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ABSTRACT

Clustering of variables is a specialized approach for dimensionality reduction. This strategy is evaluated 
for data reduction with a Kaggle diabetes dataset. Since the original dataset is small, Generative 
Adversarial Networks (GAN) and Variational Autoencoders (VAE) are used to generate 100,000 
records and tested for resemblance to the real data using standard statistical methods. VAE-data is more 
representative of the real data than GAN-data when analyzed using machine learning (ML) models. 
Applying Clustering of Variables on VAE-data yields new synthetic variables (SV). SV-data is then 
augmented with target variable data. Random Forest model is used on VAE and SV data. SV-data results 
matched VAE-data, proving the new data’s quality. SV-data also provides insights into correlations and 
data dispersion patterns. This analysis implements a combination of Unsupervised learning (clustering 
of variables) and Supervised learning (classification) which is reflected in the results.

Keywords
Cluster of Variables, Dimensionality Reduction, Generative Adversarial Networks, Synthetic Data, Variational 
Auto Encoders

Introduction

Machine learning (ML) algorithms can be broadly classified as supervised and unsupervised learning 
types. Supervised ML is ideal when the target variable data are available along with the feature 
variables data. They are used for classification and regression problems in general. When the target 
variable data are not available and the objective is to classify the data into natural groups, unsupervised 
ML models such as cluster analysis are used.
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Clustering is an unsupervised learning model typically used to group items or entities with similar 
attributes together. Clustering algorithms have been used in multiple domains, such as forecasting 
customer demand based on recency, frequency, and monetary characteristics (Seyedan et al., 2022), 
clustering of vascular risk factors (Holthuis et al., 2021), improving predictions of stock market by 
“using information of similar stocks, determined via clustering, compared to a prediction model 
that does not take into account such cluster-derived data,” (Javier, 2023), and accurately predicting 
spatiotemporal patterns in travel time by a joint iterative clustering and predicting algorithm (Shaji 
et al., 2022).

However, as the applications of ML algorithms expand in scope, and with the advent of wearable 
devices and other technological advances (Tufail et al., 2023), researchers confront two main 
challenges: (1) obtain a sufficiently large data set necessary for constructing meaningful machine 
learning models (L’Heureux et al., 2017) and (2) high-dimensional data sets are becoming more 
prevalent across multiple disciplines (Yuan, 2023) including genetics (Chi et al., 2016), organizational 
psychology, and neuroscience (Waldman et al., 2019). The effectiveness of machine learning models 
is inherently tied to the quality and quantity of data used for training. However, acquiring such data, 
which are both abundant and of high quality, is often scarce.

In this context, synthetic data emerge as a pivotal solution. Synthetic data offer a means to 
overcome the limitations of data scarcity by providing an avenue to generate data sets that possess 
both the required quantity and quality. By leveraging synthetic data, machine learning practitioners can 
enhance the robustness and reliability of their models, ensuring they are equipped to make accurate 
predictions in various domains and applications.

A second component required for the analysis of high-dimensional data is dimensionality 
reduction. Dimensionality reduction becomes necessary for meaningful data analysis. Dimensionality 
reduction also provides more insightful visualizations (Xia et al., 2023). It is also the case that 
available real data in many domains are often limited in size to build robust ML models (de Melo 
et al., 2022). It is in this context that this study uses 100,000 records of synthetic data (variational 
autoencoder (VAE)-data)) generated based on the real diabetes data set from Kaggle, which has just 
768 records. Clustering of variables is performed on the VAE-data to obtain synthetic variables, 
which are linear combinations of the features in the VAE-data. The synthetic variables are lesser in 
number than the features in the VAE-data and thus result in dimensionality reduction. This newly 
generated synthetic variables data (SV-data) are used to train and test unsupervised clustering and 
supervised classification models to predict the outcome value of the diabetes condition. The quality 
of the new synthetic variables in terms of capturing the inherent patterns of the real data is assessed 
by applying ML methods to both VAE-data and SV-data. The resulting accuracies of each model as 
applied to the original data are compared.

Contribution to the Literature

Our contribution to this body of literature encompasses several novel aspects, which are discussed 
below. First, we introduce a unique integration of unsupervised techniques, such as clustering, with 
supervised methods, such as classification. This fusion not only represents an innovative approach 
but also signifies a comprehensive strategy aimed at enhancing classification accuracy by leveraging 
the strengths of both types of algorithms.

Second, our study demonstrates the quality and reliability of synthetic data generated through this 
integrated approach. By applying a combination of unsupervised and supervised machine learning 
models to both VAE and SV, we observed comparable accuracies. Specifically, utilizing a Random 
Forest classifier on 80% of the VAE-data for training and testing, with the remaining 20% reserved for 
independent testing, yielded promising results. These findings underscore the potential of synthetic 
data generators, such as variational autoencoders, in addressing challenges related to limited real 
data availability and privacy concerns.
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Third, our investigation into the preservation of inherent data patterns reinforces the credibility of 
the generated synthetic data. The observed improvements in accuracy, obtained through the combined 
approach of supervised and unsupervised methodologies, further validate the fidelity of synthetic data 
representations. This breakthrough not only enhances the quality of synthetic data sets for training 
of machine learning models but also offers potential solutions for mitigating issues associated with 
data scarcity and privacy constraints (Tufail et al., 2023).

Fourth, the wide-ranging applications of our approach are noteworthy, particularly in domains 
such as healthcare, finance, and cybersecurity, where synthetic data generation is increasingly utilized 
(Alkhalifah et al., 2022). This methodology holds promise for scenarios involving limited data 
availability or high-dimensional data sets requiring sophisticated feature engineering or dimensionality 
reduction techniques.

Finally, our study justifies the effectiveness of the clustering of variables (Chavent et al., 2022) 
technique in performing dimensional reduction of the original VAE-data while maintaining results 
close to the original data for ML applications. This establishes the clustering of variables technique as 
a powerful tool for data reduction that can be seamlessly integrated into machine learning applications 
in place of original data.

Our research questions and hypotheses for the study are:

Research Questions

1. 	 Is the classification accuracy similar between the original VAE-data and the SV-data derived 
using clustering of variables?

2. 	 Do the synthetic variables, generated from VAE using clustering of variables, preserve the 
inherent patterns of correlations among the original variables?

Hypotheses

Hypothesis 1: The accuracy of the classification model applied to the original VAE-data will differ 
significantly from that of the SV-data.

Null Hypothesis 1: There are no significant differences in the accuracy of the classification model 
when applied to the original VAE-data compared to the SV-data.

Hypothesis 2: The newly generated synthetic variables will accurately capture the underlying patterns 
of correlations present among the original variables.

Null Hypothesis 2: The newly generated synthetic variables will not accurately capture the underlying 
patterns of correlations present among the original variables.

Data Source

The data set (Khare, 2023), used in this study is originally from the National Institute of Diabetes 
and Digestive and Kidney Diseases. The objective of the data set is to diagnostically predict whether 
a patient has diabetes, based on certain diagnostic measurements included in the data set. Several 
constraints were placed on the selection of these instances from a larger database. All patients here 
are females, at least 21 years old, and of Pima Indian heritage.

Data Set Overview

The data set comprises 768 samples, with 34.9% having diabetes, each characterized by various 
attributes that play a crucial role in the analysis conducted in this project. The data set is structured 
with nine columns, each providing distinct information. Below is a concise description of each column:
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Methodology

In this hybrid study of integrating supervised and unsupervised machine learning models, the 
unsupervised ML method, clustering of variables, is performed on the VAE-data, using the ClustofVar 
package in R (Chavent et al., 2022), with which dimensionality reduction is achieved. This new 
data with the reduced dimensions are the SV-data. The package PyCaret (Ali, 2020) is then used to 
classify both the VAE-data and SV-data in terms of several ML methods in order to compare their 
respective accuracies.

Software Used for This Research
The following packages and software have been used for this research since they were open source 
and had the required features to complete this project.

•	 R
•	 ClustOfVar Package in R (Chavent et al., 2022) to cluster variables
•	 Synthetic Data Vault (Patki et al., 2016) to generate the Generative Adversarial Network (GAN) 

and VAE-data
•	 PyCaret (Moez Ali, 2020) for running the machine learning models
•	 ICSNP Package (Nordhausen et al., 2023) for Hotelling’s T2 test

Synthetic Data Generation
GANs and VAEs are both popular techniques in the field of deep learning for generative modeling. 
They are used to generate new data that are similar to a given data set, making them particularly 
useful in tasks for image generation, data augmentation, and more. GANs focus on generating data 
by training a generator to produce realistic samples and a discriminator to distinguish between real 
and generated data. VAEs, on the other hand, generate data by encoding input data into a probabilistic 
latent space and then sampling from this space to produce new data. Both techniques have their 
strengths and are used in various applications depending on the specific requirements of the task 
(Sami & Mobin, 2019).

Conditional GANs and VAEs for Generating the Synthetic Data
When using GANs and VAEs for synthetic data generation, the primary objective is to approximate 
the underlying data distribution of the real data set (Niederberger, 2012; Jordan et al., 1999). The 

Table 1. Variable Description of Diabetes Data Set

Column Description

Pregnancies (int64) Number of pregnancies

Glucose (int64) Glucose concentration in blood

BloodPressure (int64) Blood pressure

SkinThickness (int64) Thickness of the skinfold

Insulin (int64) Insulin level in the body

BMI (float64) Body mass index

DiabetesPedigreeFunction (float64) Hereditary risk of diabetes

Age (int64) Age of the individual

Outcome (bool) Presence or absence of diabetes
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VAE framework incorporates the evidence lower bound (ELBO) loss function, which consists of two 
components: the reconstruction loss, often represented as L

rec
, measuring the fidelity of the generated 

data to the real data, and the Kullback-Leibler (KL) divergence, denoted as L
KL

, regulating the 
distribution of the latent space (Reizinger et al., 2022). Mathematically, the ELBO loss is defined as 
L L L
ELBO rec KL

= − ⋅b , where β is a hyperparameter balancing the reconstruction fidelity and the 
divergence from the prior distribution. The aim is to minimize this loss function during training. 
VAEs thus aim to generate data that not only resemble the real data set but also maintain a structured 
latent space. Conversely, conditional tabular GAN (CT-GAN) (Skoularidou et al., 2019), although 
effective in generating synthetic data, might struggle with preserving the underlying structure of the 
data, leading to discrepancies compared to the real data set. This discrepancy is reflected in terms of 
statistical measures, such as distributional similarity or fidelity to the original data, where VAE 
typically outperforms CT-GAN, as reflected in our results. Figure 2 below shows the workflow of 
the current study.

Figure 1. Work Flow Diagram

Figure 2. Flowchart of Synthetic Data Generation with Synthetic Data Vault (SDV)
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Data preprocessing enhances the quality of generated data (Patki et al. 2016), much like any 
other data creation method, and the following methods have been implemented in:

The synthetic data vault (SDV) synthetic data generation process, depicted in Figure 2, initiates 
with preprocessing real data. This step encompasses essential cleaning tasks such as handling null 
values and duplicates. Subsequently, metadata extraction occurs, capturing feature types and crucial 
information for subsequent phases. The extracted metadata undergo thorough validation, ensuring 
accuracy, with any discrepancies prompting revisions.

Upon successful validation, synthetic data generation commences. This phase employs CT-GAN and 
VAE models trained over 3,000 epochs. These models generate two distinct data sets, each comprising 
100,000 synthetic instances. This systematic approach guarantees that the synthetic data preserves the 
structural and format characteristics of the real data while safeguarding privacy and integrity.

Evaluation of Synthetic Data
The quality of the generated synthetic data was tested by statistical measure (Hotelling’s T2 test) 
and with the help of pair plots, correlation plots, and density plots of the data sets. The results are 
discussed below.

Hotelling’s T2 Test to Select Between CT-GAN- and VAE-Data Sets
Hotelling’s T2 test is employed to assess significant differences between the mean vectors (multivariate 
means) of two multivariate data sets (Zaiontz, 2023; Schumacker, 2016, pp. 27–55; Ramasamy, 2021). 
In this study, the original Kaggle diabetes data set serves as the basis data set, while the CT-GAN-
generated data set (CT-GAN-data) and VAE-generated data set (VAE-data) are treated as separate 
multivariate data sets for comparison.

The null hypothesis states that there are no differences between the population mean vectors of 
the two data sets. A significance level of 0.05 is chosen for hypothesis testing.

The R function Hotelling’s T2() from the ICSNP (Nordhausen et al., 2023) package is utilized 
to calculate the Hotelling’s T2 test statistic value. If the resulting p value is less than .05, the null 
hypothesis is rejected, indicating significant differences between the data sets. Conversely, if the p 
value exceeds .05, the null hypothesis cannot be rejected, suggesting no significant differences. Based 
on the test results of the T2 statistic, the CT-GAN- or VAE-data that closely resemble the original 
Kaggle data set are selected for further analysis.

Results and Discussion From Hotelling’s T2 Test

Hotelling’s T2 test is performed independently between 1) the original Kaggle diabetes data set 
and CT-GAN-data and 2) the original Kaggle diabetes data set and VAE-data, and the results are 
presented in Table 2.

In Table 2, the second column contains the two multivariate data sets used for Hotelling’s T2 
test. The third column contains the T2 test statistic value. n1 and n2 represent the sample sizes of the 
two data sets, respectively. The last column contains the p value associated with the T2 statistic value.

Table 2. Hotelling’s T2 Test Results

S.No. Type T2 n1 n2 p

1 Kaggle data set vs. CT-GAN-data 11.701 8 50,000 <2.2e–16

2 Kaggle data set vs. VAE-data 0.63593 8 100,000 0.7482
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Comparison Between CT-GAN-Data and the Original Kaggle Data Set
The high T2 statistic value (11.701) and the associated p value (<2.2e–16) suggest a significant 
difference between the CT-GAN-data and the original Kaggle data set.

Therefore, we reject the null hypothesis, indicating that the CT-GAN-data significantly differs 
from the original Kaggle data set.

Comparison Between VAE-Data and Original Kaggle Data Set
In the case of the VAE-data, the low T2 statistic value (0.63593) and the associated p value (0.7492) 
indicate no significant difference between the VAE-data and the original Kaggle data set.

Consequently, we fail to reject the null hypothesis, concluding that the VAE-data do not 
significantly differ from the original Kaggle data set.

Figure 3 compares the distribution and intervariable relationships of three data sets, Real Data 
and synthetic data generated by a CTGAN and a VAE using pair plots for the variables Age, BMI, 
and Glucose. The real data serve as a benchmark, showcasing inherent patterns and distribution 
characteristics. The CTGAN-data capture the general structure but exhibit noticeable deviations, 
particularly in the spread and density of points. In contrast, the VAE-data closely mirror the real data, 
with scatter plots indicating similar clustering and density plots reflecting the distribution shapes 
more accurately. This visual analysis suggests that VAE outperforms the CT-GAN in replicating the 
complex statistical properties of the real data set.

Figure 4 displays a side-by-side comparison of correlation matrices for Real Data, CTGAN-data, 
and VAE-data, each reflecting the linear relationships between several biomedical variables. The 
CTGAN-data Correlation Plot, while capturing the general trend of relationships in the real data, shows 
notable variances, such as excessive positive correlations with Outcome and other variables. On the 
other hand, the VAE-data Correlation Plot exhibits a higher fidelity to the Real Data Correlation Plot, 
with the strengths and directions of the correlations between variables like Age, BMI, and Glucose 
appearing more closely aligned. This comparative visualization suggests that the VAE model is 
more adept at replicating the complex correlation structure of the real data set, whereas the CT-GAN 
model, although effective, displays slight discrepancies in capturing some of the nuances of the data.

Figure 5 displays density plots for “Glucose” and “Insulin” across Real, CTGAN-, and VAE-
data sets. The Real versus CTGAN comparison for “Glucose” reveals that the CTGAN’s density plot 
deviates with an additional peak and less smoothness, whereas the Real versus VAE comparison shows 
a VAE plot that is smoother and more closely aligns with the real data, despite a slight underestimation 
of the right tail. For “Insulin,” the CTGAN density plot suggests a broader value distribution, lacking 
the sharp peak present in the real data, while the VAE plot, although slightly broader at the base, more 

Figure 3. Pair Plot Analysis of Synthetic Data
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accurately captures the sharp peak, suggesting that the VAE is generally more effective at mimicking 
the real data distribution for both variables than the CTGAN.

Following the results of the statistical analysis presented above, VAE-data is used for further 
analysis, which includes combining unsupervised learning (clustering of variables) and supervised 
learning (comparison of classification models).

Clustering of Variables (Unsupervised Learning)

The clustering of variables is an unsupervised learning method that entails the categorization of 
related variables in order to detect meaningful patterns and minimize redundancy.

Data Reduction by Synthetic Variables
Principal component analysis (PCA) is used to create synthetic variables from the original data set. 
Let the original data set X consist of p features (columns) and n observations (rows). X is, therefore, 
an n x p matrix, each element of which may be denoted Xij, where the row index i runs from 1 to n, 
and the column index j runs from 1 to p.

The method of PCA consists of constructing new synthetic variables S, which are linear 
combinations of the original variables (features). The synthetic variables are less in number compared 

Figure 5. Density Plot Analysis

Figure 4. Correlation Plot Analysis of Synthetic Data
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to the features, and thus a reduction of dimensionality of data is obtained. Let q be the number of 
synthetic variables (q < p). The linear combinations defining the synthetic variables may be written:

S w X i q
i j

p
ij j

= ∑ = …=1 1 2� , , 	 (1)

Note that each S
i
 is a column vector with n elements, as is each feature Xj. The loadings wij​ are 

elements of the loading matrix W, representing the weights assigned to each original feature in the 
construction of the synthetic variable Si​.

The loading matrix W is obtained by first calculating pairwise correlations of the features. For 
two features Xi and Xj, the correlation coefficient rij is defined as:

r
X X x X

X X X X
ij

k
n

kt kj j

k
n

kk i k
n

kj j

=
∑ −( ) −( )

∑ −( ) ∑ −( )
=

= =

1

1

2

1

2

t 	 (2)

Here, the average X
i

 represents the average of the ith feature, and X
j

 the average of 
the jth.

The matrix of pairwise correlation coefficients is a p p´  matrix. This matrix is diagonalized, 
and its eigenvalues and eigenvectors determined. The eigenvectors corresponding to the largest q 
eigenvalues are then chosen to calculate the synthetic variables, since the largest eigenvalues 
correspond to the most correlated features.

Representing the eigenvectors by vi, i = 1, 2,…q, each synthetic variable Si is calculated as the 
inner product of the original data matrix X with vi:

S X v
i i
= ⋅ 	

The elements of the eigenvector vi are thus the loadings in Equation (1).
Various methods, such as the ClustOfVar package, have been developed specifically for the 

clustering of numerical variables, providing specific techniques for this purpose (Chavent et al., 
2022). Additionally, the application of PCA in ClustOfVar, as demonstrated in this study, showcases 
the use of PCA to transform variables into principal components, contributing to the synthesis of 
variables within clusters (Shoji et al., 2022). Furthermore, the quality of variable clustering is crucial 
and emphasizes the importance of high-quality clustering to maximize the clustering criterion (Ni 
& Li, 2019). Strategies such as the ClustVarLV package in R offer approaches for deciphering the 
underlying structure of a data set through the clustering of features around latent variables, providing 
a comprehensive strategy for variable clustering. Vigneau et al. (2015) and Taskin et al. (2023) have 
used the copula-based clustering of variables technique along with the Random Forest model on the 
MIMIC-III Sepsis Dataset and the SMS Spam Collection Dataset and showed an improvement in 
CPU times and accuracy.

These approaches are thus useful for dimension reduction and variable selection. Several specific 
methods have been developed for the clustering of numerical variables in literature (SAS Institute 
Inc., 2011; Vigneau & Qannari, 2023). However, far fewer methods have been proposed concerning 
qualitative variables or mixtures of quantitative and qualitative variables. The R package was developed 
specifically for this purpose.

The scores of clusters suggested by Marie (Chaven et al., 2022) in the package is implemented 
in this study. ClustOfVar is a package in R which is used to cluster variables, in contrast to clustering 
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of observations/samples, as is done in the case of existing cluster analysis methods such as K-means 
clustering. The ClustOfVar package includes several methods to cluster variables, including 
hierarchical clustering. This package also accommodates quantitative, qualitative, and mixtures of 
quantitative and qualitative variables.

By using the methods of the package, the high-dimensional feature set can be grouped into a few 
selected clusters(K) of variables (Hummel et al., 2017). Each cluster represents a common aspect of the 
data, as in the case of principal component analysis. The cluster scores can be treated as new synthetic 
variables, and thus data reduction is achieved using these new synthetic variables (Ni & Li, 2019).

The variables are partitioned into a number of clusters based on hierarchy. Once the variables are 
partitioned, a dendrogram showing the hierarchy can be drawn, and the optimum number of clusters 
may be chosen by generating a stability plot and dispersion plots. The stability plot consists of the plot 
of the mean (over B = 40 bootstrap samples) of the adjusted Rand indices obtained. The Rand index 
is a measure used to evaluate the similarity between two data clusterings. It compares how pairs of 
data points are grouped in two different clusterings, providing a measure of their agreement. This plot 
reveals the stability of the partitions of the dendrogram and the optimum number of clusters to select. 
It also shows the dispersions of these indices over the specified number n of bootstrap replications 
for partition and decides the number of clusters to select.

Results and Discussion of Combined 
Unsupervised and Supervised Methods

Results and discussion of applying the ClustofVar (unsupervised) method and PyCaret (supervised) 
to evaluate VAE- and SV-data are presented below.

Results of Clustering of Variables (Unsupervised) Analysis on VAE-Data
Using the methods from the ClustOfVar package, we explore the associations among the eight 
quantitative feature variables using the correlation circle of the first two PCA dimensions. The 
resulting plot, depicted in Figure 6, offers a visual representation of correlated or anticorrelated 
variables. However, it does not offer a definitive partitioning of variables.

It is observed from Figure 6 that the variables Age and Pregnancies are well correlated. Similarly, 
the variables Glucose and Insulin have a good correlation. The variables BMI and SkinThickness 
are also well correlated.

Figure 6. Correlation Circle of the First Two PCA Dimensions
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Hierarchical clustering of variables is then performed on the variables, and the dendrogram 
generated is displayed in Figure 7.

Figure 7 shows the correlation between the variables in terms of R2. It can be observed that (1) 
the variables Pregnancies and Age are correlated, (2) the variables Glucose and Insulin are correlated, 
and (3) the variables BMI and SkinThickness are correlated.

In order to determine the optimum number of clusters to choose, we study the stability plot of the 
partition of the dendrogram and the dispersion plot of clusters generated by the hierarchical cluster of 
variables. Using the methods of the package, the stability plot and the dispersion plots are generated 
and are displayed in Figures 8 and 9.

Figure 8 displays the plot of the mean (over the B = 40 bootstrap samples) of the adjusted Rand 
indices. This plot clearly suggests that six clusters is the optimal number of clusters for this data set.

Figure 8 shows the dispersion of these indices over the B = 40 bootstrap replications for partition, 
and this plot also suggests retaining six clusters.

Figure 7. Cluster Dendrogram

Figure 8. Stability of Partitions
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The function cutree() is used to cut the dendrogram obtained by the hierarchical clustering into 
partitions of (K = 6) clusters of the (p = 8) variables. The output of cutree() is a vector that assigns 
each observation to a particular cluster. The details of each cluster and the variables included in each 
cluster are obtained and displayed in Table 3. This table shows the variables Age and Pregnancies 
are allotted to Cluster 1, the variable Glucose to Cluster 2, and Blood Pressure to Cluster 3. Cluster 
4 contains the two variables SkinThickness and BMI. Cluster 5 contains the single variable BMI, 
and Cluster 6 contains the single variable DiabetesPedigreeFunction.

The results of cluster analysis with six clusters are presented in Figure 10.
It is observed from Figure 10 that in Cluster 1, the variables Age and Pregnancies are strongly 

related and have high correlations with the synthetic variable 1. Similarly in Cluster 4, BMI and 
SkinThickness are also strongly related and have high correlations with synthetic variable 4. The 
remaining four variables Glucose, Insulin, Age, and BMI have formed separate clusters.

The ClustOfVar package also evaluates the cluster scores for all the 100,000 observations in 
each cluster. These 100,000 X 6 observations form the new synthetic data, and the six clusters can 
be treated as the new synthetic variables in the SV-data.

Figure 9. Boxplot of Dispersion of the Adjusted Rand Index

Table 3. Details of the Six Clusters for the Diabetes Data Set

Variable Cluster

Pregnancies 1

Glucose 2

BloodPressure 3

SkinThickness 4

Insulin 5

BMI 4

DiabetesPedigreeFunction 6

Age 1
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Results of Classification (Supervised) Methods on VAE- and SV-Data
PyCaret from Python was used to evaluate and compare the SV-data derived from cluster scores and 
the VAE-data. The PyCaret module automatically fits 14 machine learning models to the given data 
set and selects the best classification model based on certain metrics and criteria. Table 4 displays 
PyCaret results for the VAE-data. While fitting the PyCaret module, the target variable was set as 
Outcome, and the remaining eight variables were set as feature variables. The results are displayed 
in Table 4. The compare_models() function of PyCaret picked Random Forest as the best model for 
the VAE-data with an accuracy of 84.92%, Recall 0.6349, Precision 0.7891, and F1 Score 0.7036. 
Table 4 also shows that the top 10 models starting from Random Forest classifier to SVM Linear 
Kernel yielded accuracies above 80%.

PyCaret was also used to evaluate the SV-data, with the class variable Outcome as the target 
variable and the six cluster scores as feature variables. The results are displayed in Table 5. The 
compare_models() function identified Light Gradient Boosting Machine as the best model, with 
metrics: accuracy 84.16%, Recall 0.6176, Precision 0.7748, and F1 Score 0.6873. The Random 
Forest model also yielded similar results with the metrics: accuracy 84.01%, Recall 0.6123, Precision 
0.7732, and F1 Score of 0.6833. It is noted that the metrics for the SV-data from the Light Gradient 
Boosting Machine model are very close to the Random Forest model metrics obtained for the VAE-
data. Table 5 also shows that the top 9 models starting from Light Gradient Boosting Machine to 
Quadratic Discriminant Analysis yielded accuracies above 80%.

This justifies the result that the cluster of variables technique has not only performed dimensional 
reduction of the original VAE-data but yielded results which are very close to the results of the original 
data for machine learning applications. This establishes the fact that the relatively new cluster of 
variables technique is not only a powerful technique for dimension reduction but can also be used in 
machine learning applications in place of original data.

Figure 10. Cluster Analysis Results
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Table 4. VAE-Data PyCaret Results

Model Accuracy AUC Recall Precision F1 Kappa MCC TT 
(sec)

Random Forest classifier 0.8492 0.9008 0.6349 0.7891 0.7036 0.6040 0.6105 3.107

Light Gradient Boosting 
Machine 0.8481 0.8998 0.6395 0.7820 0.7036 0.6028 0.6084 0.334

Extra Trees classifier 0.8473 0.8994 0.6262 0.7888 0.6981 0.5977 0.6049 3.187

Gradient Boosting classifier 0.8418 0.8892 0.6356 0.7641 0.6939 0.5884 0.5930 3.412

AdaBoost classifier 0.8343 0.8791 0.6273 0.7447 0.6809 0.5701 0.5740 0.901

Logistic Regression 0.8321 0.8713 0.6119 0.7471 0.6727 0.5613 0.5664 3.835

Ridge classifier 0.8315 0.0000 0.6039 0.7499 0.6690 0.5577 0.5637 0.054

Linear Discriminant Analysis 0.8307 0.8703 0.6312 0.7317 0.6777 0.5638 0.5666 0.193

K Neighbors classifier 0.8221 0.8411 0.6122 0.7160 0.6600 0.5405 0.5436 0.824

SVM - Linear Kernel 0.8053 0.0000 0.5820 0.7045 0.6192 0.4932 0.5083 0.841

Decision Tree classifier 0.7780 0.7297 0.6190 0.6038 0.6113 0.4559 0.4560 0.213

Naive Bayes 0.7629 0.8176 0.3878 0.6292 0.4798 0.3373 0.3539 0.047

Dummy classifier 0.7180 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.056

Quadratic Discriminant 
Analysis 0.5981 0.6177 0.5399 0.4582 0.3748 0.1425 0.1703 0.119

Table 5. Synthetic Data PyCaret Results

Model Accuracy AUC Recall Precision F1 Kappa MCC TT 
(Sec)

Light Gradient Boosting 
Machine 0.8416 0.8901 0.6176 0.7748 0.6873 0.5831 0.5898 0.282

Extra Trees classifier 0.8409 0.8863 0.6069 0.7799 0.6826 0.5786 0.5868 2.064

Gradient Boosting classifier 0.8403 0.8856 0.6215 0.7678 0.6869 0.5813 0.5872 3.641

Random Forest classifier 0.8401 0.8862 0.6123 0.7732 0.6833 0.5783 0.5854 3.421

AdaBoost classifier 0.8314 0.8750 0.6180 0.7441 0.6739 0.5615 0.5658 0.958

Ridge classifier 0.8299 0.0000 0.6035 0.7445 0.6666 0.5541 0.5596 0.067

Linear Discriminant Analysis 0.8292 0.8683 0.6297 0.7277 0.6751 0.5600 0.5628 0.060

Naive Bayes 0.8166 0.8567 0.5731 0.7195 0.6379 0.5173 0.5233 0.058

Quadratic Discriminant 
Analysis 0.8088 0.8515 0.6335 0.6704 0.6513 0.5198 0.5203 0.045

Decision Tree classifier 0.7687 0.7176 0.6002 0.5881 0.5940 0.4324 0.4325 0.217

Logistic Regression 0.7181 0.4980 0.0000 0.0000 0.0000 0.0000 0.0000 0.074

Dummy classifier 0.7181 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.030

K Neighbors classifier 0.7013 0.5986 0.1860 0.4306 0.2598 0.1082 0.1231 0.310

SVM - Linear Kernel 0.6328 0.0000 0.2082 0.1043 0.0106 0.0558 0.0558 1.058
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The results from the study show that hypothesis 1, stated in the Introduction, “The accuracy of 
the classification model applied to the original VAE-data will differ significantly from that of the 
SV-data.” is negated since the accuracy scores of both the VAE-data and SV-data are very close.

Null hypothesis 2, “The newly generated synthetic variables will not accurately capture the 
underlying patterns of correlations present among the original variables.” is negated since the 
correlations among variables in the VAE-data are indeed retained in the SV-data.

By negating hypothesis 1 and null hypothesis 2, this study answered the research questions 1) 
“Is the classification accuracy similar between the original VAE-data and the SV-data derived using 
clustering of variables?” and 2) “Do the synthetic variables, generated from VAE using clustering of 
variables, preserve the inherent patterns of correlations among the original variables?”

Limitations of Our Study

Some of the limitations of our study are that (1) synthetic data may not be able to completely capture 
the complex patterns to match the real data (Dankar & Ibrahim, 2021), (2) bias amplification could 
occur, suggesting that any bias in the real data set could be amplified in the synthetic data (Dankar 
& Ibrahim, 2021), and (3) evaluation metrics for testing synthetic data are challenging, leading to 
uncertainty about the effectiveness (Sampath et al., 2021).

Some of the limitations of the clustering of variables used in the study are (1) if the variables 
are highly correlated, the influence of one variable may overshadow the others, which could result in 
inaccurate clustering (Ezugwu et al., 2022), (2) it may be challenging to maintain the normalization 
and scaling patterns specific to the variable type (Ezugwu et al., 2022), and (3) there may be difficulty 
in interpreting the resulting clusters and domain expertise may be needed to interpret the grouping 
of variables (Ezugwu et al., 2022). However, utilizing variable clustering (Scrucca & Raftery, 2018) 
and synthetic data for training, then testing the model on real data, is an effective method to address 
challenges posed by high-dimensional and limited quantity data sets, as shown in our study.

Conclusion

An attempt is made in this study to use the cluster of variables technique to derive new synthetic 
variables from existing variables as a method of data reduction. For this, the diabetes data from 
Kaggle is utilized. Synthetic data using GAN and VAE were generated to address the challenge of 
the limited size of the original data. The VAE-data is closer to the real data as seen by statistical tests, 
and it is used for subsequent analysis.

Our experimental results demonstrate notable performance improvements when utilizing synthetic 
data generated by VAEs and GANs in combination with clustering of variables. Despite the inherent 
limitations of these techniques, the trained models consistently achieved competitive performance on 
real data, as displayed in Table 1. This study demonstrated that the novel combination of supervised 
learning (classification) and unsupervised learning (clustering of variables) methods fared well both 
on the real data and synthetic data. Future research directions may include exploring alternative 
clustering algorithms, refining synthetic data generation techniques, and investigating the scalability 
of our approach to larger and more diverse data sets.
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