing trend with the increase of layers. In the meantime, 
GRSN_double_9blocks and GRSN_single_9blocks also performed data enhancement for the 

Table 2. Experimental environment

Category Name Type Performance

hardware

CPU Intel core i7-10700 2.90GHZ 8 cores and 16 
threads

Video card GeForce RTX 3070 8G

RAM 32.00G

software
system Win10 64位

Deep learning framework Tensorflow 
Keras
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GRSN model containing 9 residual blocks. Due to hardware limitations, the amount size of 
data sent in each round was changed from 128 to 64, and the channel number increased with 
the increase of layers in GRSN_double_9blocks, while the channel number didn’t increase with 
layers in GRSN_single_9blocks. The results show that data enhancement did not have significant 
impact on the classification accuracy, and the classification performance can be improved by 
increasing the channel number.

2. 	 Comparison of the classification accuracy of the GRSN1_2, GRSN1_3, GRSN1_4 and GRSN 
models containing the same number of residual blocks on cifar10.

In this experiment, in the GRSN1_2, GRSN1_3, and GRSN1_4 models, the channel number 
did not increase with the increase of layers, data in the cifar10 data set was not enhanced either, 
and the data size sent in each round was 128. In the GRSN model, data in the cifar10 data set was 
enhanced, the channel number increased appropriately with the increase of layers, and the data size 
sent in each round was 64. According to the figure 14, the GRSN model significantly outperforms 
the GRSN1_2, GRSN1_3, and GRSN1_4 models. Therefore, compared to the model by adding one 
shortcut for several blocks, the performance is better by adding one shortcut for each block. At the 
same time, GRSN_double outperforms GRSN_single because the number of channels increases with 
layers in GRSN_double.

3. 	 The classification accuracy of the GoogLeNet, ResNet, and GRSN models containing 10 
blocks on data set cifar10 were compared. In this experiment, the performances of GoogLeNet 
doubling the channel number (GoogLeNet_double) and GoogLeNet not doubling the 
channel number (GoogLeNet_single) were evaluated and compared with the performances 
of ResNet and GRSN. As shown in Figure 15, GRSN_double has the best performance. In 
GRSN_double, data in the cifar10 data set was enhanced, the channel number increased 
appropriately with the increase of layers, and the size of data sent in each round was 64. 
The difference between GRSN_single and GRSN_double is that the channel number did not 
increase with the increase of layers in GRSN_single, and the improvement of the classification 
performance of GRSN_single was not significant.

Figure 13. Comparison of the classification accuracy of the GRSN models containing 6, 7, 8, and 9 residual blocks on cifar10
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Comparison of the Classification Accuracy of Various 
Network Models on Data Set Cifar100
1. 	 The classification accuracy of GoogLeNet, ResNet, and GRSN on data set cifar100 were 

compared. Both GoogLeNet and ResNet had 10 blocks, and GRSN contained 9 blocks. In 
GoogLeNet, the channel number increased approximately with the increase of layers like in 
GoogLeNet_double. The results are shown in the figure 16, and the GRSN model GRSN_double 
still has the best performance.

Figure 14. Comparison of the classification accuracy of the GRSN1_2, GRSN1_3, GRSN1_4, and GRSN models on cifar10

Figure 15. Comparison of the classification accuracy of GoogleNet, ResNet and GRSN on cifar10
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2. 	 The classification accuracy of GRSN, GRSN1_2, GRSN1_3 and GRSN1_4 on data set cifar100 
were compared, and the results are shown in the figure 17.

The GRSN_double model has the best performance. In this model, shortcut was added for each 
block, the number of channel increased with the increase of block number, the data was enhanced, 
and the size of data sent in each round was 64.

There was one less experiment on data set cifar100 than on data set cifar10. The first experiment 
on cifar10 was not conducted on cifar100, and the 9-block GRSN model was directly compared with 
other models.

Figure 16. Comparison of the classification accuracy of GoogleNet, ResNet, and GRSN on cifar100

Figure 17. Comparison of the classification accuracy of GRSN, GRSN1_2, GRSN1_3, and GRSN1_4 on cifar100
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Comparison of the Classification Accuracy of Various Network Models on Data Set MNIST
This experiment was performed on data set MNIST, comparing the performances of GoogLeNet and 
GRSN, and the results are shown in the Figure 18.

The accuracy of both models was very high, at more than 99%. The highest and average accuracy 
of GRSN was 0.03 and 0.1 higher than the highest and average accuracy of GoogLeNet.

Result Analysis
The results of the three experiments described above are summarized in Table 3.

According to the results of the above three experiments, we can reach the conclusion that the 
best performances can be achieved in the GRSN model by using the following settings: add shortcut 
to each block; use data enhancement; set the size of data in each round as 64; the channel number 
increases appropriately with the number of network layers; use ReLU as the activation function; 
set the Dropout parameter of each previous layer as 0.05; and set the Dropout parameter of the last 
layer as 0.5.

CONCLUSION

By studying the CNN, LeNet, AlexNet, VGG, GoogLeNet, ResNet, and DenseNet algorithms and 
models, this paper proposes the GRSN, GRSN1_2, GRSN1_3, and GRSN1_4 models, with GRSN 
having the best effect. By comparing GRSN, GRSN1_2, GRSN1_3, and GRSN1_4 models, the best 
way to introduce the shortcut is obtained. GRSN is compared with GoogLeNet Inception v1 and ResNet 
on datasets cifair10, cifar100 and MNIST, the classification accuracy was significantly improved. 
Compared with ResNet, on data set cifar10, the highest accuracy of GRSN was 3.07 higher, and 
its average accuracy rate was 2.39 higher. Compared with ResNet, on data set cifar100, the highest 
accuracy of GRSN was 2.08 higher, and its average accuracy rate was 0.24 higher. Compared with 
GoogLeNet, on data set cifar10, the highest accuracy of GRSN was 17.69 higher, and its average 
accuracy rate was 15.99 higher. Also compared with GoogLeNet, on data set cifar100, the highest 
accuracy of GRSN was 28.47 higher, and its average accuracy rate was 24.83 higher.

Figure 18. Comparison of the classification accuracy of the GoogleNet and GRSN models on MNIST
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Furthermore, these experiments and results will be extended to GoogLeNet Inception v2, v3 
and v4—that is, adding shortcut from the input to each inception block on the basis of GoogLeNet 
v2, v3, and v4 and increasing the number of channels. The accuracy of the improved model is higher 
than that of GoogLeNet and ResNet.

Table 3. Experimental summary

Model Name Data set
Highest 

classification 
accuracy%

Average 
classification 
accuracy%

Instructions

GRSN_double_9blocks

Cifar10

90.64 86.47
As the number of layers increases the number of channels, the 
size of batch is 64, data enhancement, shortcut added to each 
block

GRSN_single_9blocks 86.65 79.60 Data enhancement, shortcut added to each block

GRSN_6blocks 86.15 83.23 GRSN model with 6 blocks, as the number of layers increases the 
number of channels, the size of batch is 128

GRSN_7blocks 87.09 83.73 GRSN model with 7 blocks, as the number of layers increases the 
number of channels, the size of batch is 128

GRSN_8blocks 88.59 84.86 GRSN model with 8 blocks,as the number of layers increases the 
number of channels, the size of batch is 128

GoogLeNet_double 78.73 75.49 As the number of layers increases the number of channels, the 
size of batch is 128

GoogLeNet_single 72.95 70.48 The size of batch is 128

GRSN1_2 84.19 80.46 Add shortcut every two blocks, the size of batch is 128

GRSN1_3 84.32 80.49 Add shortcut every three blocks, the size of batch is 128

GRSN1_4 84.18 80.61 Add shortcut every four blocks, the size of batch is 128

ResNet 87.57 84.08 Batch size=128

GRSN_double_9blocks

Cifar100

63.18 56.75

GoogLeNet_double 46.72 43.50

GoogLeNet_single 34.71 31.92

ResNet 61.10 56.51

GRSN1_2 47.85 43.97

GRSN1_3 47.15 43.19

GRSN1_4 49.26 45.11

GoogLeNet_single
MNIST

99.62 99.30

GRSN_double_9blocks 99.65 99.40
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