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ABSTRACT

Agents’ irrational behavior would lead to local configuration of complex adaptive system percolation. 
The corresponding critical point is key to making decisions for improving the system or keeping the 
system from collapsing. The authors construct a complex adaptive system model where agent behavior 
and its local configuration co-evolve. This model shows, when an arbitrary agent and its neighbors 
change their strategy and local interactive configuration, how the properties of percolation critical 
point of this system would emerge under random attack and intentional attack. It is shown that the 
system is robust if it is attacked randomly, and there are always at least two large components keeping 
the system connected. However, if the system is attacked intentionally, the result is more interesting. 
The system is robust if the deleting probability is smaller than a certain critical probability c0, but 
the system is vulnerable if the probability is larger than c0. Furthermore, the critical probability c0 is 
determined by the agent payoff, system structure, and noise.
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1. INTRODUCTION

Although individual behavior is too complex to fully explain, collective behavior satisfies certain 
laws. According to Thomas C. Schelling, the 2005 Nobel Prize Winner in Economics, “sometimes 
the results are surprising, sometimes they are not easily guessed, sometimes the analysis is difficult” 
(Schelling, 2006). This point was emphasized by scientist Philip Ball in his book entitled Critical 
Mass: How One Thing Leads to Another, “collective behaviors are not necessary equal to the linear 
sum of behaviors of all persons, …, it can be transferred sharply to the totally inverse aspect even if 
few individuals change their behaviors slightly” (Ball, 2004) . This phase transition phenomenon is 
called percolation. Percolation makes the system flourish or collapse suddenly if it is at the intermediate 
state between order and disorder (Bakir, Tarrasy, et.al., 2016). For example, it is difficult to transition 
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from few accepting a new technology to its widespread public acceptance (Friedkin et.al., 2016; Chen, 
J. et.al., 2021; Chen, S. et.al., 2021). The technology is suddenly accepted by the wider public if, and 
only if, the corresponding acceptance probability reaches a certain threshold (Wu, L.F. et.al., 2019). 
The collapse of China’s stock market in 2015 is another example. A-shares suffered a crash during 
the 52 trading days between June 15 and August 26. Only 102 of the total A-shares rose and as many 
as 2,498 dropped, of which 1,541 dropped by more than 50 percent (the data coming from https://
xueqiu.com/4292490144/50196986). Considering these examples and circumstances, we would note 
that there seems to be a special attractor that attracts the system running toward this “percolation” 
point. It is also seen that percolation exists pervasively, such that the system always evolves around 
the critical point. This seems to be an attractor that attracts the system to move toward a certain 
criticality. In this paper, we ask: To achieve system percolation, how many individuals need to change 
their behaviors, and who are the individuals whose behaviors need to change?

According to scholars, the complexity of a system’s criticality of percolation relies on the 
properties of the system. In turn, the system’s properties are deterministic under certain interactive 
rules between agents and between agents and their environment. In this sense, four categories of 
system, according to agent behavior and system structure, are defined in Figure 1.

Figure 1 gives the impression that percolation is the exclusive phenomenon of a complex system 
whose structure is large-scale. Because of analyzing complexity, scholars simplify the interaction 
between individuals to a Boolean game, where the relationship with other is denoted as 1 if they 
frequently play together or 0 if any other outcome. In this sense, a broad range of percolation 
phenomena have been studied from abstract models (Misra et al., 2010; Bollobás et al., 2007, 2012; 
Berche et al., 2004; Fumiya et al., 2011; Solé et al., 2015) and from physical systems (Ostrom, 2009; 
Barkoczi & Galesic, 2015; Galesic et al., 2015). In the literature, two common kinds of attacks have 
been considered, the random attack and the intentional attack. In the random attack, ( )1- p n  agents 
are removed from the system randomly. In the intentional attack, the cn  strongest agents are removed 
from the system. The complex adaptive system (CAS) would be destroyed sharply if another ¢p  less 
than p  or ¢c  larger than c  are taken away. The corresponding parameters of p  and c  are all called 
the critical probability to random attack and intentional attack, respectively (Afra, 2004; Brauer et 
al., 2010; Baxter et. al., 2011; Fumiya & Kousuke, 2011; Callway et al., 2000; Albert et. al., 2000). 
Similar conclusions have been obtained by Derzhko, (2004); Berche et al., (2004); Nogueira et al., 
(2008); and Barenblatt et al. (1996). Their results show that inhomogeneous random complex networks 
are robust if attacked randomly; however, there exists a critical probability c  when attacked 
intentionally. If the probability of attack is slightly larger than c , the system is vulnerable. If the 

Figure 1. Interactivity between agents in a system

https://xueqiu.com/4292490144/50196986
https://xueqiu.com/4292490144/50196986
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probability is slightly smaller than c , the system is robust, and if the probability is equal to c , the 
system is critical. In practice, however, we must account not only for the individual behavior in the 
system, but also for the system structure that is random and time-varying (Alessandretti, et.al., 2020; 
Ehlert, et.al., 2020; Dezfouli, et.al., 2020; Vedadi & Greer, 2021). These all share the characteristic 
that it is difficult to explain this CAS exactly from a mathematical viewpoint. However, the interaction 
between agents is more complex than what has been discussed above, which makes the property of 
critical probability c  more complex. In fact, the CAS would be defined as follows:

Hypothesis 1. There are several local-worlds (a connected sub-graph) in CASs. They are small 
enough, from the macroscopic space-scale, such that there are more than enough local-worlds 
to interact together in a system, and they are large enough, from the microscopic space-scale, 
such that there are more than enough agents to interact together in a local-world.

Hypothesis 2. The interactive behavior between agents in a certain local-world is defined as being 
the cooperative adaptive game; however, the interactive behavior between agents in different 
local-worlds is defined as the non-cooperative game.

Hypothesis 3. There are several short time-scales in the system evolution process. The system structure 
is stable in each short time-scale and is dynamic because the individuals in the system adaptively 
adjust to its local topological configuration to obtain more benefits.

This complexity, coupled with time-varying behavior and system configuration, makes the 
percolation criticality of a system more difficult. Note that the thresholds of dividing macroscopic/
microscopic space-scale and short/long space-scale can be seen from Ehlert, Kindschi, et.al., (2020) 
and Nogueira and Kleinert, (2004). To make the analysis feasible, we assume that the system changes 
more slowly than agents’ behavior (Tump et.al., 2020; Baldassarri &Abascal, 2020; Chen &Rohla, 
2018). Then, we regard the behavior dynamics equation as a variable because each agent makes 
decisions by relying on local information matched to the agent’s local configuration. This can reduce 
the analysis complexity, as described in the following section. Furthermore, the complexity comes 
from the agent’s behavior of selecting partners. In this paper, each agent selects a fitness player to 
interact with according to a preferential attachment with payoff. Additionally, the payoff, which can 
be defined as both income, within market paradigm, that can be measured by money and benefits, 
and within social paradigm, that cannot be measured by money, is determined by agent strategy a  
and local topological structure w , where w  is the local information of interaction graph between 
agents. But in classic research, topological structure is described just as degree or strength of the 
graph. No matter who is referred to, the degree or strength is explicitly connected with graph structure. 
Unfortunately, the payoff is explained implicitly, which is beyond our current knowledge. To make 
it feasible, one must notice that the preferential attachment of payoff is equivalent to the one of 
strength decided by weight. The system structure is fixed if the time-scale is smaller than a certain 
threshold, defined as t t

c
£  in the next section. Then, the agent’s payoff could converge to the 

corresponding attractor p , where the evolution time holds an exponential distribution y at= −exp( ) , 
where a  is a positive constant. In fact, each agent’s payoff attractor is similar to the corresponding 
strength. Given our hypotheses, the system could be resolved by using the analysis methods from 
weighted random complex networks.

In this paper, a theoretical model of CASs is constructed to describe the system’s properties. 
Then, the percolation criticality of the theoretical random attack and intentional attack models is 
constructed by introducing the percolation theory and its corresponding method. The remainder 
of this paper’s scope is as follows. In section two, we construct a generalized model for a CAS to 
describe the system’s property, nature, state, and evolution. However, this model is not solvable; 
therefore, an equivalence model, with a continuous stochastic process, is specified in section four. 
The proof of identity with the initial model is then specified and resolved in this section. Next, we 
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demonstrate that the criticality of growth is equivalent to the one of decay. For convenient analysis, 
we focus on the continuous model. Then, the random attack and intentional attack to the system are 
studied, followed by a calculation of the analytic critical state ad of the conditions of robustness and 
vulnerability. We then present the corresponding mathematical percolation criticality.

2. THE CO-EVOLUTIONARY CAS

Individual behavior in society is diverse and random, and so is the interactive relationship between 
agents. To describe its properties, one must assume that people can interact with others under a 
series of limited conditions. As specified in Hypotheses 1-3, this structure for the CAS satisfies 
hierarchical structure; furthermore, there are several local-worlds in each layer, which reflects the 
complex structure of CASs. Individuals in the same local-world with similar properties are defined as 
homogenous agents. All others are called inhomogenous agents. Similarly, the interactions between 
agents are defined as the cooperative game and the non-cooperative game, respectively (see Figure 2).

As shown in Figure 2, C represents the cooperative adaptive game and N represents the non-
cooperative adaptive game. More importantly, social economical organization is full of dissipative 
structure, which makes the structure of the system changeable (Lee, Karimi, et.al., 2019), as shown 
in Figure 3.

At time t , interactive configuration is presented on the left side of Figure 3. However, at time 
t +1 , it is changed to the right side of Figure 3. There is a totally different structure, where agents 
1, 2, 3, 4, and 7 are in subsystem 1 and agents 5, 6, 8, and 9 are in subsystem 2.

If an individual makes a decision, strategies and local configuration must be acknowledged. The 
former consists of his current and historic strategies, neighbors’ strategies, and the property of the 

Figure 2. Interaction between agents

Figure 3. Interaction between agents in the dynamic topology of the CAS
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environment, and the latter means his local topological structure. The local topological configuration 
is stable if and only if each the conditions of perfect information is satisfied (Zheng, et.al., 2012; 
Zheng, et.al., 2016). In this sense, the optimal strategy of each agent would be to converge into a 
certain interval (See Zheng, et.al., 2012, the Appendix A of this article). On the other side, the optimal 
strategies would be evolving with its local topological configuration, because they would select more 
suitable partners adaptively when time-scale is shifted from one time-scale to the next. Each of the 
following behaviors could happen: (1) create a new game with a stranger in the same local-world, in 
other local-worlds, or with a new agent who joined in the system; (2) eliminate an existing game 
from an existing agent; and (3) quit the game (See the Appendix B of this article). However, these 
optimal time-varied strategies would satisfy a Poisson distribution, as discussed by Zheng, et.al., 
(2012) and as described in the Hypotheses 1-3. Furthermore, no matter what event happened, an 
arbitrary agent would change its local topological configuration, which results in a system’s structure 
changing dynamically. Set j

i
 represents the j th  agent of local-world i , p(.)  is its payoff converged 

in the corresponding short time-scale, a  is its strategy, g  is the local topological configuration,   
is the set of all neighbors of agent j

i
,   is the union set of   and agent j

i
. This process in the 

long time-scale is as described in Figure 4.
A theoretical model for a CAS is constructed to describe the system’s properties. Suppose that 

there are l  subsystems in the system, and the threshold for the average short time-scale is t
c
(there 

exists a constant  sup ( ) [ ( ) ]
α
π π

∈
≤ +


t E t  and a time threshold t

c
 such that for any t t

c
³ , hold). 

In an arbitrary short time-scale, arbitrary agent j
i
 would randomly select one of six behaviors if its 

game radius r  is driven by reachable agents and length, L is driven by the historic game knowledge. 
It can adjust its behavior, create a new game relationship in the same sub-system, create a new game 

Figure 4. Agent’s behavior over a long time-scale
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relationship into another sub-system, eliminate an old game relationship, create a game relationship 
with a new agent of the system, or exit the system, with probability q q q

1 2 6
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respectively, where 1 £ £i l a, ,a  is the corresponding strategy, V  is the noise of the payoff,  ji  

is the set of agent j
i
 and its neighbors, N N �j j

i
i i jº , p  is corresponding payoff (Zheng, X., & 

Zheng, J., 2016).
This universal model can be simplified to corresponding classic models. Set t

c
= ∞,w  is constant 

and l = 1 , it is an adaptive game problem. Set t
c
= 0 , l = 1 , and if the interaction between agents 

is defined as a Boolean game, this model can be degenerated to the BA model (Albert, et.al, 2000). 
Set l = 1 , if the agents are inhomogeneous, and if the interaction between agents is a Boolean game, 
this model is the LCD model (Bollobás et al., 2007; 2012; Letellier, C., 2021). Set l <∞ , if the 
Boolean game dominates, and set preferential attachment mechanism based on the in-degree and 
out-degree of the agents is the selected, the model would be degenerated to the multi-local-world 
complex networks model constructed by Li and Chen, (2003). Set l = 1 , set the prisoner’s dilemma 
drives the game, and set the preferential attachment mechanism is designed due to payoff of agent; 
this model has been previously studied (McAvoy, et.al., 2020).

Complex networks are a reduced interaction of the stochastic game, which is more complex than 
the Boolean game. We already know the criticality of a thriving system is equivalent to that of a 
collapsing system (Zheng, et.al., 2016). In this paper, the criticality is considered by random attack 
and intentional attack, respectively. In the random attack, ( )1- p n  agents are removed from the 
system randomly. In the intentional attack, the cn  strongest agents are removed from the system. A 
very broad range of percolation has been studied using abstract models (Misra et al., 2010; Bollobás 
et al., 2007; 2012; Granovette,. 1978; Dionne, et.al., 2019; Qin, et.al., 2016) and physical systems 
(Ostrom, 2009; Bai, et.al., 2020; Lucas & Nordgren, 2020; Centola, et.al., 2018). Common conclusion 
shows that there exists certain probabilities p  and c  corresponding to random attack and intentional 
attack respectively, such that the CAS would be destroyed sharply if another ¢p  is less than p  or 
another ¢c  is larger than c ; p  and c  are all called corresponding critical probability (Afra, 2004; 
Brauer, et al., 2010; Baxter, et al., 2011; 2009; Fumiya & Kousuke, 2011; Callway, et al., 2000; 
Albert, et al., 2000). According to studies of Derzhko, (2004); Berche, et al., (2004); Nogueira, et 
al., (2008), and Barenblatt, et al., (1996), the inhomogeneous random complex network is robust if 
it is attacked randomly. However, there exists a critical probability c  if it is attacked intentionally. If 
the probability of attack is larger than c , the system is vulnerable; if the probability is smaller than 
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c , the system is robust. If the probability is equal to c , the system is critical. Further, Christenensen, 
et al., (2005) has stated that the percolation parameters only rely on a probability 

b
p{ } .

However, they cannot fully explain agents’ complex behavior from a mathematical viewpoint 
because their behaviors are more complex than what has been studied previously. As demonstrated by 
Zheng, et.al., (2012), the payoff of arbitrary agents in the system could converge to certain attractors; 
we will omit the details of interaction in short time-scale and just focus on the invariable distribution 
of the dynamic optimal strategies. In the following sections, we focus on what would happen to the 
CAS when an arbitrary agent is moved out for a random attack and for an intentional attack.

MAIN RESULTS AND CONCLUSION

It is concluded that the CAS is robust if it is attacked randomly. Furthermore, if arbitrary agents in 
this system are kept equiprobably with a very small positive number p  and the other ones are deleted 
with probability 1- p , the system cannot be destroyed. In this case, there are two large components 
that keep the system connected, set the rank of the largest component L p

1
( ) , and set the rank of the 

second largest component L p
2
( ) .

Theorem 3.1. There exists a function l( )p > 0 , for arbitrary 0 1< <p , such that L G p o n
p1

1( ) ( ( ) ( ))= +l  
and L G n

p2
( ) =  hold. For a very small p > 0 , there exists at least a giant-component in this 

system that makes it robust, as p ® 0 , the threshold value of rank l( )p  of this largest component 
would be

exp( ( )) ( ) ( sup [ ] / )exp / (sup [ ] )− − ≤ ≤ + −

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where, E[ ]p  is the average payoff of transitory at an arbitrary short time-scale. g x f x( ) ( ( ))= Θ  
means that g x O f x( ) ( ( ))=  and that f x O g x( ) ( ( ))= . The upper bound and lower bound of the rank 
are important for estimating the size of the largest component when the system is destroyed randomly.

It is known from Theorem 3.1, that when the system is attacked randomly, even if there are a few 
agents that stay within this system, there exist two giant components that make the system connected. 
The maximum value of the rank of the largest component is 1 5 8 1 2+ −
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and the minimum value is n pexp( ( ))− −Θ 1 2 . The rank of the second largest component’s size is 
o n( ) .

However, this system is vulnerable when it is attacked intentionally. Even when there are a few 
strong agents removed with a small probability c , the system could be destroyed. The system is in 
criticality, as described by Theorem 3.2.

Theorem 3.2. There exists a positive constant 0
1
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where p ³ 0 , and a positive constant q( )c , such that L G o n
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( ) ( )=  with probability 1 1-o( )  
if c c³

0
, and L G c o n

c1
1( ) ( ( ) ( ))= +q  and L G o n

c2
( ) ( )=  with probability 1 1-o( )  if c c<

0
.
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It is known from Theorem 3.2, that there exists a critical probability c  such that CAS percolation 
happens. Furthermore, when the probability of removing agents is smaller than c , there exist two 
components keeping the system connected. The rank of the large one is ( ( ) ( ))q c o n+ 1  and the rank 
of the small one is o n( ) , which makes this system robust. When the probability of removing agents 
is larger than c , there only exists one large component and its rank is o n( ) , which cannot make the 
system operate normally. When the probability is equal to c , the system has the property of criticality. 

Furthermore, the critical probability c
q q

q q q
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E
in

=
−

+ + −( )
−

+
∈

∈

3 4

1 2 5
1

1

1δ

π
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sup [ ]




 is driven by the agents’ 

payoff and the local topological configuration.
If p  is a positive integer, l = 1  and the Boolean game determine the interaction between agents. 

Theorem 3.1 and Theorem 3.2 were discovered by Bollobàs, Kozma, and Miklàs, (2008), and they 
are consistent with the results of Oliveira et al., (2014); Cho et al., (2013), and Schneider et al., (2011). 
If l = 1 , t

c
= 0 , p  is a positive integer and the Boolean game dominates the interaction between 

agents, this system satisfies the strong scale-free property and the robustness and vulnerability of 
this system are equal to the degenerative case of Theorem 3.1 and Theorem 3.2 (see Schneider et al., 
2011). If l <∞ , then Theorem 3.1 and Theorem 3.2 are similar to the conclusions of Li and Chen 
(2003). In all, scholars insist that Theorem 3.1 and Theorem 3.2 are universal and scientific. Some 
interesting examples include The Doctoral Dissertation Defense, Appropriate Scale Urbanization in 
China and Effective Strategies for Implementing the Chinese economic Reform can be founded in the 
Appendix I of this article.

MATHEMATICAL DETAILS OF THE EVOLUTION PROCESS OF THE CAS

In general, whether an arbitrary system operates normally is determined by not only whether the most 
important agents in the system are connected, but also whether they are operating as usual. Because 
the system structure affects agents’ strategies (see the Appendix A of this article), one must focus on 
the system’s topological structure when the corresponding percolation is considered (Chen, 2016; 
Kranton,. 2020). It is important to first construct a precise mathematical model of stochastic process 
( )G , an equivalent model of the original model, for describing this system’s co-evolutionary process, 
outlined in Figures 2-4.

Based on Hypothesis 1, set S S S S
l
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in this system, which are labeled as 1 2 1 1

1 1 1 2
, ,..., , ,..., ,...,( ) ,n j n n

i l
- . Because of its complexity, 

our model is constructed based on a series correlation model (see the Appendix D of this article).

Evolution Process and the Law of Local Configuration for the Arbitrary Agent
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each t
j i r, ,

 is unique such that W L W
t j i r t− < <

1 , ,
, where the labels i j r, ,  are the reordered label of 

agents. Reconsidering the structure of the CAS, one assumes that the i th  n
i
 agents are allocated in 

the i th  local-world, thus, j n j
i ll

i
= +

=

−∑ 1

1 .
Because W L W

t j i r t− < <
1 , ,

, it is of no distinction to take value for L
j i r, ,

 between [ , ]0W
ji

 and 

[ , ]
( )

0
1

R
m j ri− + . Starting from W

ji
 mentioned above, a random t

j i r, ,
 describes the vertex j

i
 send to it 

a link independently with probability of

P t t
w W t j

j i r
t j ii

1

1

0
( )

/ ,

,, ,
= =

≤ ≤




 otherwise

	 (1)

Or, it would delete a link independently with probability of

P t t P t t
w W t j

j i r j i r
t j ii

2
1

1 1

0
( ) ( )

/ ,

,, , , ,
= = − = =

− ≤ ≤



otherwise


	 (2)

These two events, adding a game with a new agent or leaving an old game, would happen with 
probability Pr Pr

1 2
,  respectively, which are called preferential attachment and preferential 

abandonment. Assuming that these six behaviors mentioned in Figure 4 happen with probability 

q q q
1 2 6
, ,..., , take Pr

1
2 3 5

1
1

=
+ +

−

q q q

q
, Pr

2
4 6

1
1

=
+

−

q q

q
, q

1
 describing mechanisms of preferential 

attachment and preferential abandonment and stable local topological configuration. The former two 
events satisfy the condition of Bernoulli’s test coupled with binomial distribution. Furthermore, at 
each time, one of these two events would happen with probability Pr

1
 and Pr

2
.

Combining Eq. (1) and Eq. (2), vertex t t
j i r, ,

=  is selected and linked to vertex j
i
 independently 

with the following probability:

P t t

q q

q

q q q q q

q

w

W
t j

j i r

i

j
i

i
( )

,

,
, ,
= =

+

−
+

+ − + −

−
≤ ≤4 6

1

2 3 4 5 6

1
1 1

1

0 otherrwise










	 (3)

Furthermore, there are an average of 
( )q q q n

q
2 3 5

1
1

+ +

−
 links that would be added and 

( )q q n

q
4 6

1
1

+

−
 

links that would be deleted. Scaling the number of all n  agents to be 1 and assuming that the number 
of agents added to a new game are scaled to be x , the number of agents to be removed from a game 
must be equal to 1- x . Without loss of generality, set x > 0 5. , system is growing in this time-scale, 
and not vice versa. As we can see, the number of r

k
 that falls in the interval [ , ]1- x x  is independent 

on q
i
 and n  satisfies the binomial distribution B l E n x( [ ] , / )p




2 2  if and only if there are at least 

E n j
ll

i
[ ] /p +( )





=

−∑ 1

1
2  random variables r

k
 among all l E n[ ]p


  random variables fall in interval 
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[ , ]1- x x . Therefore, we can conclude, for all n n j n
ll

i1 2

1

1/ ≤ +( )≤=

−∑ , with very high probability 

1- -o n( )  (henceforth called wvhp), where  = 1 1000/

W n j n O n n j n O n
j l

l

i

ii
= +










+( ) = +
=

−
− −∑

1

1
1 4 12 1 1/ ( log ) / (/ // log )4 n( ) 	 (4)

The distribution of w
ji

 can be easily obtained for given W W W
ji1 2 1

, ,..., - . Set W y
ji
=  (similar 

hypothesis for W W W
ji1 2 1

, ,..., - ), there are just E n n j
ll

i
[ ] /p − +( )+( )









=

−∑ 1

1
1 2  variables in r

k
 larger 

than y . Furthermore, these variables r r
E n n jll

i1
1 2

1

1

'

[ ] ( ) /

',...,
p − + +


















=

−∑
 taken from W W W W

j ji i1 2 1
, ,..., ,-  must 

be independent from each other with density 2 1 2x y/ ( )- , where y x< < 1 . In this sense, the conditional 

distribution of W
i
 can be determined by the E

th
[ ]p

  smallest of these E n n j

ll

i
[ ] /p − +( )+( )









=

−∑ 1

1
1 2  

random variables coupled with the corresponding density function. If n j
ll

i

=

−∑ +( )1

1
2/  is not close to 

1 or n , and if y  satisfies Eq. (4), it is easy to know that r
ji¢'

 is matched with the Poisson distribution with 

density function of E n n j y y E n j n
ll

i

ll

i
[ ] / ( ) ~ [ ]p p− +( )+( ) − +( )=

−

=

−∑ ∑1

1 2

1

1
1 1   when it is close 

to y . Thus, for given W
i-1 , the distribution of w  satisfies

Z

E n j n

E

l
l

i

[ ]

[ ] /

p

p







=

−




 +








∑2 2

1

1
	 (5)

where, Z
E [ ]p



 can be given by the sum of E[ ]p


  variables of exponential distribution with an average 

of 1.

How the neighbors of agent j V G n
i E

n∈ ( ) =



[ ]

( ) [ ]
p

 grow when the system is developing is 

important. According to Hypothesis 3, the arbitrary agent makes a decision according to Figure 4 by 
invoking information from both his historic strategies within memory length and the behaviors of 
other agents within the game radius (Mann, 2020). Meaning, the local configuration is changed 
because of agent behaviors.

It is known from Eq. (3) that an agent’s strategy relies on two parameters: W
ji

, the first parameter, 

is decided by agent j
i
, or denoted by the scale a( ) /j n j n

i ll

i
= +( )=

−∑ 1

1 , which is used to describe 

the property of W
ji

 in forthcoming sections. w
ji

, the second parameter, can be scaled in a more 

natural way by x j E n j nw
i ll

i

ji
( ) [ ]= 



 +( )=

−∑2
1

1
p . In this sense, it is concluded that a( )j

i
 satisfies 

the uniform distribution on [ , ]0 1  but x j
i

( )  satisfies the distribution of Z
E [ ]p



 (defined by Eq. (5)) 

that is independent of a( )j
i

, if an arbitrary agent j
i
 is selected.
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There are two kinds of neighbors for agent j
i
, one is the left neighbor if ′ <′j j

i i
, which means 

that agent j
i
 acts with an arbitrary agent ¢

¢ji  positively. The other is called the right neighbor if 
′ >′j j
i i

 meaning that agent j
i
 is linked by an arbitrary agent ¢

¢ji  passively. Considering the r th  left 
neighbor ′ =′j t

i j i r, ,
, for all t j

i
£ , one can have P j t w W

i t ji
( ) /′ = =′ . Therefore, we only need to 

consider whether the case of j
i
 and ¢

¢ji  are not close to 1 or n . That is, they are in interval 
n n n1 2 1 2/ /, −



 , recalling Eq.(4), we have

P j t
q q

q

q q q q q

q

w

W

q q

q

q

i
i

ji

( )

~

′ = =
+

−
+

+ − + −

−
×

+

−
+

′
′′

4 6

1

2 3 4 5 6

1

4 6

1

1 1

1
22 3 4 5 6

1

1

11
2

+ − + −

−
×





 +










=

−

∑

q q q q

q

x t

E n j
l

l

i

( )

[ ] '
'

p

t

	 (6)

The parameters a( ) /′ = + ′( )′ =

′−∑j n j n
i ll

i

1

1  and x j
i

( )¢¢  are important, for simplicity, one denotes 

a( )¢¢ji  to a  and x j
i

( )  to x , and set f y y y E
z

E
( ) exp( ) / ( [ ] )!

[ ]= − 



 −





−p p1

1  is the distribution density 
function of random variable Z

E [ ]p


, where y > 0 . It is known that for all not too small β β α, <  and 

not too large y > 0 , the probability of a( )¢¢ji  standing in the interval [ , ]b b b+d  and x j
i

( )  standing 
in the interval [ , ]y y dy+  should be

n E d f y dy
y

E n n

yf y

E
d

z
z[ ] ( )

[ ]

( )

[ ]
π β

π α β π αβ
β



 





=




2 2

ddy 	 (7)

In fact, there are ndb  agents with a( )t  in this interval. As such, the quantity of the agents with 
x t( )  would be described, according to the definition of w

ji
, as the probability of product of 

nd f y dy
z

b ( )  and Eq.(6) and Eq.(7). Note that there are no x x j
i

= ( )  in Eq.(5).
Now, we analyze the right neighbors of agent j

i
. Their number is a random variable and, in a 

fitness scale, the probability that agent j
i
 has a right neighbor with α β β β( ) [ , ]′ ∈ +′j d

i
 and 

x j y y dy
i

( ) [ , ]′ ∈ +′  is

w W
x j

E n j n j

x
j j

i

l
l

i

l
l

ii i
/ ~

( )

[ ] '
'

'

'
′

=

−

=

−′





 +( ) +( )

=

∑ ∑2
1

1

1

1

p

(( )

[ ]

j

E j j
i

i i
2 p


 ′

′

 	

Set the interval is small enough, it is easy to see that in this event agent j
i
 will have a right 

neighbor with two parameters of a( )¢¢ji  and x j
i

( )¢¢ .
Because the degree of agent j

i
 is just equal to the sum of E[ ]p


 , so, for all j n

i
³ 1 2/ , one has
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( ( )) ~ [ ]
( )

d j
q q

q
E

q q q q q

q

x j
i

i4 6

1

2 3 4 5 6

1
1 1

2

+

−
















+

+ − + −

−
×p

nn j

n j

q q

l
l

i l
l

i

j j

n

i i+

+ ′












+
=

−
′

′=

′−

′ =

∑
∑∑

′

1

1
1

1

4 6

( )

~
11 1

11

2 3 4 5 6

1

1

1−
















+

+ − + −

−
×

+ −
=

−

∑q
E

q q q q q

q
x j

n

n j
i

l
l

i
[ ] ( )p

	 (8)

Evolution Process and the Law of Local Configuration for All Agents

It is easy to see that, for all conditions W , for an arbitrary agent with d j n
i

( ) ³   must hold 
( ( ))d j n

i
³ 2  . The distribution of neighbors of an arbitrary single agent can be obtained according 

to the results mentioned above. However, there are many agents in this CAS. Because neighbors are 
selected randomly, the distribution of local configuration must be changed randomly. Another question 
arises: what is the distribution of local configuration of all agents? To determine this, the following 
model is constructed:

Given an arbitrary agent v  in corresponding graph G  and an arbitrary integer k ³ 0 , set G
k
v( )  

expresses the set of agents whose distance from agent v  is just k . Set initial agent is v
0
, and set 

Γ Γ
k k

v= ( )
0

. So, Γ
0 0
= { }v , but for k = 1 2, ,... , set G

k
 consists of all of the agents in graph 

G
E

n
k[ ]

( ) ( ... )
p

 −∪ ∪ ∪ Γ Γ Γ

0 1 1
. For certain G G

0
,...,

k
, one can obtain the distribution of Γ

k+1  and 

their values of x t( ) . Similarly, N
k

 is the set N v
k k
( ) ...

0 0
= ∪ ∪Γ Γ . They arrived from left of the 

agent, so they are not only in set G
k

, but also the right neighbor of every agent ′ ∈′ −j
i k
Γ

1
. Alternatively, 

if they arrived from the right of the agent, they are the left neighbor. On the contrary, each agent may 
have arrived from two sides. In the research process, the cycle is omitted. Given G G

0
,...,

k
 and an 

arbitrary agent ′ ∈′ −j
i k
Γ

1
 arriving from the right side, the value of corresponding x(.)  can be known 

until there are no neighbors left t
i j r¢ ¢, ,  in Γ

k−1 , where 1£ £r p . Suppose that this set is not too 
large, then there must exist a conditional distribution of t

i j r¢ ¢, , . For every j j
i i
> ′

′ , all events of agent 
j
i
 linking to agent ¢

¢ji  are independent unless every agent can be the left neighbor of ¢
¢ji , given all 

W . Therefore, the non-conditional distribution of the right neighbor can be obtained. In this sense, 
it is clear that certain left neighbors of agent ¢

¢ji  would be in N
k-1 . However, the other neighbors 

must be in N
k-1  with a certain non-conditional distribution.

Although it consists of perceptual intuition, model ( )G  is difficult to resolve. As such, we 
constructed an equivalent stochastic process ( ) ( , ,...) ( ) ( , )  Γ Γ Γ= ∈

0 1 0
0 1v va . EacZ

E [ ]p


h 

generation G
k

 consists of several limited vertexes v  and the number is coupled with a positive 
number l v E E( ) { [ ] , [ ] }∈ 


 −





p p1  and two real numbers and x v( )> 0 . Starting from G

0
, there is 

just a vertex in system, where a( )v
0

 is randomly selected in [ , ]0 1  and x v( )
0

 satisfies the distribution 
mentioned above. Given  G G

0 1
, ,...  and arbitrary vertex v

k
∈ Γ , the independent growth process of 

the next generation can be described as follows. Denote a( )v  to a  and x v( )  to x . First, v  can 
increase the link to the “left next generation” of l v( ) , where w  with l w E( ) [ ]= 


p  and β α= ( )w  

and y x w= ( )  would be selected according to Eq. (6). Then, v  can increase its “right next generation” 
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w  with a certain Poisson number and each of them have l w E( ) [ ]= 

 −p 1 , v  has this vertex w , in 

a relative small interval, with β α= ( )w  and y x w= ( )  can be obtained by Eq. (7).
G
k

 is equivalent to G
k

 (proven in the Appendix F of this article). Furthermore, the analytic 
solution of G

k
 exists, such that one can master the property of the system by analyzing the law of 

G
k

. Furthermore, how graph G
E

n

[ ]

( )

p


 would be transferred to G

p
 and G

c
 is of interest. To achieve 

that, a generalized stochastic process G  defined above is introduced. Note that x(.)  can be omitted, 
such that G  can be explained to one dimension but not two dimensions, which makes the analysis 
process more feasible.

Suppose that 0 1£ £p  and 0 1£ £c  are different fixed constants. In particular, two aspects 
of properties of this system should be analyzed: G

p
 with c p= =0 1,  and G

c
 with c p= =1 0,  

(i.e., all agents with j cn
i
³  are deleted). When b > c , the probability density of Eq. (6) can be 

replaced by 0 to adjust the stochastic process G
p

. In this process, the probability density should not 
be emphasized because it is changed to another when agents are removed. Thus, there are at least 
l v( )  left neighbors, but not exactly the initial l v( )  left neighbors . Similarly, if a( )v c> , then G

0
 

should be substituted into Æ .
As for the event of deleting an agent randomly from graph G

E

n

[ ]

( )

p


, stochastic process ( )G  should 

be changed as follows. For arbitrary v
k

∈ Γ , the set of potential next generation agents can be 
constructed according to the old rules. In fact, v  in Γ

k+1  would select one agent from the potential 
next generation set as its next generation with probability p , i.e.,, G

0
 would be changed to Æ  with 

probability 1- p .
For certain v

k
∈ Γ , the distribution of x v( ) , ( )G  are relatively simple. However, if v  is selected 

randomly, which makes the distribution of x v( )and ( )G  more complex. As known, properties of 
x v( )and ( )G  are more important to discovering system configuration evolutional law. So, we construct 
a stochastic process Γ

k+1  to describe how agent v  arrives from the left or from the right. Because 
v  is a next right generation, it is easy to see from Eq. (7) that x v( )  satisfies the partial distribution 
of Z

m
 with probability density function xf x E

z
( ) / [ ]p


 .

Thus, ( ) ( , ,...),
  Γ Γ Γp c =

0 1
 is defined as follows: Each G

k
 is a set consisting of limited neighbors 

of agent v . v  is included where there is an integer l v( ) ( , )Î 0 1 . Set Γ ′ =0 0
{ }v , where 

l v E s v( ) [ ] , ( )
0 0

0= 

 =p  and a( )v

0
 is selected uniformly in [ , ]0 1 . If a( )v c

0
> , Γ

0
= ∅ . Otherwise, 

 Γ Γ
0 0
= '  with probability p  and the Γ

0
= ∅  with probability 1- p .

Given G
k

, Γ
k+1  is constructed as follows. At every v

k
∈ Γ , suppose that v  is independent on 

the potential next generation l v( )  determined by an integer w
k

∈ +
Γ

1
 with probability of Eq. (7). 

Thus, l v E( ) [ ]= 

p , s w( ) = 1  and β α= ( )w  satisfies probability density distribution

p
d c

2 αβ
β β α, < < 	 (9)

where, a a= ( )v . For next right generation is considered, if s v( ) = 0 , a random variable x x v= ( )  
would be constructed according to the definition of Z

E [ ]p


. If s v( ) = 1 , another random variable 

x x v= ( )  would be constructed due to Z
E [ ]p



. Then, a corresponding stochastic process, the Poisson 
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number of the right generation w
k

∈ +
Γ

1
 with l w E s w( ) [ ] , ( )= 


 − =p 1 0  is constructed such that 

the right w  selected with β α= ( )w  would be given in a relatively small interval with probability 
density

px
d

2 αβ
β 	 (10)

As proven in the Appendix F of this article, ( ) ,
G p c  is equivalent to ( ) ,G p c . Thus, one can know 

the property of ( ) ,G p c  by only analyzing ( ) ,
G p c . Removing all agents with j cn

i
>  from G

E

n

[ ]

( )

p


 and 

retaining the other agents independently with probability 1- p  could be implemented. If the initial 
agent is removed with uniform distribution in ( ) ,G p c , then we have Γ

0
= ∅ .

For arbitrary agent j
i
, its number of neighbors would be described as

[ ( )]
( ( ))

( ( ))

[ ]

[ ]
L c j

p L

R
i

d

E

E

ji

α
α α

β

β

π

π
= −

−

+










1
2

2

1

2
1

1

1  +

=











∫

ji

d
c

1
β

α

β
	 (11)

[ ( )]
( ( ))

( ( ))

[ ]

[ ]
R c j

p L

R
i

d

E

E

ji

α
α α

β

β

π

π
= −

− −

+










2
1

2

1

2
1

1 1

1
 

 +

=











∫

ji

d
10
β

α β
	 (12)

where, d
q q q q q

q q q
out

1
1 2 3 5 6

1 2 5

1
1

= − −
+ + + +

+ + −d ( )
, and d

q q q q q

q q q
in

2
1 2 4 5 6

1 2 5

1
1

= − −
+ + + +

+ + −d ( )
. The corresponding 

proof can be found in the Appendix D of this article.

RANDOM ATTACKS AND THE SYSTEM’S ROBUSTNESS

G
p

, reflecting a system is attacked randomly, is defined as follows: By removing several agents as 
probability 1- p  from G

E

n

[ ]

( )

p


, we obtain a generalized stochastic process ( )G .

For analytical convenience, define E def[ ]p p →  . Fixed positive p > 0 , and set c = 0 . It is 
known that G n

p



( )  is obtained by removing agents randomly with probability 1- p  and retaining the 
other agents in the system. Because L( )a  and R( )a  cannot be zero in the co-evolutionary process 
Gp,0  function L

0
0( )a =  is introduced

R
0

0

0

1 0

0 1
( )

,

,
a

a a
a a

=
< <
< ≤








	 (13)

Set ( , ) (( , ))L R L R
1 1 0 0

= F , for arbitrary a a>
0
, L p

1 0
7 8( ) / /a a a³  hold. The value of 

the other parts are denoted by L
1

0³ . Set ( , ) (( , ))L R L R
2 2 1 1

= F , for all a a£
0
 within down-bound 

L
1
 and R

1
0³ , it is concluded that
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E R d
n p p

d d
n

d

( ( ))
2

0
1

2 2

7

8 2

2

0

α
α

α

β
β

β α
≥










=










−

=∫ 

−d
p2 7

16
1

2

0
log( / )α 	 (14)

Set a
0

216 7= − −exp( / )p , for 0
0

< ≤a a , we have R R
2 0

1( ) ( )a a≥ = , ( , ) ( , )L R L R
2 2 0 0

³  
and ( , ) ( , )L R L R³

0 0
 because there must exist a series ( , )L R

i i
 such that ( , ) ( , )L R L R

i i i i
≥ − −2 2

 holds. 
Because L R,  have their own upper-boundary and lower-boundary, this event is converged into a 
certain point as long as both odd terms and even terms are considered. So, the probability s( , )p 0  
never dies off and ( ) ,

G p 0  is positive everywhere. In fact, when p ® 0 , we have

s( , ) exp( ( ))p p0 2≥ − − −Θ 	 (15)

Denoting the rank of the first and second largest components of the graph as L G
1
( )  and L G

2
( ) , 

respectively, we obtain Theorem 3.1, which is proven as follows:
Proof. Fix 0 1< ≤p , and set c = 0 , for all 0 £ £k n , denote the agents’ number of components 

with rank k  in G
p

 is N
k

(the number of agents of the component with rank k  in graph G ), and 
denote the rank of the removed components as 0. N

0
 satisfies binomial distribution N n p( ,( ))1- . 

Denoting m
k

 as the probability of event �∪Γt
t=

∞

0

 happening in the stochastic process Gp,0 , for all 

0 ≤ <∞k , we have µ σ
kk

p
=

∞∑ = −
0

1 0( , ) . For all 0 £ £k n  ,

( ) ( )N n o n
k k
= + −m 1  	 (16)

As we can see, N
k

 is converged into its average. So, for all k  in 0 £ £k n  , we have wvhp

N N O n n o n
k k k
= + = + −( ) ( ) ( )/2 3 1m  	 (17)

Note that m
k

 in-depends on n  and m
k

k
å  converges. We have m

k
® 0 , which means wvhp 

that there exists a big component in graph G
p

 with s( , ) ( )p n o n0 +  agents (i.e., all agents with 
0 £ £k n   must only have a giant component beside them).

Once certain agents’ neighbors are enlarged, this growth is extensive. We denote j
i0

 as the 

smallest agent in G
p

. Each agent with | ( ) | (log )Γ
k
v n≥ 10  would interact with agent j

i0
 with probability 

1 1-o( ) . For an arbitrary fixed agent v , event Γ
k

k

v
=

∞

0


( )  cannot be happening unless each | ( ) |G
k
v  

with k  is very small. Invoking the results mentioned in Theorem C.1 of this article, the corresponding 
properties can be demonstrated.

It is known that P l s( , , )a  is monotone decreasing with a , but not equal to 0 when a = 1 . So, 
it is bounded uniformly when a  is far away 1. Similarly, for Γ ≥ 3  and given probabilities 
a( ), ( ), ( )v l v s v , it is induced that the probability of v  with at least two propagable generations has 
its down-boundary. Suppose that v  is propagable and the lower-boundary of the probability of v  
with at least two propagable generations can be driven by p

0
. Due to the property of propagation of 
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v
0
, there are at least two children generations of v

0
 taken according to a probability p

0
, which results 

in a branching process. Furthermore, this branching process is a misconverged exponent process. So, 

we have wvhp Γ
log

(log )
n

n≥ 10 , i.e., for each k , �∪ Γ j
j

k

i

i

n
=

<
0

  holding, the probability of 

�∪ Γ j
j

k

i

i

n
=

<
0

10(log )  is o( )1 . So, the agents’ number of G
p

 is o n( )  in the giant component.

Because µ σ
k

k

p∑ = −1 0( , ) , there exists an upper-boundary of L G
p1

( )  such that s( , )p 0  has 

a certain upper-boundary. Considering a small enough a
0

, the agents with a a£
0
 are called good 

agents and the ones with a a>
0
 are called bad agents with a probability of 1. For agent v

0
, it would 

have at least one child generation wvhp. Among the infinite generations of children, each child must 
have its left child with a positive probability.

For a set V  that consists of some agents in ( ) ,
G p c , ( )V is the set of the right neighbors. Setting 

  k kV V( ) ( ( ))= −1 ,  ∞
−

=

∞

=( ) ( ( ))V Vk

k

1

0


 and    ∞
+

∞
=

∞

= =( ) ( ( )) ( ( ))V V Vk
k 1


 and 

considering Eq.(9), the average of Z
p


 is  p p


 +




∆ , for all α β< < 1 . So, arbitrary agent v  with 

β α= ( )w  coupled with probability density ρ α β β
1
( , )d  in ({ })v  with a small interval can be 

determined by

ρ α β
π

αβ
β

1
2

2 1( , )
( ( ))

( / )=



 + −d

p s v
n dd



	 (18)

Because each agent w  in ({ })v  has s w( ) = 0 , i.e., for all k ³ 1 , the probability density 
function ρ α β

k
( , )  of k v({ })  satisfies

ρ α β
π

αβ
k

k

dd
p

n
≥

−∑ ≤





1

2 1( , ) ( / )


	 (19)

As demonstrated in the Appendix G of this article, if α α π> = − 


0

1 2exp( / ) p , the boundary 
of the exponent described above can be obtained due to the condition b £ 1 .

Reconsidering the definition of arbitrary agents in G n
p



( ) , the weight of v  of ( ) ,
G p c  must be 

1/ ( )a v , and the weight of the set must be equal to the sum of all agents’ weights. Supposing that 
v  is a bad agent (i.e., a a a= >( )w

0
), we have

 w v d n d d n
p

d

k
k

d( ({ })) ( / ) ( , ) ( / )∞
+ −

=
≥

−( ) = =


∫ ∑2
1

21 1
1

1β
ρ α β β

π
β α





≤ 


 ≤

=

− +

∫
β α

β

π α

β α

1

11 21 1

d

p w v dw v n d d
 log( / ) ( ) ( ) /

	 (20)
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Because  ({ }) { } ({ })v v v= ∪ ∞
+ , we have,  w v dw v n d d( ({ })) ( ) /∞

+ − +( ) ≤ 3 21 11 . So, for the 

set including an arbitrary bad agent, it is easy to see that  V V dw V n d d( ({ })) ( ) /∞
+ − +( ) ≤ 3 21 11 . 

( )V  is a random set that ( )V only consists of bad agents, where 1( )V
 is the corresponding 

indication function. In this sense, we have

 1 1B RR
( ) ( )

( ) | ( ) /
V V

d dw V V dw v n∞
− +( )( ) ≤ ×3 21 11 	 (21)

( )V  is the set of the generation of left children of V . Noted firstly, take integral to Eq. (9) 
from 0 to a

0
 and one can easily determine that the probability that a certain children generation of 

agent V  is “good” is p v p w va a a
0 0
/ ( ) ( )= . So, it is concluded that

( ( ) ) ( ) V has a good agent p w V   � � �0 	 (22)

Now, we consider the bad agent in ( )V . For each generation of left children for agent v  with 
a a a( )v = >

0
, we take integral of 1/ b  then multiply Eq. (9). We have,

 1R L L
( ({ }))

( ({ })) ( / ) ( ) ( )
l

v

dw v d n l v
p
d l v

dp( ) ≤ =−

=∫2
1

2
1

0 β αβ
β

β α

α oog( / )

log( / ) ( ) / (

α α

α
π α

0

1

0

1

1

1

1 1

2
1 2

n

d p w v n dw v

d

d

d d

−

+

− +≤ 


 = )) /n d d− +1 121

	 (23)

We now have obtained all results. The probability that v
0
 is a good agent is a

0
,L R

0 0
= ∞({ })v . 

Because k ³ 1 , set L R L L L
k k k
= ∞ −( ( ))

1
 is the set of agents for all the children of v

0
. So, if v

0
 is 

bad but one of the children is good, there must exist a good agent in  ( )
k

. It is possible for a certain 
bad agent to reach another good agent. Suppose that  

0
,...,

k
 consists of a bad agent, we obtain the 

following by combining Eq. (22)

 L L L L
k k k

dd p n is bad agent but  is not( ) | ( / )( ) ≤ 




−
π α2 1

00
1R L L

( )
( )

k
w

k
	 (24)

So

P EL L L L L
0 0
∪ ∪( ) ≤  ... ( ) |

k k k
p is bad agent but is not π α 1RR L L L

( ... )
( )

0∪ ∪
( )

k
w

k
	 (25)

Similarly, to the event where v
0
 has a good child, the boundary of s( , )p 0  is

σ α π α( , ) ( )
( ... )

p p w
k k

k

0
0 0

0
0

≤ + 


 ( )∪ ∪

=

∞

∑   1R L L L 	 (26)

Therefore,
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 1 1R L RL
( ) ({ })

( ) ({ })
0 0 1

1

0
0 0 1

13

2

3

2

1
w w v dn d

v d

d( ) ≤ ( ) = =
+

−

=∫ β
β

β α

33

2 1

1

0

d
n

d

d− α 	 (27)

Combining Eq. (15) and Eq. (26), and considering the definition of 
k

, for all k ³ 1 , it is easy 
to see that

 1 1R L L R L LL L
( ... ) ( ... )

( ) ( )
0 0 1

3

8 1∪ ∪ ∪ ∪ −( ) ≤ ( )
−k k

w w
k k

	 (28)

Recalling Eq. (26), we obtain that

σ α π α α( , ) ( / ) (
( ... )

p p
d
n w

k
d

d

k

k

k
0

3

2
3 8

0
0

0 0
0

1

1

0
≤ +

=

∞
−

=

∞

∪ ∪∑ ∑  1R L L LL
k

d ddn p d p d p

)

( / ) ( / ) ( / )exp(

( )
≤ + ≤ + = + −−1 5 2 1 5 8 1 5 8 11 1

0 0
  π α π α π // )2πp

	 (29)

As mentioned above, ( ( , ) ( ))s p o n0 1+  is the up-boundary of the number of agents of the giant-
component 

1
( )G
p

 in G
p

. Thus, the upper-boundary of Theorem 3.1 is demonstrated. Theorem 3.1 
is proven.

INTENTIONAL ATTACK AND THE VULNERABILITY

We now discuss the case of the intentional attack (The percolation of a CAS with the Boolean game 
is described in the Appendix G of this article). First, the agents should be re-ordered according to 
payoff from large to small, and we obtain the following new order

1 2 1, ,..., , ,..., ,cn cn cn
core intermediate asymptot

� ���� ���� �+
iic periphery

� ������ ������ �� ����� �����cn n+1,..., 	 (30)

We now analyze the properties of the intentional attack with probability b  of G n
p



( )  (i.e., we 

remove all agents with j cn
i
£  and obtain graph G

c
). When b £ c , we can implement the process 

of change G
p

 by setting the density function described in Eq. (3) to 0. In the process of changing, 
the density function would be changed because the cn  strongest agents are removed.

We assume that p = 1  and consider the stochastic process ( ) ,
G 1 c  on 0 1£ £c . We denote the 

propagation probability of the initial agent v
0
 in the stochastic process ( ) ,

G 1 c  as θ σ( ) ( , )c c= 1 . 
Because ( ) ,

G 1 c  consists of an infinite number of agents, we denote m
k

 relying on c  as the probability 
of k  agents selected in the stochastic process. Based on the definition of m

k
, we have

µ θ
k c

k

c
,

( )
=

∞

∑ = −
0

1 	 (31)
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For c c
1 2
< , ( ) ,

G 1 2c  can be defined by removing all agents v  with c v c
1 2
< ≤a( )  from ( ) ,

G 1 1c . 
( ) ,
G 1 1c  and ( ) ,

G 1 2c  can be embedded together perfectly. So, q( )c  gradually decreases with c  
(demonstrated in the Appendix H of this article).

q( )c  is decreasing gradually and continuously, and that the critical value c c c
0

0: inf : ( )= =q  
satisfies 0 1

0
< <c  when q( )0 1=  and q( )1 0= . Furthermore, q( )c

0
0= .

For 0
0

< <c c , we have q( )c > 0 , the probabilities of left propagation and right propagation 
of Eq.(11) and Eq.(12), L

c
( )a  and R

c
( )a , are all non-zero. Furthermore, because q( )c ® 0  when 

c ® 0 , so, L
c
( )a  and R

c
( )a  all tend toward 0 when c  is increased to c

0
. Take limits of L

c
( )a  and 

R
c
( )a , and we have

inf ( ) ( ) ( ) (
α β

α
α α

α β
π β π

∈ +

−

=
≤ = 



 + 


∫

L L dn L
d

d

c









1

2

1
1

1

1  +( ) ≤
∈

1) ( ) sup ( )R d Lβ β α
α 

	 (32)

inf ( ) ( ) ( ) ( )
α β α

α α
α β

π β π
∈ +

−

=
≤ = 



 − + ∫

R R dn L
d

d








1

2

1
1

2

2

1

1

 ( ) ≤
∈

R d R( ) sup ( )β β α
α 

	 (33)

According to Eq. (32)-(33), L
c
( )a  and R

c
( )a  are transformed by the deterministic terms such 

that they are all resolved easily. Furthermore, they have a corresponding non-zero solution if and 

only if c n
q q

q q q
d d

in

=
−

+
=

−

+ + −
∈

∈

−
inf

sup
( / )

( )

inf
α

α

α
π

π δ








1

1
2

1
2 1 3 4

1 2 5

 ∈∈

∈

−

+








π

π
α

1

1sup
.

As analyzed above, these equations have a non-zero solution if c c=
0

c
q q

q q q
in

0
3 4

1 2 5
1

1

1
=

−

+ + −

−

+
∈

∈
δ

π

π
α

α
( )

inf

sup








	 (34)

It is concluded that the value of θ σ( ) ( , )c c= 1  is 0 if the probability of intentional attack c c³
0

; 
otherwise, the value of θ σ( ) ( , )c c= 1  is positive. Also, if the number of agents in a component is 
smaller than n /2 , the component is considered to be small. So, we have

N n o n
k c k c, ,

( )= + −m 1  	 (35)

For 0 £ £k n  , we know that N n
k c,

( )  is the number of agents of component G
c
 with rank k . 

For graph G
c
, it is concluded wvhp that there are ( ( ) ( ))1 1− +q c o n  agents in the small component 

and ( ( ) ( ))q c o n+ 1  agents in the large component. When c c<
0

, there only exists one large component 
in graph , as seen in Theorem 3.2, which is demonstrated as follows.

Proof. Set � �� ( )n  is a function that slowly tends toward 0, supposing that we take � � �n  /3 , 
and set � � ��� ��n n( )1 � . Recalling the initial definition of the stochastic process G n

��� ��

( ) , and 

considering the sequences embedded G t
��� ��

( ) , where t n n n� � � �, ,...,1  and the corresponding 

abbreviated version Ht  is obtained by deleting all agents with j cni ≤  in G n
��� ��

( )  (i.e., H Gn c= ).
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Because � � 0 , for a large enough n , we have � � � �c cn n c/ 0 . Based on Eqs. (32) and 
(33), we replace n c,  by ′ ′n c, , and we see with wvhp that there are ( ( ) ( ))� � � �c o n1  agents G

c

standing in the giant-component in graph H
n ¢ . Because q  is continuous, the number should be equal 

to ( ( ) ( ))q c o n+ 1 . If a certain agent 1£ £j n
i

 stands in the giant-component H
n ¢ , the agent is 

considered to be very important. Note that there are ( ( ) ( ))q c o n+ 1  important agents in the system. 
Similarly, if a component of H

t
 consists of an important agent, where ′ ≤ ≤n t n , then this component 

is also considered to be important. Also, note that the important agents cannot change with time but 
remain constant. However, when H

t
 transitions into H

t+1 , there are one or more important agents 
in H

t
 that can link with another or more important agent in H

t
. So, the number of important 

components would decrease with time. The objective of this paper is to demonstrate that there are 
same important components when H G

n c
= . In other words, when this important component consists 

of ( ( ) ( ))q c o n+ 1  important agents, (i.e., all the o n( )  agents in G
c
 are in this component) the proof 

is finished.
Set A  and B  are different components with a  and b  agents in H

t
, and set d A( )  is the sum 

of the number of agents with j A
i
Î . Then, when Gt

p



+1  is tended to infinity, the probability that a 

new link is constructed from a new agent to an arbitrary agent in A  is d A t( ) / ( )2 1p

 + . Similarly, 

the second link is constructed from this new agent to B  with probability d A d B

t t

( ) ( )

( )( )2 1 2 3 p p


 +




 +

 

when t n~ , d A a( ) ³  and d B b( ) ³ . So, for some positive constants of a  and b , the probability 
of a second link occurring is at least kab n/ 2 . For ′ ≤ ≤n t t , and set 

2
( )t  is the sum | || |A B  

of different important component pairs { , }A B  in H
t
. If 

2
2 5( ) ( ( ) ) /t c n³ q , then the components 

in H
t
 are connected together in H

t+1  with probability ′ =κ θ κ( ) /c 2 5 . For this reason, the number 
of components in H

t+1  is much smaller than the number in H
t
. Because there are at least n1 2-/  

important components in H
n ¢ , there are at most n1 2-/  values coupled with t . For several t

0
 with 

t n n
0

1 22≤ ′ + ′−/ / k , we have wvhp that 
2

2 5( ) ( ( ) ) /t c n< q . Thus, there is an important component 
C  with a rank of magnitude larger than or equal to q( ) /c n 2  in H

t0
. Furthermore, for another 

important component fixed in H
t0

 and several constants with ′ >k 0 , it is easy to see that, in the 

other t  ( t t n
0
£ £ ) steps, the probability that A  and C  can be connected is at least 

k k k| || | / | | / /A C n A n n2 2 1≥ ′′ ′′ − . Because the probability that A  and C  can be connected in 
the remaining n t n- -~ /1 3  steps at least is 1 2- -o n( )  all components in H

t
 can be connected 

together in H
n

 wvhp. In this sense, proof of Theorem 3.2 is finished.

DISCUSSION AND CONCLUSION

Our analysis shows that, if the system is attacked randomly, there are at least two large components 
that keep the system connected. Furthermore, when the system is attacked randomly, even if a few 
agents remain in the system, there must be two giant-components for the system to operate normally. 
The minimum of the rank of the biggest giant-component is n pexp( ( ))Θ 1 2− , and the maximum 
of the rank of the biggest giant-component should be ( / ) exp( / )1 5 8 1 2+ 



 − 



d p n p p p , which is 

driven by the average of the agent’s payoff p . The rank of the second biggest giant-component is 
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o n( ) . So, when the system is attacked randomly, the system is robust. That is, even if almost all 
agents of the system exit, the system remains strongly connected and does not collapse.

l( )p  is a non-linear correlation with random attack probability p  and agents’ payoff p . 
Furthermore, l( )p  is monotonously increasing with p , the upper bound of l( )p  is affected by the 
property of the payoff of the agents, which is explained in Figure 5.

However, the corresponding difference between the l( )p  sharply decreases as p  increases. As 
shown in Figure 5, the payoff distribution also relies on the distribution of agents’ type, there is a 
significant negative nonlinear correlation between l( )p  and the average of payoff.

Our analysis also shows, when the system is attacked intentionally, the system’s property is much 
more complex. The complexity comes from critical probability c

0
. If the deleting probability is 

smaller than c
0

, the system is connected by two giant components. If the deleting probability is larger 
than c

0
, there is no existing giant component that makes the system connected, and the system’s 

function is damaged. If the deleting probability is equal to c
0

, the system is critical, i.e., the system 
is switched randomly between robustness and vulnerability. The size of the largest component relies 
on the property of q( )c . Unfortunately, the property is unknown, although q( )c  is decreasing gradually 
and continuously. The critical value c c c

0
0: inf : ( )= =q  satisfies 0 1

0
< <c  if q( )0 1=  and 

q( )1 0= , furthermore, q( )c
0

0= . Moreover, because 0
0

< <c c , we have q( )c > 0  and q( )c ® 0  
if c ® 0 . Therefore, the number of left neighbors and right neighbors tend toward 0 if c  is increased 
to c

0
. Furthermore, there is a corresponding non-zero solution if, and only if,

c
n

n

q q

q q
a

a

d d

in
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+
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5

1

1)

inf
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



π

π
.	

It is concluded that the critical probabilities p
0
 and c

0
 are dependent on the property of the 

collective payoff p . In fact, p  is determined by the agent’s type t  and corresponding distribution, 
the transitory local configuration of the agent in random complex networks w , and noise b . However, 
agents would change their property because of interaction, which makes the agent’s type t dynamical, 
whose distribution relies on how the in-homogenous agents are distributed, as well as the 
inhomogeneous behaviors. The local configuration of agent w  decides the interactive property (i.e., 
a cooperative game or a non-cooperative one). Because agents’ optimal payoff satisfies certain 
invariable distribution with time t , and the payoff is monotonously increasing with system size N  

Figure 5. The property of up-bound of l( )p
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but bounded no matter how large the system is, we can see that lim
inf

supN

a

a

→∞

∈

∈

−

+
≈







p

p

1

1
1  such that 

c
q q

q q q
o

in
0

3 4

1 2 5
1

1=
−

+ + −d ( )
( )  with N →∞ .

According to Zheng, et.al., (2012) agents’ dynamic behavior must satisfy an invariable distribution 
µ ωβ

α
, |N NΩ( )  driven by noise b  and local configuration w . It is important to note how behavior 

and conf igurat ion affect  the percolat ion probabil i ty  p
0

 and c
0

.  Fur thermore, 

µ β
β

β
= −








−

o x
x

x
N

N
exp( / )

exp( / )2

1
 and x N q q q q q q= + + − + −( )

1 2 3 4 5 6
p . It is concluded that, 

if the system is attacked intentionally, the critical probability would change, as shown as Figure 6.
Figure 6 describes how the critical probability c

0
 changes according to agents’ behavior and 

noise, where 0 8£ £x  and 0 8£ £b . There exists a tipping point such that critical probability 
c
0

 changes sharply if the strategy and noise changes weakly. c
0

 grows slowly if all of the resources 
and noise are smaller than this value, but c

0
 increases quickly if they are above this value. The 

approximate value of the corresponding critical value is b
c

x» »0 45 0 52. , . .
Considered the system’s behavior, we identified three behaviors in the system evolution process: 

agents optimize the flows in the system by adjusting their behavior in a stable structure; growth by 
adding a new game with other agents or simply adding other agents; or collapse by removing old 
game relationships or exiting the system. Set q

1 1
=  , q q q

2 3 5 2
+ + =   and q q

4 6 3
+ =   

respectively describe a stable system, growth, and collapse. If  

1 2
0= =  and 

3
1= , and p  is 

a positive integer, this is a BA model, and the percolation probability is similar to Theorem 3.1 and 
Theorem 3.2. When 

1
1= , and  

2 3
0= = , this is an ER model. It satisfies Poisson distribution, 

the percolation probability is 1 1/ ( )k- , and k  is determined by the degree k  and its probability 
p  and the distribution j( )k . That is, ( ) ( ) ( )k p k p− = −∑ 1 1ϕ κ , which is identical to the classic 
result. When  

1 2
0= =  and 

3
1= , the system is collapsed. Real-world examples of such systems 

include collapsing industries which die due to recessions. We randomly selected the value of q
i
, and 

considered the critical probability of intentional attack driven by 
i
 (see Figure 7).

Figure 6. c x
0
( , )b
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The joint effect of two behaviors onto the critical probability of intentional attack is specified 
in Figure 8.

Obviously, an arbitrary agent in the system can only interact with some agents. The game radius 
r  is introduced to describe the scale of indirect playing. r

i
 describes how many agents’ information 

can be collected by an arbitrary agent i . In addition, any agent in reality cannot remember all 
information regarding past interactions, this property of limited remember is described by order 
parameter of remember length L . If the game radius is infinite, any agent in this system can interact 
with each other with perfect information, which has been studied (see Bab &Brafman, 2008; Chen, 
2011; Ahn et al., 2008; Li et. al., 2010; Fuentes, Gerig, &Vicente, 2010; Kumar, 2010; Shao-Chiu 
Juan et.al., 2017; and Novičenko et. al., 2018). If agents can remember all past interactions, this means 
that the agent is very intelligent, this has been studied by Zheng, et.al. (2010; 2012). If agents can 
only remember little information, our result can be degenerated to what Sikder, Smith, et al., (2020) 
have proven. In this paper, we focused on how the critical percolation probability p

0
 and c

0
 are 

affected by the game radius r  and agents’ memory of past games. If l = 1 , r L= = ∞1,  and the 
Boolean game plays a dominant role, this system degenerates into a scale-free random complex 
network, which is also robust and vulnerable when the system is attacked randomly and intentionally, 
respectively (see Albert et al., 2000; Misra et al., 2010; Wang & Rong, 2009; Derzhko, 2004; Bollobàs 
et al., 2008; Bollobas & Riordan, 2007; Bowles, Baxter et al., 2011; Xiao Zang, et. al., 2020; Viktor 
Novičenko & Irmantas Ratas, 2018). However, the laws the percolation critical probability p

0
 and 

c
0

 satisfy should be further researched if l L M≥ = <∞2,  and 2 ≤ ≤ <∞r M .

Figure 7. The correlation between system behavior and critical probability under intentional attack

Figure 8. The correlation between system joint behavior and critical probability under intentional attack
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However, there are too many conditions that were posed strictly in this paper, the results are not 
perfect. We would loosen the constraint conditions, such that the irrational behaviors are considered 
step by step in additional studies.
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