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ABSTRACT

Distributed cloud systems enable the distribution of computing resources across various geographical 
locations. While offering benefits like accelerated content delivery, the scalability and coherence 
maintenance of these systems pose significant challenges. Recent studies reveal shortcomings 
in existing distributed system schemes to meet modern cloud application demands and maintain 
coherence among heterogeneous system elements. This paper proposes a service-oriented network 
architecture for distributed cloud computing networks. Using a De Bruijn network as a software-
defined overlay network, the architecture ensures scalability and coherence. Through service-based 
addressing, requests are issued to designated service address bands, streamlining service discovery. 
The architecture’s evaluation through extensive simulations showcases sustainable scalability and 
inherent load-balancing properties. The paper concludes with insights into future research directions, 
emphasizing the extension of the proposed architecture to emerging distributed cloud use cases and 
decentralized security.
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Distributed cloud computing systems are a type of cloud computing infrastructure that allows for the 
distribution of computing resources across multiple geographical locations. This architecture provides 
many benefits, including faster content delivery, greater visibility and manageability of hybrid cloud 
and multicloud architectures, and easier industry or regional regulatory compliance (Atieh, 2021). 
However, as the size and complexity of these systems grow, coordinating and maintaining consistency 
among the distributed resources become increasingly challenging. (Coady et al., 2015; Ageed & 
Zeebaree, 2024). In a recent cloud schemes survey Angel et al. (2021) found that major distributed 
system schemes in practice fail to scale up to modern cloud application demands and to maintain 
coherency between the heterogeneous elements of the system.
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To address these challenges, we propose a new service-oriented network architecture for 
distributed cloud computing networks. The proposed architecture aims to provide a scalable, robust 
solution to face changing cloud conditions. The proposed architecture uses a de Bruijn (Chikhi et 
al., 2014) network as a software-defined overlay network built on top of a physical core network. 
The chosen overlay network is a software-defined network that can be set up on top of any weakly 
connected physical network and is guaranteed to self-stabilize (Feldmann & Scheideler, 2017). This 
set of features is crucial for ensuring network construction feasibility and adaptability to changes in 
the cloud environment.

The proposed architecture uses service-based addressing instead of node-based addressing; 
that is, the consumer nodes issue a service request to a service address band, unlike a regular cloud 
network architecture in which the service is requested from a known computing node. The network 
address space is divided into bands, and each service is allocated a specific band. This requires the 
consumer node to have knowledge only about the desired service band.

To evaluate the effectiveness of the proposed architecture, we created and tested a network 
model in multiple scenarios. The results of the simulations demonstrate the sustainable scalability 
of the proposed architecture while maintaining no central core of the network and the inherent load-
balancing property of the proposed architecture.

Finally, the paper concludes with a discussion of future work directions, including the extension 
of the proposed architecture to new distributed cloud use cases, such as edge computing and internet 
of things (IoT) applications.

OVERLAY NETWORKS

An overlay network is a logical network built on top of a physical network that provides an abstract 
layer with the purpose of overlaying the existing physical network infrastructure. The goal of an 
overlay network is to allow more flexibility in how data is transmitted and processed, irrespective 
of the physical network’s technical implementation. It uses the existing infrastructure to connect 
and allow communication between nodes, while adding an additional layer of abstraction to enable 
advanced routing and network management algorithms. Creating an overlay on top of an existing 
physical network enables new mechanisms, protocols, and services to be introduced that can enhance 
the overall performance and functionality of the system.

Overlay networks are commonly used in a variety of systems and applications, including peer-to-
peer (P2P) file-sharing systems, content delivery networks (CDNs), virtual private networks (VPNs), 
and distributed cloud computing platforms. In each of these applications, the overlay network allows 
for application-optimized routing and network management algorithms, while abstracting out the 
details and limitations of the underlying physical network.

Overlay networks represent a crucial building block in the design and implementation of scalable, 
efficient distributed systems. Their ability to overcome the limitations of the underlying physical 
infrastructure and provide enhanced functionality makes them a fundamental component in modern 
networking architectures (Lua et al., 2005).

De Bruijn Graph
A de Bruijn graph, symbolized as G = (V, E), is a form of directed graph commonly used in computer 
networks and bioinformatics. At its core, this graph provides a structured representation of sequential 
data, often DNA sequences in genomics or symbol sequences in network routing algorithms.

The set of nodes, denoted by V within a de Bruijn graph, encompasses all possible substrings of 
a predetermined length, typically referred to as k-mers. K-mers are contiguous sequences of symbols 
in which the length k determines the size of the substring. For instance, in a networking scenario, a 
3-mer (k-mer of length 3) could represent a sequence of three consecutive bytes or characters within 
a packet payload.
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Each node in the de Bruijn graph corresponds to a unique k-mer derived from the original sequence 
of symbols. The edges, denoted by E, represent transitions between adjacent k-mers. Specifically, an 
edge (ki, kj) exists if and only if the last k-1 symbols of ki match the first k-1 symbols of kj, indicating 
a sequential relationship between the two k-mers.

The essence of the de Bruijn graph lies in its ability to compactly capture the sequential 
relationships between k-mers. This graphical representation simplifies the analysis and manipulation 
of sequences, facilitating tasks such as genome assembly, sequence alignment, and network routing 
optimization algorithms.

De Bruijn Network
In computer networking, de Bruijn graphs are employed to model network topology, where nodes 
represent network devices, such as routers or processing nodes, and edges represent the connections 
or links between these devices. Each node is assigned a hash in the range of ]0,1[ that is unique to 
the node. The hash is represented by a finite number of digital bits that are treated as the symbols in 
the de Bruijn graph. An edge between two nodes (ki, kj) exists if and only if the last k-1 symbols of 
node i hash’s bit representation match the first k-1 node j hash’s bit representation.

If the hash representation bits are base 2 binary bits, the graph can be constructed with the standard 
de Bruijn graph definition. Feldmann and Scheideler (2017) present a general de Bruijn graph that 
can use q-ary bits in the hash representation. Feldmann and Scheideler (2017) define and prove the 
general de Bruijn graph and network building protocols (buildList, general de Bruijn, and standard de 
Bruijn) for equivalence with the standard de Bruijn graph, routing correction, and self-stabilization. 
The set of edges in the general de Bruijn graph is a union of four edge sets:

•	 List edges: These edge sets are outward edges from each node to the closest left and right nodes. 
They are included to facilitate the self-stabilization process.

•	 q-neighbor edges: These edge sets are outward edges from each node to the closest q nodes (q 
as of the base of the q-ary bits in the node hash representation). They are included to facilitate 
the self-stabilization process.

•	 Standard de Bruijn edges: These edge sets are outward edges from each node to two nodes where 
the last d-1 (d is the parameter of the graph) symbols of destination nodes match the first d-1 
symbols of the source node. This represents a standard de Bruijn hop.

•	 General de Bruijn edges: These edge sets are outward edges from each node to nodes where the 
last d-1 symbols of destination nodes match the first d-1 symbols of the source node. This set is 
a projection of the standard de Bruijn hop on q dimensions, representing a general de Bruijn hop.

Figure 1 shows an example of a node’s outgoing edges, categorized according to the four edge 
sets listed above. The proposed architecture in this paper is built on top of a general de Bruijn graph, 
referred to from here onward as de Bruijn graph. The properties of the de Bruijn graph make it 
particularly useful in constructing decentralized networks where each node doesn’t have to store local 
information about all the other nodes in the system.

Here are some advantages to the results of these properties:

•	 Scalability: De Bruijn graphs exhibit excellent scalability properties, allowing them to 
accommodate a large number of nodes efficiently. As the number of nodes increases, the graph’s 
structure remains manageable, enabling seamless expansion without compromising performance 
(Chikhi et al., 2014).

•	 Low diameter: The diameter of a de Bruijn graph, which represents the maximum distance between 
any two nodes in the network, is relatively low. This low diameter facilitates efficient routing and 
communication between nodes, reducing latency and enhancing overall system performance.
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•	 Efficient routing: De Bruijn graphs possess inherent properties that facilitate efficient routing 
algorithms. Because of the structured nature of the graph, routing decisions can be made 
deterministically based on the identifiers of the source and destination nodes. This deterministic 
routing reduces overhead and improves the reliability of message delivery in distributed 
environments.

•	 Fault tolerance: De Bruijn graphs are resilient to node failures and network partitions owing to 
their redundancy and distributed nature. In the event of node failures, the graph can dynamically 
adapt its routing paths to circumvent failed nodes, ensuring uninterrupted communication and 
maintaining system availability.

•	 Self-stabilization: De Bruijn graphs exhibit self-stabilizing properties; they can recover and 
stabilize from transient faults or inconsistencies without external intervention. This self-
stabilization mechanism enhances the robustness and reliability of distributed cloud architectures, 
particularly in dynamic and unpredictable environments (Feldmann & Scheideler, 2017).

•	 Constant network overhead: The general de Bruijn graph from Feldmann and Scheideler (2017) 
has a constant number of messages sent by each node during every graph update cycle to maintain 
the self-stabilization of the graph.

LITERATURE REVIEW

Overlay networks have been extensively studied in the field of computer networks. Lua et al. (2005) 
conducted a comprehensive survey and comparison of various peer-to-peer overlay network schemes. 
They analyzed the characteristics, advantages, and limitations of different overlay network architectures 
and provided valuable insights into their performance and scalability.

Figure 1. Outward Edges for a Node in a General De Bruijn Graph
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Another notable paper by Ripeanu et al. (2002) discussed the mapping of Gnutella, an unstructured 
overlay network, and presented an analysis of its topology and performance. They examined the 
dynamics of the overlay network and highlighted the challenges of achieving efficient search and 
resource discovery in such decentralized systems.

The structured overlay network architecture has also been widely researched. Stoica et al. (2001) 
proposed Chord, a distributed lookup protocol for organizing nodes in a structured manner. Their 
work introduced consistent hashing and presented a decentralized algorithm for efficient node and 
resource location.

Faizian et al (2016) discussed the advantages of the de Bruijn graph in the context of distributed 
networks and showed that the de Bruijn graph could handle shortest path routing and a near-optimal 
performance in terms of diameter and load balancing. These properties make it an appealing choice 
for various distributed network applications. Faizian et al. (2016) also proposed a hop-limited all-path 
routing scheme (ALLPATH(H)) that complements the general de Bruijn graph’s topology by providing 
effective routing capabilities, thus ensuring that traffic is efficiently distributed across the network.

Feldmann and Scheideler (2017) discussed self-stabilizing algorithms and explored the 
practical application of de Bruijn graphs in the domain of network topology. Their paper presented 
an approach to constructing a self-stabilizing version of a general de Bruijn graph that can be used 
as a basis for a computer network. In this context, the notion of self-stabilization was introduced 
as a key point of the paper. This property encompasses the ability of a system to recover from any 
initial state and subsequently converge toward correct operational behavior autonomously, without 
requiring any external intervention. Feldmann and Scheideler (2017) recognized the importance 
of this characteristic in the context of large-scale networks, where the occurrence of node failures 
or dynamic reconfigurations can severely disrupt normal network operation. By devising a self-
stabilizing general de Bruijn graph construction algorithm, Feldmann and Scheideler (2017) tackled 
the challenge of preserving network connectivity and consistency, even in the face of disruptive faults 
and dynamic runtime events.

Feldmann and Scheideler (2017) also outlined an algorithm that builds upon the foundation of 
the existing de Bruijn graph structure and seamlessly integrates self-stabilizing mechanisms to ensure 
fault recovery and system stabilization. Employing a decentralized control framework and using 
only locally available information, the algorithm achieved the fundamental design principles crucial 
for achieving self-stabilization within the graph. Thus, Feldmann and Scheideler (2017) proved the 
efficacy of their algorithm through formal proofs and analysis, demonstrating the correctness and 
convergence properties of their proposed algorithms.

The results presented by Feldmann and Scheideler (2017) showcased the self-stabilizing of the 
general de Bruijn graph constructed by their proposed algorithm against node failures and dynamic 
reconfigurations. The algorithm enabled the network to effortlessly rebound from arbitrary initial 
states, eventually converging toward a stable configuration.

OUR CONTRIBUTION

Our work introduces a novel approach by combining a service-oriented model with a de Bruijn 
graph-based overlay network architecture for distributed cloud computing systems. We depart from 
traditional node-based addressing to implement a service-based addressing mechanism, enhancing 
service discovery and allocation efficiency. By dividing the network address space into bands and 
assigning specific bands to each service, we simplify the service request process. Leveraging the de 
Bruijn network as a software-defined overlay ensures scalability and adaptability to dynamic cloud 
conditions. Through simulations, we demonstrate the architecture’s sustainable scalability and inherent 
load-balancing properties. This innovative integration offers a promising solution to scalability and 
coherence challenges in distributed cloud environments.
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PROPOSED ARCHITECTURE

Our proposed architecture for distributed cloud networks is a service-oriented de Bruijn graph-based 
network. Our aim in proposing this network is to optimize service discovery, network efficiency, and 
scalability. It consists of three interrelated components: service nodes, distributed cloud units, and 
service search and routing algorithms, each contributing to the overall function of the network. The 
functionality of de Bruijn nodes within our architecture is divided into service provision and overlay 
network management. The service nodes are responsible for service provisioning. Service provision is 
allocated to virtualized containers or machines running atop physical servers, called distributed cloud 
units, while overlay network management is centralized within an overlay network manager layer. 
This layer oversees the routing and graph construction for coexisting nodes. Hence, in our proposed 
architecture, a de Bruijn node consists of a service node and the shared overlay network management 
layer. Figure 2 shows the logical layers of a distributed cloud unit. New nodes seamlessly integrate into 
the network through a decentralized joining mechanism, leveraging the underlying weakly connected 
network infrastructure. To streamline service discovery and routing, we partition the de Bruijn hash 
space into bands, with each band associated with a specific service provided through the network. 
Service requests are directed to bands rather than specific service providers.

Service Nodes
In our proposed architecture, we introduce an approach where the network is represented in a general 
de Bruijn graph and each instance of a service provider is represented as a node in the graph. The 
service nodes can be either virtual machines coexisting with others on a physical server or directly 
stand-alone running on a physical server. We propose an approach where the de Bruijn hash space is 
divided into bands. Each band represents a subrange within the range ]0:1[ and is associated with a 
particular service provided through the network. Figures 3 and 4 show an example of a service band 
that is assigned a hash space with a range of [0.44:0.46]. Table 1 shows an example of nodes assigned 

Figure 2. Logical Layers of a Distributed Cloud Unit

Figure 3. Network Hash Space
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to the Service 1 band from Figure 4. Each node is assigned a unique numerical identifier between 0 
and 1 that is within a band allocated to the node’s provided service. The client service request is issued 
to a band instead of a specific service provider, and the routing algorithm of the network implicitly 
tries to find an instance of the service provider within the band. Importantly, nodes belonging to the 
same band can be located in different geographical places.

To optimize service latency, the hashing function can be chosen to efficiently map nodes to their 
corresponding bands. The hashing function takes into account the geographic dispersion of nodes 
and aims to minimize packet travel time, thus reducing latency. Mapping nodes within the same 
band, which can be dispersed across different geographic locations, enables the distance traveled by 
packets to be minimized, resulting in improved service responsiveness.

Band Allocation and Management
In our proposed architecture, the allocation and management of bands are crucial for orchestrating 
service provisioning within the distributed cloud computing environment. Each service provider 
possesses a unique service ID, known exclusively to them, which serves as a distinct marker for the 
specific service offered within the network. Bands within the de Bruijn hash space are designated 
for specific services under the management of the network designer. This network designer assigns 
unique service IDs to providers, controlling the band allocation process and ensuring adherence to 
network policies.

The band allocation process relies on a one-way hashing function. This function takes the 
service ID as input and transforms it into a corresponding node ID within the designated band. The 
transformation is irreversible, ensuring that the original service ID cannot be deduced from the 
resulting node ID. To join the network, a node needs to authenticate first with the overlay network 
manager layer by providing the service ID. The overlay network manager uses the hash function to 
generate a unique node ID for the new node and starts introducing it to the system. The assumption 
of this mechanism is that the overlay network manager is a trusted software program. The discussion 
about ensuring the integrity of the overlay network manager is out of the scope of this work and 
should be investigated further in future work.

A critical aspect of band allocation is the unique mapping ensured by the hashing function. Each 
service ID is mapped to a distinct band within the hash space, preventing collisions and ensuring 
allocation integrity. This design mitigates the risk of unauthorized access and malicious activities.

The one-way nature of the hashing function enhances network security by making it 
computationally infeasible to reverse engineer the mapping from node ID back to the original service 

Figure 4. Subset of the Network Hash Space

Table 1. Nodes Assigned to Service Band 1

Node Service Hash

X 1 0.4425123

Y 1 0.4525234

Z 1 0.4583961
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ID. This security measure safeguards against impersonation and unauthorized access, fortifying the 
distributed cloud computing environment against potential threats.

Distributed Cloud Units
In our proposed architecture, the functionality of the node is split into service-providing and overlay 
network management. The service-providing is allocated to virtualized containers or machines running 
on top of a physical server. Any number of nodes can be allocated to a single physical machine, with 
no constraints on the band range of the running services. The overlay network management of all 
the coexisting nodes of the server is grouped into an overlay network manager layer to reduce the 
overhead of network building and routing, as shown in Figure 2. This layer is responsible for handling 
all the routing and graph construction for the coexisting nodes. This layer keeps the local variables of 
each node and routes the arriving packages according to Algorithm 1 using the data of the recipient 
node. Figure 5 shows two scenarios: (a) an arriving request for a band for which the distributed cloud 
unit hosts a service node and (b) a request for a band for which the distributed cloud unit reroutes to 
the next node. The manager can further reduce the routing latency by checking if a coexisting node 
matches the service request band and routing it to that service-provider instance directly.

Another advantage of splitting the de Bruijn node functionality into two logical layers is enhanced 
data privacy. The data included in a user request for a certain band will never be available at any 
node other than a node within the requested band. The service request will be rerouted through the 
overlay network manager layer, which is assumed to be a trusted software program in the context of 
this proposal.

To establish the network, we begin with a weakly connected network, such as the internet or 
the 5G core network. This network provides a physical route to transmit packets from any node to 
all other nodes within the network. The de Bruijn network starts with an anchor node, which serves 
as the initial node to join the system and initiate the overlay network. Subsequent nodes can join the 
overlay network by issuing a join request to the anchor node; this request implies that a joining node 
needs to be able to address and communicate with at least an established node in the de Bruijn network 
within the framework of the core network. This process allows these nodes to integrate seamlessly 
into the network. It’s worth highlighting that the anchor node does not function as a central hub; its 
significance lies solely in being the first node to join the network. Additionally, candidate nodes can 
join the network by introducing themselves to any existing node. Through this mechanism, a new 

Figure 5. Data Flow in the Distributed Unit
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node is guaranteed to integrate into the network at the correct position in the node list, as proposed 
by Feldmann and Scheideler (2017).

The process of initializing the network can go as follows:

1. 	 The overlay network is initialized with a single node, which will act as the bootstrap node and 
form the initial basis of the de Bruijn network.

2. 	 When a new node wants to join the network, it needs to know the physical address of the 
bootstrap node. The physical address of the bootstrap node can either be static and known or 
can be dynamically obtained through a peer-to-peer service discovery method—for example, a 
DNS search.

3. 	 The new node establishes a connection to the bootstrap node. Once connected, the new node 
exchanges information on the overlay network level with the bootstrap node by calling the linearize 
function on the bootstrap node(Feldmann & Scheideler, 2017).

4. 	 The new node constructs its own local list of the de Bruijn network neighbors and logical overlay 
connections by performing the buildList, general de Bruijn, and standard de Bruijn protocols 
(Feldmann & Scheideler, 2017).

5. 	 The bootstrap node can also provide the new node with a set of initial connections or references 
to existing nodes in the network, helping the new node bootstrap its connectivity within the de 
Bruijn network.

The buildList, general de Bruijn, and standard de Bruijn protocols are invoked periodically 
to update network information. Each node calls the three protocols to update its connections list, 
essentially self-stabilizing the graph. This property of the general de Bruijn graph is very useful for 
our proposed architecture, allowing the network to optimally handle service requests in a distributed 
and dynamic cloud environment.

Service Search and Routing Algorithm
In our proposed architecture, the routing algorithm relies on certain segments of local information 
available to each node, including the following:

•	 d: Network diameter. An empirically tunable parameter that is essential for building the de Bruijn 
network. It represents the maximum number of allowed de Bruijn hops before the packet-routing 
timeouts.

•	 v.b: The band at which the node provides its service. It allows the node to identify its specific 
service domain within the network.

•	 v.q: The set of q neighbors to the node is another crucial piece of information. This set is constructed 
using the buildList, general de Bruijn, and standard de Bruijn protocols proposed by Feldmann 
and Scheideler (2017). It enables the node to maintain awareness of its neighboring nodes in the 
network. The maximum number of nodes in this set is 3q-2 (Feldmann & Scheideler, 2017).

•	 v.logq: To estimate the total number of nodes in the network, each node maintains v.logq. This 
value serves as an approximation of the network’s size and aids in making informed routing 
decisions.

To facilitate the routing algorithm, we employed a multi-hop approach based on the de Bruijn 
graph. The algorithm takes into account the aforementioned local information and employs routing 
techniques to ensure service search and delivery.

When a node receives a service request, it begins the routing process by inspecting its v.b 
parameter. If the requested service falls within the same band, the node can directly process and 
respond to the request because it is within its service domain. However, if the requested service 
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lies outside the node’s band, the routing algorithm is invoked. First, the node evaluates the v.logq 
parameter to estimate the size of the network. This estimation aids in selecting the most efficient 
routing path to reach the desired service.

Next, the node uses its v.q parameter to identify potential neighbor nodes that may provide the 
requested service or are closer to the requested band in the de Bruijn list of the network. By leveraging 
the buildList, general de Bruijn, and standard de Bruijn protocols, the node can determine a set of 
suitable candidate nodes that are likely to have the desired service. Once the target band is reached, 
the routing algorithm guides the service request to the nearest node within the band that offers the 
requested service. This ensures that the service request is efficiently directed to the appropriate 
provider, minimizing latency and maximizing service availability.

By incorporating these service search and routing algorithms, our architecture optimizes the 
efficiency and effectiveness of service discovery within the network. The combination of local 
information, multi-hop routing, and intelligent path selection enables nodes to efficiently locate and 
access services.

Algorithm 1. Service Request Routing

1.   Procedure Servicerequesthandler(b, r, RemHops) 
2.   if v.band = b then 
3.   Routing success; 
4.   else if RemHops > 0 AND log(q) <= r then 
5.   u <- determineNextDeBruijnHop(); 
6.   u -> ServiceRequestHandler(b, r - log(q), RemHops-1); 
7.   else 
8.   Routing failure; 
9.   end if 
10.  end Procedure

Algorithm 1 outlines the service request routing procedure. It takes three input parameters: b 
(the target band), r (a threshold value), and remHops (the remaining number of hops).

The algorithm begins by checking if the current node’s band matches the target band. If they 
match, it signifies a successful routing, and the algorithm proceeds accordingly.

If the bands don’t match and there are remaining hops (remHops > 0), the algorithm checks if 
the two’s logarithm of q is less than or equal to the threshold value r. If this condition is satisfied, 
the algorithm proceeds to determine the next de Bruijn hop (u) and recursively invokes the 
ServiceRequestHandler procedure with updated parameters. This recursive step allows the algorithm 
to progress toward the desired band.

The function determineNextDeBruijnHop() is discussed in detail in Feldmann and Scheideler 
(2017). In cases where the bands don’t match and the above condition is not met, it signifies a routing 
failure. By following this routing algorithm, the system can handle service requests by navigating 
through the network based on the target band, threshold value, and remaining hops. This approach 
ensures efficient and reliable routing of service requests within the network.

The overhead of the proposed architecture in terms of routing is only the runtime execution of 
the ServiceRequestHandler function. The function is executed at every hop in the routing path, and 
the complexity of the function arises mainly from determineNextDeBruijnHop(), which searches a 
list of 3q-2 items. It has a big O notation of log (total number of network nodes).

Scale
In the landscape of cloud service providers leveraging distributed infrastructure across diverse 
geographical regions, including industry giants, such as Amazon, Google, and Azure, the proposed 
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network architecture holds versatile applicability. Although these providers maintain expansive 
backbone networks spanning multiple regions, our approach is designed to be able to seamlessly 
integrate within the confines of a singular data center.

The proposed network architecture offers dual functionality, serving as a comprehensive solution 
for building an entire distributed cloud network or as a specialized network within a designated data 
center. This flexibility is made possible through the integration of a dedicated translator or network 
entry manager. This component plays a pivotal role in facilitating communication by converting 
conventional network messages into a format understood by the internal de Bruijn network within the 
data center. By incorporating a translator or network entry manager, the proposed approach ensures 
compatibility with existing network infrastructures, making it a scalable solution for both overarching 
network implementations and localized, data center-centric applications. Figure 6 shows an example 
of a de Bruijn-based cloud data center connection with an example internet network.

SIMULATION RESULTS AND DISCUSSION

In this section, the results of three simulation scenarios are presented. The first simulation targets 
evaluating the proposed architecture’s scalability, focusing mainly on how the proposed architecture 
manages the number of outgoing edges as the number of network nodes increase. The second 
simulation aims to show the network performance in terms of routing correctness. The third simulation 
shows the implicit load balancing of the routing algorithm.

Simulation Model
The simulation model provides a framework for evaluating the proposed service-oriented network 
architecture tailored for distributed cloud computing systems. It facilitates targeted assessments of 
scalability, routing correctness, and load balancing within the network, offering insights into its 
performance under various conditions.

Model Parameters
The simulation model includes the following parameters:

•	 Number of Nodes (numNodes): Defines the size of the network by specifying the total number 
of nodes present in the distributed cloud computing system

•	 Alphabet Size (q): Represents the size of the alphabet used for node identification and addressing 
within the network

Figure 6. De Bruijn Network-Based Data Center
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•	 Dimensions (d): Determines the dimensions of the network topology, influencing the structure 
and connectivity patterns among nodes

Network Construction
Constructing the network includes these processes:

•	 Random node initialization: The simulation model initiates by randomly generating unique 
identifiers for each node within the specified alphabet size q.

•	 Topology generation: Using the general de Bruijn graph definition, the model constructs 
the network topology based on the generated node identifiers. Connectivity among nodes is 
established to form a distributed cloud computing system.

•	 Adjacency matrix generation: An adjacency matrix is generated to represent the connectivity 
relationships between nodes. This matrix serves as a fundamental data structure for routing 
operations and network analysis.

Scalability Evaluation
The simulation model offers the following capabilities for scalability evaluation:

•	 The simulation model enables the evaluation of network scalability by allowing the user to rerun 
simulations with varying numbers of nodes (\(numNodes\)).

•	 By systematically adjusting the network size and observing the impact on performance metrics, 
such as throughput, latency, and resource utilization, researchers can assess how well the 
architecture scales with increasing network size.

Routing Correctness Assessment
The simulation model offers the following capabilities for routing correctness assessment:

•	 The simulation model incorporates routing algorithms, such as de Bruijn-based routing, to assess 
the correctness and efficiency of routing within the network.

•	 By simulating various routing scenarios and tracking the paths taken by data packets between 
source and destination nodes, the results can evaluate the accuracy and reliability of the routing 
mechanism.

Load Balancing Evaluation
The simulation model offers the following capabilities for load balancing evaluation:

•	 Load balancing capabilities within the network are evaluated using the simulation model by 
monitoring the distribution of traffic and resource use across nodes.

•	 Through simulations with realistic workload patterns and varying levels of network activity, 
simulation results can assess the effectiveness of load balancing algorithms in evenly distributing 
workload and preventing resource bottlenecks.

The simulation model provides a flexible and robust framework for evaluating the proposed 
service-oriented network architecture within distributed cloud computing environments. By focusing 
on scalability, routing correctness, and load balancing, the simulation model yields results that 
can help us gain insights into the architecture’s strengths, limitations, and areas for enhancement, 
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ultimately guiding the development and optimization of distributed cloud networks based on the 
proposed architecture.

Network Scalability
To assess the scalability of the proposed network architecture, we conducted multiple iterations of 
simulations across a range of node counts, from 200 to 10,000. The objective was to analyze how 
the network’s performance scales with increasing numbers of nodes while maintaining a balanced 
distribution of outgoing edges per node.

Simulation Setup
We conducted the following simulation tests for setup:

•	 Node count variation: Simulations were executed for node counts ranging from 200 to 10,000, 
allowing for a comprehensive evaluation of scalability across a broad spectrum of network sizes.

•	 Theoretical outgoing edges boundaries: The theoretical lower boundary of outgoing edges per 
node was calculated as the d-th root of the total number of nodes, while the upper boundary 
is 3* q - 2, where q represents the alphabet size used for node addressing (Feldmann & 
Scheideler, 2017).

•	 Simulation iterations: Each simulation iteration involved generating a network topology 
based on the specified node count and assessing the average outgoing degree of nodes 
within the network.

The simulation results, depicted in Figure 7, revealed that the actual average outgoing degree of 
nodes fell within the boundaries defined by the theoretical lower and upper limits across all tested 
node counts. This finding indicates that the proposed network architecture maintains a consistent level 
of connectivity and load distribution regardless of the network size. The architecture demonstrates 
its ability to adapt to varying network sizes while maintaining balanced connectivity. These findings 
reinforce the viability of the proposed architecture for distributed cloud computing systems and 
underscore its potential to support large-scale deployments with confidence in network performance 
and scalability.

Figure 7. Average Outgoing Degrees per Node
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Network Routing Performance
We created a MATLAB model for the distributed cloud network. We wrote the model from scratch 
in MATLAB script language without the use of any specific toolbox. The network was fed with 
thousands of randomized service requests with a random entry point. The simulation model is divided 
into five parts:

•	 A weakly connected graph was constructed with a randomized ID for each node.
•	 The de Bruijn graph parameters were calculated for the constructed graph.
•	 A new directed graph was constructed from the weakly connected graph following the general 

de Bruijn connected edges rules.
•	 Randomized service requests were generated for random service bands and inserted into the 

network at a random starting node.
•	 The service request was propagated inside the network until it reached a service provider for the 

requested band or reached the hops threshold and terminated.

Figures 8 and 9 show the simulated performance of a network with a number of nodes equal to 
256 and 1,024 nodes, respectively. The nodes are generated and assigned randomly to bands across 
the range ]0,1[. The X axis represents different values for the diameter of the network. In subgraph 
(a), the Y axis represents the normalized success rate, calculated by dividing the total number of 
successfully routed service requests by the total number of generated requests. Subgraph (b) shows 
the relation between the network diameter and the average number of hops the service requested 
takes to reach a service-providing node. The average number of hops should not surpass the network 
diameter; otherwise, a large number of requests will not reach their destination. Subgraph (c) shows 
the relationship between the network diameter and the average outgoing degree of nodes. It can be 

Figure 8. Simulation Results for a Network With 256 Nodes
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observed that the average outgoing degree decreases rapidly with network diameter increase, indicating 
a trade-off between the number of established connections and the latency of request delivery.

The simulation results show that given a service request for a band that exists in the network, a 
very confident success rate is attainable at a low graph diameter. The network routing success rate 
relies mainly on the diameter of the network, not the number of nodes; hence, the network can be 
scaled up exponentially in terms of nodes while only logarithmically growing in diameter.

As the diameter is increased, the average outgoing degree per node is rapidly decreasing, and the 
average number of hops per request is increased. As the average node outgoing degrees increases, the 
number of entries that must be searched through in every hop during routing increases. This pattern 
translates to a larger processing overhead in the overlay network routing management. On the other 
hand, the increase in number of hops during routing results in an overall higher latency time for service 
requests. A trade-off should be considered between the outgoing degrees and the number of hops by 
selecting a graph diameter value that results in a manageable number of connections per nod—thus 
manageable routing overhead—while still meeting the latency constraints of the cloud services.

Load Balancing
To evaluate the implicit load balancing of the routing algorithm, the network from the previous 
subsection is used with a modified scenario. The model is as follows:

•	 A weakly connected graph is constructed with a randomized ID for each node.
•	 The de Bruijn graph parameters are calculated for the constructed graph.
•	 A new directed graph is constructed from the weakly connected graph following the general de 

Bruijn connected edges rules.
•	 Randomized service requests are generated for certain service bands and inserted into the network 

at a random starting node.
•	 The service request is propagated inside the network until it reaches a service provider for the 

requested band or reaches the hops threshold and terminates.

Figure 9. Simulation Results for a Network With 1,024 Nodes
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To simulate a high-demand situation, the network is fed with 200,000 requests concentrated in 
the band of interest. At the end of the simulation, nodes within the band are checked for the number 
of requests that were processed by each. Figures 10 and 11 show the simulated load balance of a 
256- and 32,768-node network for a band that has a range of [0.44:0.46], with six and 675 nodes 
having hashes within the band, respectively.

Figure 10. Simulation Results for Band Load Balance With Six Nodes

Figure 11. Simulation Results for Band Load Balance With 675 Nodes
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Figure 11 shows the mean and median of the tasks processed by each node. Note that the 
implicit load balancing arising from the de Bruijn routing is initially acceptable, but not comparable 
to state-of-the-art load-balancing techniques. To match state-of-the-art load-balancing algorithms, 
the hashing function of proposed architecture should be enhanced to better space out nodes so that 
the distribution of paths leading to nodes within the band is uniform. The simulation results show 
that the inherent load balancing of the proposed architecture holds as the network scales up in terms 
of the number of nodes.

CONCLUSION

This paper introduces a network architecture specifically designed for distributed cloud 
computing networks. Its aim is to address the challenges arising from decentralization and 
scalability. The proposed architecture uses a de Bruijn graph-based overlay network alongside 
a service-banding approach, resulting in a highly scalable, service-oriented cloud network. By 
segregating the functionality of nodes into service-providing and overlay network management, 
achieved through virtualized containers or machines on a physical server, resource utilization is 
optimized. Table 2 shows a comparison between the proposed architecture and two prominent 
distributed cloud architectures. The architecture’s performance is thoroughly examined through 
simulations that identify a strength in routing performance and inherit load balancing and show 
areas that may require further investigation. The scalability of the proposed architecture in 
terms of node connections is shown to have logarithmic growth in respect to the total number 
of nodes in the network. Future work may explore extending this architecture to accommodate 

Table 2. Comparison Between Proposed Architecture and Recent Distributed Cloud Computing Architectures

Dimension Blockchain-Based Cloud 
Architectures Fog Computing Proposed Architecture

Architecture Decentralized, distributed 
ledger technology

Extends cloud computing to the 
edge of the network

Decentralized, service 
oriented

Scalability
Faces scalability challenges 
owing to consensus 
mechanisms

Can improve scalability by 
distributing computational tasks

Scales logarithmically with 
number of member nodes

Network model Peer-to-peer (P2P) network 
model

Hierarchical network model with 
edge devices, fog nodes, and 
centralized cloud servers

Graph-based overlay network

Suitability
Suitable for applications 
requiring transparency, 
immutability, and trust

Suitable for applications 
demanding low latency, real-
time data processing, and 
efficient bandwidth utilization

Enterprise cloud services, 
big data analytics, high-
performance computing, 
mission-critical applications, 
content delivery networks, IoT

Strengths

Immutable ledger, 
decentralized consensus, 
enhanced security, 
transparency

Low latency, efficient bandwidth 
utilization, improved scalability

Decentralized stable network 
structure, improved scalability, 
service discovery, inherit load 
balancing.

Weaknesses
Scalability limitations, high 
computational overhead, 
potential latency

Management complexity, 
potential security risks at the 
edge, dependency on network 
connectivity

Overlay network overhead 
can become not neglectable 
with extremely high numbers 
of nodes; a trusted software 
program is needed to manage 
the node authentication.
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emerging distributed cloud use cases, such as edge computing and cloud enterprise data 
warehouse, exploring security and privacy measures suitable for a decentralized distributed 
network, such as certificateless public auditing schemes and trusted software-based distributed 
node authentication schemes.

Table 3 includes a list of abbreviations.

Table 3. List of Abbreviations

Abbreviation Definition

V Set of all nodes in a de Bruijn graph

E Set of all edges in a de Bruijn graph

K-mer A sequence of symbols with length K

Q-ary The base with which the node hash is represented as digital bits

q The general de Bruijn network base. Used for hash Q-ary bits calculation, 
and for the routing algorithm.

d Graph diameter

b Band for which a requested service belongs to

v Source node of a de Bruijn hop

u Target node of a de Bruijn hop
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