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ABSTRACT

This chapter presents a survey that focuses on the implementation of federated learning (FL) techniques 
in sixth generation (6G) networks’ physical layer (PHY) to meet the increasing user requirements. FL 
in PHY perspectives are discussed, along with the current trends and the present challenges in order 
to deploy efficient (cost, energy, spectral, computational) FL models for PHY tasks. Moreover, the uti-
lization of FL methods is, also, discussed when channel state information (CSI) is not guaranteed in a 
6G scenario. In such conditions, the joint use of cell free (CF) massive multiple-input-multiple-output 
(mMIMO), reconfigurable intelligent surfaces (RIS), and non-orthogonal multiple access (NOMA) and 
FL methods is proposed. Finally, an FL-based scheme for relay node (RN) placement in 6G networks is 
presented as an indicative use case for FL utilization in modern era networks. Results indicate that the 
proposed FL scheme overperforms state-of-the-art centralized learning schemes concerning the trade-
off between machine learning (ML) metrics maximization and training latency.
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1. INTRODUCTION

1.1 The Need for Distributed AI/ML Models in 6G Networks

With the rapid growth of the Internet of Things (IoT), industry 4.0, augmented/virtual reality (AR/VR) 
applications, massive data volume is generated by end-user devices. In fact, according to Ericsson (Erics-
son, 2022), the monthly global internet average per smartphone is expected to exceed 20GB at the end 
of 2023, while be 2027 all mobile data traffic growth will come from fifth-generation networks (5G), as 
the fourth-generation network’s (4G) traffic will decline. On the same framework, by 2028, 5G’s share 
of mobile data traffic is forecast to grow to 66 percent. Moreover, IoT and connected car applications 
are expected to be the most growing application type.

5G, which have been recently deployed around the world, support a wide range of trending applications 
by categorizing them in different usage scenarios. In this way, both enhanced Mobile Broadband (eMBB), 
massive Machine Type Communications (mMTC), and Ultra-Reliable-Low-Latency Communications 
(URLLC) are supported. However, despite the numerous benefits of 5G networks, the large amount of 
generated data and the need for real-time responses by the network itself have raised the discussion in both 
industry and academia over a new generation of wireless networks, the sixth generation (6G). The main 
goal of 6G networks, as described in (Letaief et. al, 2019), is to provide the relevant technologies that can 
transform the “connected things” world (as expressed by the 5G-related worldwide wireless web (WWWW) 
and the service-based architecture (SBA) model) into the “connected intelligence” world by implementing 
data-aided models for diverse tasks, applications, and Open Systems Interconnection (OSI) levels.

It is already visible that to achieve the aforementioned revolution, user requirements should be even 
more demanding in 6G networks than the ones existing in 5G. As depicted in both (Letaief et. al, 2019) 
and (Wang et. al, 2023), these extended requirements are expected to be the following:

• Increased data rates around 1 Tbps.
• Energy efficiency (EE) as the primary Key Performance Indicator (KPI) to support dense con-

nections and mass connectivity for energy/battery-saving IoT devices and Unmanned ground, air, 
surface or undersea Vehicles (UxVs).

• Enhanced low latency which is translated in less than 1ms end-to-end latency.
• Upper millimeter wave (mmWave) communication bands and Terahertz bands (e.g., 73GHz-

140GHz and 1THz-3THz).
• Increased coverage by minimizing the disconnection probability.
• End-to-end Artificial Intelligence (AI) and Machine Learning (ML) capabilities.

It is significant to point out that 6G standardization is in its early phases currently (see also Fig. 1) 
and the expected International Mobile Telecommunications-2030 (IMT-2030) standard is to set all the 
6G-relevant requirements and use cases. However, the need for new service types beyond the 5G ones 
(eMBB, uRLLC, mMTC) has been identified. As described in (Letaief et. al, 2019) and (Wang et. al, 
2023) these are:

• Computation Oriented Communications (COC), where distributed and in-network computa-
tion enabled by federated learning and edge intelligence, will provide the relevant service provi-
sioning, and define the quality of service (QoS) flows to maximize also computational accuracy.
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• Contextually Agile eMBB Communications (CAeC), which extends 5G eMBB to be more agile 
and adaptive to the network environment, the physical environment, and the social environment.

• Event Defined uRLLC (EDuRLLC), where 5G uRLLC is extended to support uRLLC in ex-
treme or emergency scenarios where user density, traffic patterns, mobility models and spectrum 
availability is dynamically changing (opposite to 5G, where uRLLC is performed in static envi-
ronment conditions).

In the aforementioned evolution, which will be introduced by 6G networks, AI and ML, are recognized 
as the most significant tools to extract knowledge from available data, support decisions and automate 
processes. However, the tremendous amount of data (big data) that is produced by the 5G/B5G/6G 
networks, due to the existence of multiple users in dense environments, which are used in the learning 
models, such as artificial neural networks (ANNs), support vector machines (SVMs), or training algo-
rithms, such as reinforcement Q-learning models, or deep reinforcement learning (DRL), need powerful 
computational resources to produce the learning outcome and tune the relevant hyperparameters (Elbir 
et. al, 2021). It is foreseen that the aspect of fast training and response times is vital for the feasibility 
and efficiency of ML tasks in the context of 6G networks.

Traditional ML techniques (Supervised, Unsupervised, or even classic distributed learning tech-
niques), which rely on a centralized entity to produce the learning outcome (centralized learning – CL), 
can phase difficulties in dealing with the limited computational power available on a single machine, 
memory constraints, scalability and training of complex algorithms on a single machine. For example, 
most ML models are trained in a central server with lots of processing unit power to produce a global 
model that will be used by either the network or the end user. However, in the context of 6G networks 
where numerous interconnected devices, machines and sensors are demanding continuous access to the 
medium, the computation overload needs to me shared among them, so that the aforementioned challenges 
can be handled. In this framework, CL approaches may have a significant number of drawbacks when 
comes to the efficient use of AI/ML techniques, such as not real-time responses, local data dependency, 
and security threads (e.g., single point of failure). Thereby, decentralized and distributed ML strategies 
should be taken into account (see also Fig. 3 (a)).

Figure 1. 5G to 6G standardization progress (Rahman et al., 2021)
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A promising way to tackle these challenges is a specific type of distributed learning technique, 
introduced in (McMahan, 2017), denoted as Federated Learning (FL), which combines mobile edge 
computing (MEC) and ML. The key characteristic of FL is that edge devices contribute to a global ML 
model construction, only by transmitting locally trained models’ parameters to a central entity, e.g. a 
centralized server. This means that the training sets of each enrolled edge device are not distributed to 
the server, maintaining a secure and robust learning framework (Chen et. al., 2020). FL can also be 
performed without even sending parameters to the server. In these cases, neighboring devices form a 
device cluster to exchange parameters for ML models’ construction (Yang et al., 2022). As it is visible, 
a significant advantage of FL schemes has to do with their ability to reduce communication overhead 
and secure communication, as there are no datasets distributed. For all these reasons, FL has gained 
increasing interest for compute vision tasks (Elbir et al., 2021).

Recently, FL has been proposed as a promising solution in different physical layer (PHY)-related 
tasks in 5G and 6G networks. Traffic data are continuously generated by user equipments (UEs), while 
parameters such as channel state information (CSI) are also present in each UE – Base Station (BS) link. 
Thus, real-time decision-making can be FL-driven to provide robustness in minimizing the time between 
data generation and data utilization for these purposes. Thus, FL is useful for convex and non-convex 
problems in 6G networks’, such as interference management, radio resource management (RRM), user 
profiling and grouping, BS -or even relay node (RN)- selection and others.

Figure 2 (Bartsiokas et. al., 2022) illustrates an FL framework in the context of new era wireless 
networks as previously described. As stated in (Bartsiokas et. al., 2022):

Figure 2. Federated Learning (Bartsiokas, 2022)
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Counter to CL methods, where local data (from UEs in 5G/B5G (Beyond 5G) networks) are uploaded 
to a centralized server, and also counter to classical distributed approaches, where data is uniformly 
distributed among the edge devices, FL schemes use local data to train a global model, through multiple 
training iterations across interconnected edge devices (UEs), in order to achieve the desired global ac-
curacy. Then, local updates, generated by each interconnected device, are aggregated to a cloud or a 
MEC server (in BSs).

In such scenarios, FL targets ML KPIs (accuracy, F1-score, root-mean-square-error (RMSE)) maxi-
mization by the application of multiple communication rounds between the server and the edge devices 
to train and/or update the model with local datasets.

1.2 Chapter’s Scope and Related Works

As the generated data from end-users and the connected devices grow, user demands for uninterrupted 
access to the medium and ultra-low latency communications, which are translated into network require-
ments for real-time responses and guaranteed Quality of Service (QoS) and Quality of Experience (QoE) 
levels, become even more challenging. Moreover, in 6G networks, the use of advanced PHY technologies 
is mandatory and concerns terahertz communications, massive multiple-input-multiple-output (mMIMO) 
antennas, non-orthogonal multiple access (NOMA), and cell-free (CF) topologies. These technologies, 
when applied in a dense environment characterized by high interference levels and complex channel 
approximations, with increased connection density and near-random user mobility patterns, maximize 
the computational cost to support strict users’ requirements and demands.

This chapter presents a survey that focuses on the utilization of FL techniques in 6G networks’ PHY. 
FL in PHY perspectives are discussed, along with the current trends and the present challenges in order 
to deploy efficient (cost, energy, spectral, computational) FL models for PHY tasks (such as RRM, BS, 
or RN selection and placement). Moreover, the utilization of FL methods is, also, discussed when CSI 
is not guaranteed in a 6G scenario. In such conditions, the joint use of CFmMIMO, NOMA and FL 
methods is proposed.

The emerging need for FL techniques in PHY, which is presented in the previous sub-section, has, 
also, motivated other research efforts over the last years. The research efforts under review in this sub-
section, have focused on FL deployment for several 6G-related scenarios, applications, and problems. 
Table 1 summarizes these works, presenting the area(s) of interest and the corresponding contributions.

It is foreseen that, while FL overview has been, also, presented in the other research works, these 
approaches either consider cross-layer approaches ((Liu et. al., 2022), (Al-Quraan et. al., 2023), (Luo et. 
al., 2023)) or focus on a different 6G aspect (e.g. security (Sirohi et. al., 2023)) or in another OSI level 
(e.g. (Yang et. al., 2022)). The proposed chapter focus on discussing the research progress in FL-base 
methods in the PHY layer -similar to (Elbir et. al., 2021)-, but presents up-to-date research efforts in 
the field, as well as discusses an exact paradigm to identify the potential gains of FL implementation 
in 6G networks’ PHY.

The key contributions of this chapter are the following:

1.  A state-of-the-art review of the most recent FL-based approaches in 6G networks PHY is performed. 
We are focusing on different RRM sub-problems, such as subcarrier or Physical Resource Block 
(PRB) allocation, channel estimation, BS or RN selection and others. Moreover, the joint utilization 
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of FL and modern PHY technologies, such as NOMA, CFmMIMO and RIs, is, also, of interest 
in this review process. The principles of such novel PHY technologies are previously depicted, to 
introduce the reader to the relevant concepts.

2.  Moreover, an indicative comparative simulation scenario is performed to display the potential 
gains of FL methods implementation in PHY in 6G orientations. More specifically, we develop, 
train and test several ML models for the effective RN placement in 6G networks’ topologies. The 
ML models are deployed either in a CL or an FL manner. Thus, performance evaluation discusses 
the FL advantages and disadvantages compared to existing (CL) solutions. In this way, relevant 
conclusions are made.

3.  Thus, the ultimate goal of this chapters is to depict the FL schemes’ advantages in 6G wireless 
systems over the state-of-the-art CL schemes. Moreover, the challenges in designing and deploying 
such approaches (FL ones) are identified, and, thus, relevant future research trends and directions 
are given.

2. BACKGROUND

2.1 Distributed Learning Types

As it is depicted –among others- in (Bartsiokas et. al., 2022) ML algorithms’ basic classification is 
performed based on the type of data that they process (labeled or unlabeled) and the corresponding 
mechanism that is used. To this end, supervised learning considers labeled datasets where the train-
ing outcome is a trained model which is used to perform the mapping between the dataset’s (test set) 

Table 1. Related Works

Survey Year Area(s) of Interest Significant contributions, conclusions

Liu et. al. 2022 Paramilitary considerations about the 
integration of FL methods in 6G

6G requirements for FL application; need for 
communication-efficient, secure and effective FL

Al-Quraan et. al. 2023 Challenges and future directions FL 
applications in wireless networks

Cross-layer challenges such as data quality or 
insufficiency, resources management should be taken 
into account; Communication latency minimization; 
encryption mechanisms

Luo et. al. 2023 Network layer architecture for FL in 6G 
networks

Optimization approaches to address the heterogeneity 
issues in FL; incentive mechanism design; network 
management; model optimization

Sirohi et. al. 2023 Security aspects in FL models construction

Vulnerabilities and threads in FL application 
concerning space, air, ground, and underwater 
communications; base models; dataset quality; 
Blockchain; Encryption

Yang et. al. 2022 Overview of FL applications for envisioned 
sixth generation (6G) wireless networks

Essential Requirements; Potential applications; Open 
problems and discussions

Elbir et. al. 2021 FL for PHY layer design Symbol detection; channel estimation; beamforming; 
complexity issues

This chapter 2023 FL for different PHY tasks focusing on 
RRM; Challenges and research directions

Research efforts presentation; Data issues for FL; 
enabling technologies; practical paradigm to highlight 
FL significance
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features and response variable. Typical supervised learning problems are classification and regression. 
On the other hand, unsupervised learning considers unlabeled datasets, where the models itself tries to 
identify relations between different features. Reinforcement learning, utilizes an entity -called agent-, 
which interacts with the learning environment in order to adjust learning parameters and meet the used 
KPIs’ target values by receiving rewards or penalties after its selected actions. In this process, a learn-
ing entity, called agent, is used. Besides the aforementioned types of learning, another learning type 
is Deep Learning (DL), which is an ML subset, that utilizes multiple layers in neural networks (NNs) 
significantly larger than the other types, to extract hidden relations between different features. Typically, 
DL is related to Big Data existence, which makes it vital for wireless networks, where the amount of 
data generated huge.

When it comes to the distributed ML techniques, where multiple nodes should cooperate to construct 
a global ML model, the following tree-type classification exists (as also depicted in Fig. 3):

• In CL, edge devices send their locally gathered data to a centralized entity for training purposes 
(see Fig. 3a). Thus, the distributed computation is limited to the transmission of the local datasets 
to the centralized server (Abdulrahman et. al., 2020). The key advantage of CL methods is that a 
total dataset is formed, which helps towards the maximization of ML KPIs, due to the increased 
amount of data that are existing (Elbir et. al., 2021). On the other hand, the need for whole datasets 
transmission to the centralized entity has two basic drawbacks. The first one is related to the in-
creased interference and overhead that is introduced, which, also, affects the total response time, a 
vital aspect concerning the real-time decision-making nature of 6G communications. The latter is 
the possible security vulnerabilities and threads that can phase privacy data through transmission.

• In FL, edge devices gather their local data and form a local model, which training is performed at 
the edges. However, the centralized entity’s role is to aggregate the different model’s parameters, 
gathered from the edge devices, and, then, distribute the aggregated parameters or the model up-
dates back to the edge devices (UEs). It is visible that the role of the centralized entity is the flow 
management of the whole process (Elbir et. al., 2021), (Rodríguez-Barroso et. al., 2023) (Fig. 3b). 
The key advantage of FL, compared to CL, is that the transmission overhead is minimized, due 
to the fact that only ML models’ parameters or updates are transmitted to the centralized entity. 
However, this comes along with the drawback that ML KPIs performance may decrease because 
the amount of data in each of the separate distributed models is significantly less (Rodríguez-
Barroso et. al., 2023), (Elbir et. al., 2021).

• In hybrid schemes, CL and FL are combined, to produce a more dynamic framework that can be 
used in practical scenarios. The need for such schemes originates from the imbalanced computa-
tion capabilities of different UEs in wireless networks. In fact, there are computationally powerful 
UEs, such as computer systems, local networks or even servers, but there are, also, non-powerful 
UEs, such as cell phones or UxVs. In such scenarios, computationally powerful UEs perform FL 
tasks (active state), while the others not (inactive state) (Elbir et. al, 2021), (Elbir et. al., 2022), as 
also depicted in Fig. 3c.

2.2 Physical Layer Enabling Technologies in 6G

Building upon the newly developed 5G communication networks, 6G communications focus on the 
utilization of a number of existing (5G) PHY technologies, but also several new-coming technologies 
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are proposed in order to enhance the networks’ capabilities. The most significant of them, concerning 
current research in the field, are briefly presented in this paragraph.

2.2.1 New Spectrum - Terahertz (THz) Communications

In 6G systems, where killer applications will be AR/VR and holographic communications, the 
need for large data transmission, results in a need for a very high-frequency band to support the 
increasing service scenarios demands (Hong et. al., 2022). THz and sub-THz bands have been 
proposed as a potential solution towards this direction. These bands are spread from 0.1 to 10 
THz (Han et. al., 2022). However, several challenges have been witnessed in these scenarios. 
First of all, such a high-band transmission can serve really short-range coverage. Thus, ultra-
massive MIMO antenna systems in BSs should be used and BSs should be located near to each 
other. Limitations can, also, be witnessed concerning hardware availability, transmission power, 
and increased pathloss (Hong et. al., 2022).

Figure 3. (a) CL, (b) FL, (c) Hybrid architectures
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To overcome these difficulties, 3 key technologies have been proposed, gaining increasing interest 
among the research community in the field. These are:

• Ultra-massive MIMO: Antenna arrays can contain over 10,000 very small antenna elements, 
forming ultra-narrow band beams. In this way, pathloss considerations can be mitigated. Moreover, 
by the formulation of hundreds of beams the system capacity can be increased and a large num-
ber of users can be supported. Furthermore, co-channel interference is also mitigated due to the 
narrow-band nature of the links (Hong et. al., 2022). However, the necessity of deploying a lot of 
antennas over short distances may lead to mutual correlations between each other.

• Cell-free (CF) mMIMO: A promising technique to mitigate interference between neighboring 
cells, which are deployed close to each other in 6G orientations, is CF mMIMO. In such case, 
Access Points (APs) are spread in the coverage area to support UEs that demand service. A central 
processing unit (CPU) maps UEs to APs. This technique has great influence when CSI changes, 
even in the order of milliseconds in 6G, which means that certain system parameters become 
quickly obsolete. In particular, CF mMIMO systems result in negligible effects of small-scale 
fading by exploiting channel hardening (Vu, 2020). Also, in the case of CF mMIMO, the prob-
ability of coverage is higher. In this direction, given that as the number of users increases, the 
total training time is significantly prolonged. Moreover, APs are equipped with a smaller number 
of antennas resulting in less demanding power requirements. However, a drawback that has been 
identified in some research efforts (Wu & Zhang, 2019) is that as network size increases, limita-
tions can exist in the scalability of this approach.

• Reconfigurable Intelligent Surfaces (RIS): RIS is proposed as an efficient solution to enhance 
connectivity in 6G networks, taking into account the hardware and deployment costs. As depicted 
in Fig. 4, a RIS-assisted wireless link, utilizes an intelligent surface, which is composed of a num-

Figure 4. RIS-assisted wireless 6G communication between BS and UE
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ber of 3D reflection units, between the BS and the UE. Thus, intelligent beamforming is achieved 
by the relevant dynamic adjustment either in the amplitude or the phase of the incoming signal. 
RISs have a relay role in end-to-end communication, and, as a sequence, they can efficiently be 
used in blind network spots or to extend the coverage area of the network (Liu, 2021).

2.2.2 Non Orthogonal Multiple Access (NOMA)

In 5G networks, orthogonal frequency multiple access (OFDMA) techniques are utilized, leading to quite 
good results in terms of the provided QoS levels, but also an increase in the spectral efficiency. The number, 
however, of the subcarriers used is finite. Thus, the number of users who have access to radio resources, 
also, remains finite. However, in 6G, there is a need to serve an even larger number of users, with high 
requirements in terms of delay suppression and transmission rate increase. For this reason, new improved 
technologies have been developed, such as non-orthogonal multiple access (NOMA), which, unlike 
conventional orthogonal multiple access technologies, is based on non-orthogonal resource allocation, 
allowing the same subcarriers to be reused, even within the boundaries of a cell. NOMA allows multiple 
users to share the same resources (spectrum) at the same time, by performing multiplexing either in the 
power levels (Power Domain (PD-NOMA)) or in the field of coding (Code Domain (CD-NOMA)). In 
both cases, the simultaneous transmission of information to multiple users significantly reduces latency, 
while providing access to the full available spectrum leads to enhanced spectral efficiency.

3. FOCUS OF THE ARTICLE – REVIEW OF RECENT 
FL APPLICATIONS IN 6GS’ PHY

A promising direction to tackle the challenges we highlighted in the previous paragraphs is the 
deployment of ML algorithms in different PHY sub-problems, in order to formulate a data-driven 
framework in wireless communications. AI/ML technologies, that are, also, used extensively in the 
5G communications era, will be of significant interest in 6G communications. In this direction, the 
need for new era ML types is witnessed due to the limited computational power in the interconnected 
devices (UEs). Thus, distributed learning, and more specifically FL, will be an applicable technology 
for several PHY subproblems.

However, the reported research in the field is still in an early phase, as the standardization process for 
6G networks is, also, in an early phase. Although, by 2030, when stable 3GPP release will be published 
for 6G networks, FL -and, in general, distributed learning- research is expected to be mature enough.

In the following subparagraphs, the related research concerning the use of FL in several PHY problems 
related to RRM is presented. The classification is performed based on the technologies that are utilized 
alongside FL in these works. In fact, sub-paragraph A refers in cases where not other studied technology 
is used. The performance of the used models is also discussed, and conclusions are drawn from them.

3.1 Radio Resource Management

RRM is one of the most vital optimization problems in every wireless networks generation. In 
fact, user allocation, subcarrier or PRB allocation, power management, BS or RN placement, and 
selection, are sub-problems of interest in the context of both 5G and the upcoming 6G networks. 



11

Federated Learning for 6G HetNets’ Physical Layer Optimization
 

Thus, it is visible that the efficiency of the employed RRM strategies is one of the key factors for 
the overall 6G systems’ feasibility. The most significant FL approaches to tackle RRM-related sub-
problems are depicted in Table 2.

Samarakoon et. al. (2019) consider the problem of joint power and resource allocation for vehicular 
URLLC communications. The goal is the minimization of the overall system’s power consumption 
subject to high reliability in terms of probabilistic queuing delays. First of all, an extreme-value theory 
approach is introduced to define the threshold-based reliability measure to detect extreme events to 
vehicles’ queue lengths. A novel FL-based approach is proposed to detect these extreme events, as-
suming they are independently and identically distributed over different vehicular users. Afterwards, 
the communication delays detected in the FL scheme over wireless links, are used to define the power 
management and subcarrier allocation policies for each user. The performance evaluation, indicated that 
the proposed FL-based model estimates the extreme events presence in vehicle users’ queues with the 
same accuracy as a centralized scheme. Moreover, the data exchange amount is reduced by 79%, while 
the vehicular users’ ques length is reduced by up to 60%. Overall system’s average power consumption 
is, also, reduced compared to a centralized state-of-the-art approach.

On the same framework, Parvini et. al. (2023) proposed an FL-based decentralized joint subcarrier 
allocation and power control scheme in vehicular networks to ensure string stability in a platoon of au-
tonomous vehicle users. The optimization problem of joint subcarrier allocation and power management 
is studied subject to both string stability and link availability between different vehicular users. Two 
schemes are proposed for this problem. The first one considers a centralized BS-governed approach where 
BSs a priori know the large-scale fading parameters of the vehicular links. The second one, considers an 
FL-based Multi-Agent Reinforcement Learning (MARL) algorithm, where each vehicle incorporated a 
distributed agent, which tries to define the optimal policy to maximize the expected reward (power con-
sumption minimization). The last step for its agent is to communicate with the CPU in order to compare 
the local performance to the global one based on the total achievable capacity. Performance evaluation 

Table 2. Research work on FL-based RRM in 6G networks

Paper Year RRM problem Key outcomes

Samarakoon et. al. 2019 Power and subcarrier allocation in 
6G vehicular networks

Power consumption reduction, exchanged data 
reduction

Parvini et. al. 2023 Power and subcarrier allocation in 
6G vehicular networks

Use of an FL-DRL algorithm to maximize the 
data rate in different simulation scenarios

Skocaj et. al. 2023 User scheduling for FL tasks Improved ML metrics (e.g. accuracy), improved 
EE

Alsulami et. al. 2022 Resource allocation in 6G vehicular 
networks Improved QoS, EE and SE levels

Fantacci & Picano 2022 Device selection for FL tasks Improved ML KPIs (accuracy), energy 
consumption and convergence time

Chen et. al. 2020 User allocation, RRM and power 
management algorithm

Improved FL accuracy compared to several 
existing approaches

Li et. al. 2022 Relay selection for better FL 
algorithms’ training

Reduced energy consumption, ML KPIs similar 
to state-of-the-art approaches
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indicated that both approaches outperformed a random allocation scheme concerning the achieved data 
rate. However, the distributed MARL outperforms the centralized one concerning the same KPI.

Skocaj et. al. (2023) consider the problem of user scheduling over resource-constrained 6G chan-
nels. The authors are pointing out that the uplink scheduling of different devices where FL processes 
are performed is a problem of interest. A novel approach is proposed for uplink user scheduling based 
on EE and importance-awareness. In each devise unsupervised graph representation learning tasks are 
performed. The key novelty of this approach is that an importance bias is inserted in the scheduling pro-
cess, which does not require the collection of training feedback from client users, unlike state-of-the-art 
approaches. Performance evaluation indicated that ML tasks’ accuracy can be improved by up to 10%. 
Moreover, EE can be also improved by approximately 17 times compared to the state-of-the-art approach.

Alsulami et. al. (2022) consider QoS as the most significant KPI in 5G/6G communication networks. 
However, QoS service requirements rely heavily on user mobility and networks density. Considering 
vehicular communications, even stricter QoS requirements should be met in real-time scenarios. To ad-
dress the problem of non-convexity of existing optimization techniques, the authors propose a data-aided 
federated DRL algorithm for resource allocation in 5G/6G vehicle communication networks. Performance 
evaluation indicated that an FL DRL scheme can optimize the probability to achieve the requested QoS 
for each vehicular user of the topology. Moreover, EE and spectral efficiency (SE) levels can be also 
increased compared to CL approaches.

Concerning device-to-device (D2D) communications, Fantacci & Picano (2022) proposed a framework 
for user device selection to take part in the learning process, as a lot of UEs don’t have the computational 
power to perform FL tasks. Hence, the authors propose a FL framework (based on the matching theory 
incentive mechanism) to select the devices that will take part in the learning process, aiming to minimize 
convergence time and to maximize reward (overall users’ utility). Moreover, parameters such as energy 
consumption are, also, taken into consideration. In each device, an echo-state-network is running to 
forecast channel conditions in a reliable manner. Performance evaluation indicated that the convergence 
time and energy consumption of the proposed FL framework are far better than conventional approaches. 
In fact, energy consumption can be improved by ~10 Joules, while global FL delay can be reduced by 
~20 ms. Moreover, ML models’ accuracy is also improved (~96% compared to ~89%). Thus, such ap-
proaches are declared as applicable for potential usage in 6G networks. A similar approach is presented 
by Chen et. al. (2020), concerning both user selection and resource allocation to minimize the FL loss 
function. The numerical results indicated that identification accuracy can be improved from ~1% to ~4% 
compared to a random RRM algorithm, a state-of-the-art FL one and an optimization algorithm that 
minimizes the overall system’s error rate.

Li et. al. (2022) address the problem of energy consumption in FL-based 6G orientations, as the resource-
constrained nature of a variety of edge devices bring up a limitation to efficient learning. In general, the 
data in wireless networks are characterized as non-identically and independently distributed (non-IID), 
leading to the need for various global updates rounds until decision-making. As a sequence, the authors 
propose a generic multi-flow relay learning framework algorithm, FedRelay, where relay-assisted local 
updates are performed in the training phase of the global model. There, a cooperative communication 
decentralized relay selection protocol is also proposed. The global optimization is performed subject to 
energy consumption minimization for both each local update and global model. However, computation 
frequency is considered, also, to reduce training overhead. Performance evaluation indicated that FL-
assisted relay selection led to a 5-time reduction in energy consumption compared to state-of-the-art 
federated learning approaches. Moreover, global test set accuracy is similar to state-of-the-art ones.
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3.2 Non Orthogonal Multiple Access

NOMA is proposed as an efficient alternative to OFDMA, which was in favor of 4G and 5G networks. 
RRM is one of the most vital optimization problems in every wireless networks generation. The key 
characteristic of NOMA is that, unlike OFDMA, is based on the non-orthogonality of the resources (e.g. 
subcarriers, PRBs) to be allocated to users. Thus, the same resources can be reused, even within the 
boundaries of a cell, allowing a more dynamic RRM scheme, which can improve total capacity, EE, and 
SE levels. The most significant FL approaches concerning NOMA in 6G networks are depicted in Table 3.

The aspects of FL and MEC orientations for NOMA-aided wireless communication are, firstly intro-
duced by Yang et. al. (2022). Authors propose a framework for terrestrial networks, where simultane-
ous computation offloading enhanced networks’ flexibility. In this way, connectivity is highly reliable, 
while transmission latency and energy consumption are significantly reduced. FL fundamentals are, 
also, presented along with several implementation techniques to improve or maintain QoS levels. The 
authors declare that the cooperation between FL and RL is of high interest for RRM-related tasks. Thus, 
motivations, challenges, and representative results are presented, focusing on key technical challenges 
and open research issues of the proposed frameworks.

Habachi et. al. (2022) investigated the RRM problem in NOMA-based systems, focusing, also, on 
the device clustering in these networks, based on the required service demands. Two allocation schemes 
are proposed by the authors. In the first the BS allocates users/devices to clusters based on current CSI 
and transmit power, to ensure interference mitigation in uplink and downlink. The key characteristic 
of this approach is the low overall complexity and communication overhead. In the second approach, 
an FL-based scheme is proposed based on a traffic estimation model, aiming to improve the system’s 
capacity. Thus, BSs, taking into account both traffic prediction and power demands to allocate devices 
to clusters. Finally, a synchronization method is proposed to synchronize transmissions of the different 
devices. Performance evaluation indicated that the system’s capacity can be increased by ~20 times 
compared to on OFDMA scheme, while achieved throughput and packet losses are at similar levels.

Concerning, also, RNs, Al-Abiad at. al. (2022) proposed an FL-based RRM scheme for RN-assisted 
6G IoT communication networks, where energy consumption reduction is of primary interest. More-
over, the minimization of the total training and transmission time is, also, of interest. Thus, a joint relay 
scheduling, transmit power allocation, and frequency allocation optimization problem is formulated. 
A near-optimal performance and low computational complexity are achieved using a graph-theory 

Table 3. Research work on FL-based NOMA in 6G networks

Paper Year RRM problem Key outcomes

Yang et. al. 2021 FL in the context of NOMA-aided 
wireless communications

Techniques, trends, challenges and open 
research points

Habachi et. al. 2022 Subcarrier allocation
Improved total capacity, similar throughput 
and packet losses levels to state-of-the-art 
approaches

Al-Abiad et. al. 2022 Subcarrier allocation and power 
control

Reduced energy consumption, more training and 
transmission time needed
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approach. Performance evaluation depicted that the proposed scheme achieves 6, 4, and 2 times lower 
energy consumption, respectively, compared to the considered fixed, computation adaptation, and power 
adaptation schemes. As far as total time is concerned, the proposed approach performance is slightly 
worse than the fixed and computation only adaptation schemes.

3.3 Cell Free mMIMO

As presented in previous paragraphs, CF mMIMO is a recently proposed technology that has gained 
significant interest due to the scalability that it brings to modern-era orientations. The CF mMIMO 
architecture is based on the no cell and cell boundaries existence. The main advantages of CF mMIMO, 
which signify the technology’s importance in 6G networks, include huge data throughput, ultra-low 
latency, ultra-high reliability, high energy efficiency, and ubiquitous and uniform coverage (He et. 
al., 2021). The fundamental ideas of CF mMIMO are presented in the previous paragraph. The most 
significant FL approaches concerning CF mMIMO topologies in 6G networks are depicted in Table 4.

Vu et. al. (2020) proposed a novel scheme for FL-aided CF mMIMO systems that can support any 
FL framework. An optimization problem to minimize training accuracy, transmit power, and users’ 
processing frequency is formulated as an indicative example, but the authors declare that the proposed 
framework can have the same outcomes for every FL model. Performance evaluation highlighted the 
reduced training times by ~55% compared to state-of-the-art approaches. Moreover, the CF mMIMO 
approach is depicted as the best-performing one compared to CF time-division multiple access massive 
MIMO and collocated massive MIMO concerning total models’ training time. A similar approach, is 
also, presented by the same authors in (Vu et. al., 2021) to support multiple FL groups. A CF mMIMO 
to guarantee the stable operation of multiple FL processes is proposed to allow multiple iterations by 
different FL processes to be executed together. A novel asynchronous algorithm performs the schedul-
ing of the different flows, while a low-complexity RRM allocates the power and computation resources 
subject to the minimization of each iteration’s execution time. Result evaluation indicated that the per 
iteration execution time can be reduced by ~60% to ~80%. However, a key problem of both of the afore-
mentioned approaches has to do about the “struggler” UE effect. A struggler UE is an edge device that 
slows down the FL training process and communication between edge devices and centralized entity, 
due to bad link reasons. The approach in (Vu et. al., 2021) selects only a UE subset to take part in the 
FL process to minimize the probabilities of the “struggler effect” to happen. In this case, performance 

Table 4. Research work on FL-aided CF mMIMO in 6G networks

Paper Year RRM problem Key outcomes

Vu et. al. 2020 Training time optimization in CF 
mMIMO environments Reduced training time

Vu et. al. 2021
Training time optimization in CF 
mMIMO environments for multiple 
FL processes

Reduced training time

Vu et. al. 2021 Struggler effect mitigation in CF 
mMIMO 6G systems

Reduced transmission times in the FL process 
compared to the other approaches



15

Federated Learning for 6G HetNets’ Physical Layer Optimization
 

evaluation indicated that FL transmission times can be significantly reduced compared to the previously 
presented approaches (~30% to ~60%). Finally, the approaches presented both in (Vu et. al., 2022) and 
(Sifaou & Li, 2022) propose FL-based CF mMIMO approaches in 6G orientations to reduce the overall 
execution time and communication overhead in the FL process. Performance evaluation in both ap-
proaches confirms the reduced execution time and communication overhead over approaches such as 
the presented ones in the previous paragraph. However, such effects are more visible when the overall 
network density levels are low.

3.4 Reconfigurable Intelligent Surfaces

As presented in the previous paragraphs, RIS consists of a novel new era of wireless networks (e.g. 6G) 
technology, where two-dimensional reflecting surfaces with non-static (reconfigurable) properties intercede 
in the traditional transmitter-receiver link. These surfaces consist of numerous discrete elements, which 
are differentiated by amplitude. The enhanced capabilities of this approach concerning the total system’s 
capacity improvements resulted in a growth upon that approach. The most significant FL approaches 
concerning the cooperation between RIS topologies and FL in 6G networks are depicted in Table 5.

Liu et.al. (2021) highlights the advantages of FL approaches, as also, depicted in this chapter, and proposed 
over-the-air computation as an efficient way to improve communication efficiency and support numerous 
simultaneous local model uploading. However, in such scenarios, the “straggler” effect is present. For this 
purpose, the authors propose a RIS-aided learning framework for device selection to be used in FL tasks based 
on model aggregation error and convergence time of the over-the-air FL. Then, a unified communication-
learning optimization problem is formulated to optimize device selection and RIS configuration. Performance 
evaluation indicated that the aforementioned algorithm improves models’ accuracy by ~20% compared with 
the state-of-the-art approaches. These effects are detected even when channel conditions are a lot different 
across UEs. Similar results are, also, depicted by the same authors in Liu et.al. (2021).

Table 5. Research work on RIS-aided FL frameworks in 6G networks

Paper Year RRM problem Key outcomes

Liu et. al. 2021
FL training optimization in over-the-
air RIS-aided communication under 
“straggler” effect

Improved models’ accuracy even in extremely 
non-unified UE conditions

Liu et. al. 2021
FL training optimization in over-the-
air RIS-aided communication under 
“straggler” effect

Improved models’ accuracy even in extremely 
non-unified UE conditions

Mao et. al. 2022
RRM optimization for OFDMA/
NOMA-based RIS-aided 6G 
communications

Improved training latency, NOMA scheme 
overperforms OFDMA one

Le et. al. 2023

RRM optimization for OFDMA/
NOMA-based RIS-aided 6G 
communications using auction-based 
techniques

Improved training latency

Zhong et. al. 2022 RRM optimization for OFDMA/
NOMA-based RIS-aided 6G Achieved sum rate improvement
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Mao et.al. (2022) proposed a RIS-aided FL scheme as a countermeasure to the obstacles that are in-
serted into the FL process by the randomness of channel conditions, focusing on IoT topologies. The goal 
of this approach is to improve model aggregation/distribution and decrease training times. The total latency 
minimization problem is formulated, both concerning OFDMA and NOMA multiple access protocols, 
subject to energy and RIS constraints. Thus, the optimal RRM policies are depicted to efficiently allocate 
available resources to the UE of the cell under test. Performance evaluation indicated that the RIS-assisted 
FL scheme can achieve significant latency (~0.5 s) reduction as compared with other benchmark methods. 
Moreover, the NOMA-based model achieves slightly better training latency than the OFDMA-based one. 
In the same context, Le et. al. (2023) propose a RIS-assisted NOMA scheme to increase the total system’s 
capacity and support UE selection, focusing on total latency minimization. This is achieved by the per 
training round latency reduction. Then, an auction-based IRS (Winner determination (WD) and payment 
methods are used) RRM policy is proposed to optimize total latency in the context of multiple-BS model 
parameters transmission. Performance evaluation indicated that proposed schemes overperform existing 
ones both concerning training efficiency through device selection and IRS-NOMA RRM optimization. 
In the field of RIS-aided NOMA 6G networks, Zhong et. al. (2022) propose a framework for the sum rate 
maximization problem using FL and DRL principles. Performance evaluation indicated that a mobile RIS 
scheme achieves about ~300% sum rate improvement compared to a fixed RIS scheme. Moreover, the 
NOMA scheme achieves a sum rate gain of ~42% compared to an OFDMA scheme.

4. SOLUTIONS AND RECOMMENDATIONS – FL 
FOR RN PLACEMENT PARADIGM

4.1 Problem Formulation and Dataset

In this section, the performance of a FL-based scheme, used for algorithms’ training, for the problem 
of efficient RN placement in B5G (6G) networks is presented as an indicative use case, which aims to 
demonstrate the advantages of distributed computation and FL.

The downlink of a cooperative wireless 6G HetNet is considered, where two different levels of base 
entities exist. Macro-BSs form the main system to provide direct access to UEs requesting service, while 
RNs form the supporting system, aiming to assist the main system in improving the network’s KPIs, 
such as capacity and coverage area (see also Fig. 5).

The system under test consists of one BS, R  RNs and N  uniformly distributed users. The goal of 
this sub-problem is to select the N

best
 positions (set of x-y-z coordinates) for the best-performing RNs 

–out of N  ones- to be deployed in each cell’s coverage area. Best-performing RNs are selected subject 
to the following constraints, as also depicted in (Bartsiokas et. al., 2023):

• min ,PL n N
n( ) ∀ ∈ , where PL

n
 is the pathloss between each accepted user by the supporting 

system and the RN that is assigned to.
• min ,

,
P r R
t r( ) ∀  , where P

t r,
 is the total transmitted power by each deployed RN.

• max ,N r R
acc( ) ∀  , where N

acc
 are the total accepted users, served by the supporting system.
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A MATLAB B5G (6G) link-level simulator, presented in (Psilopanagiotis et. al., 2022), is used to 
construct the global dataset after adequate Monte-Carlo simulation rounds. The simulator follows the 
latest 3GPP specifications (basically the latest version of 3GPP TS 138 211 regulation). An overview 
of the global dataset used is depicted in Table 6 (Bartsiokas et. al., 2023).

Moreover, Table 7 depicts the basic simulation parameters, which configured the aforementioned 
simulator, in order for the dataset in Table 6 to be constructed.

Figure 5. RN-assisted 6G Communications

Table 6. Dataset features

Features Description

UEx,y,z x-axis, y-axis and z-axis user position

UEsec User serving sector

UE-BSangle Angle between BS and UE

PLmat Rx1  matrix with the pathloss between the user device and all the potential RNs

TLmat Rx1  matrix with the total losses between the user device and all the potential RNs

Hmatrix

M xM
r t

 channel coefficient matrix, where M
t

 is the number of the MIMO transmitting antennas and 

M
r

 is the number of the receiving ones

RNserve ID of the RN that serves the user (response variable)
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4.2 DL Model

For the RN selection task, a Recurrent Neural Network (RNN), long-short memory (LSTM) network is 
used. The structure of this model is the following (Bartsiokas et. al., 2023):

• Feature input layer with z-score normalization of the input, where the different features are in-
serted into the DNN (the 6 features that are presented in Table 6).

• An LSTM layer with 52 hidden units.
• A dropout layer with 0.2 probability to randomly set input elements to zero.
• Two sets of LSTM layers followed by a dropout layer. The first LSTM layer has 40 hidden units, 

while the latter has 15 hidden units.
• A fully connected layer with an output size equal to the number of candidate RNs.
• A soft maximization layer.
• The classification’s output layer, which produces as output the predicted best-performing RN for 

each user. Thus a number from 1 to N  (see also Table 7) is the output of the model, which signi-
fies the selected RN for each user.

4.3 CL and FL Model Training

Aiming to demonstrate the advantages of the FL over CL approaches, we consider two different training 
topologies for the problem of RN placement in B5G (6G) networks. These are the following:

1.  CL-based approach: In the first approach all the training is performed in the centralized entity. 
The centralized entity in this occasion is the cell’s BS, which receives the data gathered in the 

Table 7. Simulator’s parameters

Parameter Value/assumption

Carrier Frequency (GHz) 28

Tiers/Number of cells 1/7

Number of potential RNs 10

Number of users ~150

Total Bandwidth (MHz) 100

Number of antennas per BS/RN/UE 2/2/2

Sectors per BS 3 (120o angular separation)

BS/RN/UE antenna heights (m) 25/12.5/1.5

Indoor UE ratio 80%

Maximum pathloss (dB) 160

BS/RN/UE antenna gains (dB) 18/9/4

Max Tx Power per BS/RN/UE (max P
t r,

) 6.162/1.054/0.024 W

Number of subcarriers per BS 132
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wireless environment by the RNs. Afterwards, the global dataset is formed and the DL model is 
trained in a centralized manner.

2.  FL-based approach: In this approach, the data gathered in the wireless environment train local 
models located in each of the R  RNs of the wireless topology (as depicted in Fig. 5). Thus, local 
models are trained and parameters are transmitted in the centralized entity (BSs) to be optimized 
according to the implemented federated averaging function.

Except for the two scenarios concerning the learning type, two scenarios are examined, also, based 
on the existence or not of CSI information. These are (Bartsiokas et. al., 2023):

Scenario A: The channel coefficient matrices are not known both for the link of each UE and the BS, 
and for the RN-UE link.

Scenario B: There is CSI information available for both links.

4.4 Performance Evaluation

We consider the downlink of a wireless B5G (6G) orientation, where extensive use of RNs takes place. 
The topology under test considers one BS and 10 RNs, where users are uniformly distributed. We simu-
late the performance of a large number of total users (50.000 indoor/outdoor moving/static) to construct 
both the global dataset for the CL case and the local datasets for the FL case. During the training phase 
of both approaches, an 80%-20% training-test set split is performed, as well as a 10-fold cross-validation 
procedure to split the dataset into training, validation, and test set. The 10-fold cross-validation splits 
the training set into ten parts where, in each case, nine of them are used for training and the remaining 
one for validation. The training phase of all algorithms ran on a personal PC (CPU i7-8700; 3.2 GHz; 
RAM 8 GB; no GPU usage).

The problem of optimal RN placement is examined as a classification one, by selecting the best-
performing RN out of the 10 potential RNs for each user. The performance of the abovementioned 
approaches is evaluated both concerning ML KPIs (accuracy, precision, recall, F1-score) and based on 
the total training latency and inference time.

Training latency is of significant importance in wireless networks task, especially when considering 
FL solutions, as an optimal tradeoff between the number of interconnected devices that are sharing the 
computational (training) tasks execution and the ML KPIs should be achieved. On the same context, 
inference times is, also, important in the 6G domain, as the ultra-low-latency applications served be these 
networks, require the minimization of the time needed for the response generation of the ML/DL models.

Table 8 and Table 9 summarize the performance of the two approaches (CL, DL) in the RN place-
ment based on test set classification accuracy, precision, recall and F1-score for both Scenario A and 
Scenario B, respectively.

As can be observed from Tables 3 and 4 LSTM’s performance is better (both accuracy, precision, 
recall and F1-score) when CSI is known and is included in the training set’s features. Moreover, it can 
be seen that training times and inference times are similar both for Scenario A and Scenario B.

However, when fast, low-latency responses are considered in B5G (6G) networks, it is vital to ex-
amine the trade-off between ML metrics and the training time required. In that perspective, it is visible 
from the aforementioned tables (Tables 7 and 8) that the FL-based approach worsens slightly all the 
ML-related networks KPIs (accuracy, precision, recall, F1-score) by ~5% compared to the CL approach. 



20

Federated Learning for 6G HetNets’ Physical Layer Optimization
 

However, this degradation can be characterized as small enough relevant to the gain in the total training 
time of the FL approach compared to the CL one. In fact, the gain in this metric (total training latency) 
is about ~70% to ~75%.

5. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

5.1 Challenges and Solutions

From the literature presented in paragraph III and the indicative use case presented in paragraph IV, it is 
visible that FL is of primary interest in 6G orientations, to enhance the potential PHY gains and, also, 
support the growing user requirements. The aforementioned research, though, has identified several 
challenges that have to be addressed and solved for the feasibility of such approaches. These can be 
summarized as follows (see also Table 10):

• Distributed training and Models’ scalability: In 6G networks interconnected devices number 
is growing, resulting in the densification of the networks. However, the processing units and the 
computational power of these devices may be limited. Thus, a key challenge that the proposed 
FL schemes have to consider is the training time required and the efficient allocation of the total 
computational resources.

• Secure communication and device-to-centralized entity transmissions: By definition FL se-
cures local datasets, as only model parameters transmission is performed to the centralized entity. 

Table 8. LSTM performance - CL scenario

LSTM Scenario A Scenario B

Accuracy 0.9513 0.9660

Precision 0.9521 0.9618

Recall 0.9259 0.9502

F1-score 0.9290 0.9560

Training time 5 min. 15 sec. 5 min. 50 sec.

Inference time 50 ms 65 ms

Table 9. LSTM performance - FL scenario

LSTM Scenario A Scenario B

Accuracy 0.9107 0.9309

Precision 0.9259 0.9346

Recall 0.8929 0.9259

F1-score 0.9091 0.9302

Training time 1 min. 35 sec. 1 min. 58 sec.

Inference time 30 ms 42 ms
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However, challenges exist in the transmission of models parameters, where information may be 
vulnerable to eavesdropping capable of reconstruction.

• Non-IID data: As is already pointed out, the different users devices connected to 6G networks, 
that perform FL training have different characteristics concerning processing and computational 
power, battery life etc. This heterogeneity, affects parameters such as convergence time, training 
latency, and others.

• Computation and communication trade-off: The goal of an effective and efficient FL mecha-
nism is twofold. On the one hand, the communication links and uninterrupted interconnection be-
tween the enrolled devices should be present, while, on the other hand, computational complexity 
and total training times should be minimized as possible.

5.2 Future Directions

Despite the fact that there is a growing interest in FL implementation in the context of 6G networks, 
there is more research work to be performed in order for the aforementioned challenges to be fully ad-
dressed and resolved. However, as 3GPP standardization activities for 6G networks are about to start 
with a horizon until 2030, there is time for more research to be done.

More specifically, some key aspects that will be of interest in the aforementioned process are 
the following:

• Scalability and user characteristics: Some of the key usage scenarios of 6G networks is the 
holographic, AR/VR and UxV communications. In these scenarios, user density and mobility are 
of vital interest. The research works performed until now, assume either static UEs or established 
CSI conditions. Thus, an escalation of the current approaches towards more complex evaluation 
scenarios will be significant for the feasibility of the proposed FL solutions.

• Privacy and security: As addressed in the previous subparagraph, FL by definition provides 
a level of security in the inter-communication between the different edge devices and the cen-
tralized entity. However, as addressed by (Yang et. al., 2022), traditional encryption and/or au-
thentication solutions could be of interest. On the same framework, modern-era physical layer 
security algorithms could, also, be of interest, in order to handle massive connectivity IoT or 
vehicular network scenarios.

• Coexistence with other enabling technologies: 6G networks are expected to both use and lever-
age current 5G technologies, but also utilize new-coming ones to support the extended require-
ments presented in paragraph I. In this framework, the deployment of FL schemes in 6G networks 

Table 10. Challenges in FL models construction in 6G wireless networks

Challenge Solutions presented at

Distributed learning computational and scalability considerations (Fantacci & Picano, 2022), (Vu et. al., 2020), (Vu et. al., 2021), (Liu 
et. al., 2021), (Mao et. al., 2022)

Security and Privacy concerns (Yang et. al., 2022), (Sirohi et. al., 2023), (Liu et. al, 2020)

Non-IID data (Li et. al., 2022), (Yang et. al., 2022)

Computation and communication trade-off (Samarakoon et. al., 2019), (Chen et. al., 2020), (Li et. al., 2022)
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where satellite communications (Chen et. al., 2022), quantum communication (Kaewpuang et. al., 
2023) or even blockchain (Zhang et. al., 2023) technologies, are existing is of increasing interest 
for future research works.

6. CONCLUSION

This chapter presents a review/survey of the recent research works regarding the deployment of FL-based 
approaches in the context of different PHY sub-problems in 6G wireless networks. FL, as a distributed 
learning approach, has been proposed as an efficient way to deal with the ever increasing user demand in 
new era wireless networks. A categorization of these approaches, based on the sub-problem, is provided, 
in order to point out the different potential usage scenarios of FL algorithms.

Based on the above, we conclude that FL-enabled approaches can overcome limitations that exist-
ing (non-ML or non-distributed ML) approaches could not, such as non-conventionality, real-time 
integration, hardware availability, and energy consumption minimization. Moreover, we point out the 
challenges that are present in the process of deploying efficient and effective FL frameworks in 6G 
networks. Moreover, future trends and enabling technologies are, also, discussed. Finally, in order to 
demonstrate the effectiveness of FL-based schemes in PHY, we investigate via simulations the problem 
of RN placement in 6G networks. Two schemes are under test, where the first one considers CL, while 
the other considers FL. According to the presented results, the FL approach overperforms CL one, in 
terms of training time, while performance regarding ML KPIs (accuracy, F1-score) is similar. In other 
words, FL approach overperforms CL one regarding the trade-off between training times and ML KPIs. 
Results evaluation is consistent with other state-of-the-art approaches.

Table 11. Acronyms

5G Fifth Generation

6G Sixth Generation

AI Artificial Intelligence

ANN Artificial Neural Network

AP Access Point

AR Augmented Reality

B5G Beyond 5G

BS Base Station

CAeC Contextually Agile eMBB Communications

CD Code Domain

CF Cell Free

CL Centralized Learning

COC Computation Oriented Communications

CPU Central Processing Unit

continued on following page
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CSI Channel State Information

D2D Device-to-Device

DL Deep Learning

DRL Deep Reinforcement Learning

EE Energy Efficiency

eMBB Enhanced Mobile Broadband

FL Federated Learning

IID Identically and Independently Distributed

IMT International Mobile Telecommunications

IoT Internet of Things

KPI Key Performance Indicator

LSTM Long-Short Memory

MARL Multi-Agent Reinforcement Learning

MEC Mobile Edge Computing

ML Machine Learning

mMTC Massive Machine Type Communications

mmWave Millimeter Wave

NOMA Non-Orthogonal Multiple Access

OFDMA Orthogonal Frequency Multiple Access

OSI Open Systems Interconnection

PD Power Domain

PHY Physical Layer

PRB Physical Resource Block

QoS Quality of Service

QoW Quality of Experience

RIS Reconfigurable Intelligent Surface

RMSE Root-Mean-Square-Error

RN Relay Node

RNN Recurrent Neural Network

RRM Radio Resource Management

SBA Service-Based Architecture

SE Spectral Efficiency

SVM Support Vector Machine

UE User Equipment

URLLC Ultra-Reliable-Low-Latency Communications

UxV Unmanned Ground, Air, Surface or Undersea Vehicle

VR Virtual Reality

WWWW Worldwide Wireless Web

Table 11. Continued
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KEY TERMS AND DEFINITIONS

6G: The sixth generation of mobile networks.
Cell-Free Massive MIMO (CF mMIMO): An alternative to the established cellular orientation in 

wireless networks, which receives significant interest recently. CF mMIMO utilizes a very large num-
ber of distributed Access Points (APs) with multiple antenna elements on them, to serve a significantly 
smaller number of UEs over the same radio resources based on current CSI.

Centralized Learning (CL): The traditional type of distributed learning, where multiple nodes (or 
edge devices) transmit their local gathered data in a centralized entity (serve, cloud infrastructure, etc.), 
where all the model’s training and process is performed.

Federated Learning (FL): A distributed learning approach that doesn’t require dataset exchange 
between nodes (edge devices) and centralized entity. Locally gathered data are used only for local model 
training. Each local model’s parameters or updates are transmitted to the centralized entity, which per-
forms aggregation of the local updates, global model construction and optimization.

Machine Learning (ML): A subset of artificial intelligence which utilizes different types of data 
to predict classes, exact values or behaviors and support decision-making, without specifying the exact 
underlined algorithm.

Non-Orthogonal Multiple Access (NOMA): A newly proposed multiple access technique that is 
based on the non-orthogonality of the available resources, which can be overlapping each other to im-
prove wireless systems’ performance and fairness. Subcarrier assignment can be performed either based 
on different power levels (PD-NOMA) or coding schemes (CD-NOMA).

Physical Layer (PHY): The lower level of the Open Systems Interconnection (OSI) model. PHY 
refers to the bit level transmissions in the physical medium for synchronized communications over me-
chanical and electrical interphases.

Radio Resource Management (RRM): The set of policies that are employed in wireless (or not) 
networks in order to manage efficiently the available radio resources (subcarriers, PRBs), control the 
transmitted and received power, maintain QoS levels and mitigate various types of interference.

Reconfigurable Intelligent Surface (RIS): A novel wireless technology technique, where a two-
dimensional reflecting surface with non-static (reconfigurable) properties, intercedes in the traditional 
transmitter-receiver link. This surface consists of numerous discrete elements, which are differentiated 
by amplitude.


