Search the World's Largest Database of Information Science & Technology Terms & Definitions
InfInfoScipedia LogoScipedia
A Free Service of IGI Global Publishing House
Below please find a list of definitions for the term that
you selected from multiple scholarly research resources.

What is Warburg Effect

Handbook of Research on Trends in the Diagnosis and Treatment of Chronic Conditions
One of the first carcinogenetic theories proposed. In particular, a common characteristic of almost all types of tumours is the known Warburg effect described by Otto Warburg in 1924. This simple observation remains until today a fundamental trait of tumour biology i.e. that tumours perform a shift from oxidative phosphorylation to anaerobic glycolysis for their energy needs. At the time, Warburg considered this as the leading aetiology of cancer and of note that it was considered as such until the observation or finding that it is one of the side-effects of cancer. It is now known that the avoidance of the oxidative phosphorylation pathway, it is the one that leads to excessive lactate production causing this deteriorating effect cancerous cell have on the surrounding tissue.
Published in Chapter:
Proliferation and Nonlinear Dynamics of Childhood Acute Lymphoblastic Leukemia Revisited
George I. Lambrou (University of Athens, Greece)
DOI: 10.4018/978-1-4666-8828-5.ch015
Abstract
Acute Lymphoblastic Leukaemia (ALL) is the most common neoplasm in children but the mechanisms underlying leukemogenesis along with the dynamics of leukemic cell proliferation are poorly understood. The importance in understanding the proliferation dynamics of leukaemia lies in the fact that our knowledge from the point of first appearance to the moment of clinical presentation, we know almost nothing. Further on, describing cell proliferation dynamics in a more mature, probably mathematical, way it could lead us to the understanding of disease ontogenesis and thus its aetion. This chapter reviews the current knowledge on proliferation dynamics and proliferation non-linear dynamics of the leukemic cell. Furthermore, we present some “in-house” experimental data that support the view that it is possible to model leukemic cell proliferation and explain how this has been performed in in vitro experiments.
Full Text Chapter Download: US $37.50 Add to Cart
eContent Pro Discount Banner
InfoSci OnDemandECP Editorial ServicesAGOSR