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ABSTRACT

Selective attention, essential in discerning visual stimuli, enables the identification of threats such as 
snakes—a prime evolutionary influence on the human visual system. This phenomenon is encapsulated 
in snake detection theory (SDT), which posits that our ancestors’ need to recognize these predators 
led to specialized perceptual abilities. This investigation utilizes steady-state visual evoked potentials 
(SSVEP) alongside the random image structure evolution technique, which systematically increases 
visual clarity through the interpolation of random noise, to probe the neural mechanisms underpinning 
selective attention, with a focus on serpentine forms. These findings underscore snakes’ unique 
perceptual impact due to their curved forms and scaled textures, crucial for quick recognition—
advancing image semantic segmentation and recognition tech.. This is particularly relevant for 
security and wildlife management, showcasing the evolutionary progression and cognitive prowess 
of the human visual apparatus.
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1. INTRODUCTION

Selective attention refers to the mechanism by which an individual prioritizes processing specific 
representations while overlooking other concurrently presented representations (Anderson, 2005). 
Past studies have identified different kinds of selective attention processes, often defined by the 
attributes of task-specific stimuli, including their location or substance. Each type of attention 
mechanism may involve the coordinated effort of multiple brain regions, ultimately leading to changes 
in sensory representation, memory, cognitive processes, or directed motor program. A prominent 
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role of attentional processes is the effective discernment and recognition of cues associated with 
threats. Studies on healthy individuals indicate that cues signaling threats are identified with greater 
speed and precision compared to neutral ones. These mechanisms, crucial in natural environments, 
also play a significant role in various technological domains. For instance, they are instrumental in 
media-based surveillance systems, federated cloud systems, and image encryption methods that utilize 
quaternion Fresnel transforms (Stergiou, Psannis, Gupta, 2021; Yu et al., 2018). The ability to rapidly 
respond to visual threats is also evident in recent advancements in image recognition technologies 
that leverage visual saliency for more effective image retrieval (Wang et al., 2020). For instance, 
Nhi and Le explored semantic-based image retrieval, emphasizing the role of visual cognition in 
understanding threats (Nhi and Le., 2022; Memos et al., 2018; Mandle et al., 2022; Chopra et al., 2022). 
Moreover, the memories linked to these threats tend to be more resilient and less prone to disruption 
by unrelated information 200909). Advances in image retrieval and style transfer technologies have 
demonstrated the application of these cognitive principles in artificial systems as well (Qian et al., 
2022), suggesting that threat cues are given processing priority, thereby affording organisms strong 
adaptive capabilities in their environments.

Selective attention plays a pivotal role in enabling organisms to focus on specific stimuli in 
their environment while ignoring others. This ability has evolved over time to allow species to 
better detect and respond to potential threats or opportunities, enhancing their chances of survival. 
A salient example illustrating the evolutionary significance of selective attention is the Snake 
Detection Theory (SDT) (Murray, & Foote, 1979). The SDT suggests that snakes, due to their 
efficient hunting techniques and potent venom, posed a significant threat to primate ancestors over 
millennia. This threat necessitated the evolution of the primate and human visual systems to rapidly 
and effectively recognize snake presence. In line with this theory, snakes are believed to have exerted 
selective pressures on the evolution and expansion of primate visual systems. Consequently, this 
pressure prompted primates to prioritize vision as their primary sensory modality for environmental 
interaction, further contributing to enhanced visual acuity. Recent studies in image classification 
and recognition echo these evolutionary trends, underscoring the importance of visual cues in 
cognitive processing (Chu et al., 2022; Zheng et al., 2022; Wang et al., 2020). As a result of this 
evolutionary pressure, natural selection would likely favor primates with superior visual abilities, 
thereby facilitating the detection of snakes concealed in their natural habitats (Öhman, & Mineka, 
2001; Isbell, 2006; Lobue, & Rakison, 2013; Shibasaki, & Kawai, 2009; Kawai, & Koda, 2016; He, 
Kubo, & Kawai, 2014; Soares et al., 2009). Presently, a significant number of individuals maintain 
an innate aversion to snakes. This pervasive fear is frequently considered a result of evolutionary 
adaptations. With the rapid advancement in the field of computer vision, the areas of Emotion-
based Image Synthesis and Semantic Image Processing have garnered widespread attention and 
achieved notable successes. Current methods in image and text sentiment analysis often focus on 
the interplay between image and text modalities, yet they tend to overlook the inconsistencies and 
correlations within image and text data. This challenge becomes particularly evident in the semantic 
segmentation of emotional images(Yin, & Chen, 2023). Addressing this challenge may require 
seeking inspiration from exploring the potential of image generation technology in producing the 
desired emotional images. This approach could open new avenues for creating visually compelling 
content that resonates with human emotions and possesses a high degree of realism. For instance, 
recent studies have quantitatively examined how AI-generated cosmetic packaging designs impact 
consumer satisfaction and emotions (Chen, Luh, & Wang, 2023). By extending these approaches 
to emotional images, we could uncover new insights into creating more accurate and emotionally 
resonant images. However, creating emotionally evocative images with high realism remains a 
challenge. This is particularly true for negative emotional images, which are characterized by 
complex structures and rich textural details, such as numerous snake images. This paper introduces 
an improved experimental paradigm based on Steady-State Visual Evoked Potentials (SSVEP). This 
approach studies emotional images that effectively capture human selective attention and identifies 
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unique features of negative emotional images. Our research aids in comprehensive behavioral 
valence measurements for synthesized images and highlights the cognitive importance of primary 
contours or texture features in visual recognition. These findings will guide future developments 
in image generation and semantic segmentation, emphasizing key low-level features for generating 
threat-related images.

In the past decade, significant contributions have been made by numerous researchers in 
understanding the effects of visual distraction under emotional stimuli on a neural timescale, 
particularly through the use of steady-state visual evoked potentials (SSVEP). Additionally, 
various SSVEP-BCI systems have been developed. SSVEP is the brain’s response to periodically 
presented visual stimuli, with its fundamental frequency response matching the frequency of the 
visual stimulus. Notably, the SSVEP amplitude elicited by objects that receive focused human 
attention significantly increases compared to those stimuli that are ignored]. In paradigms 
with competitive stimuli, SSVEP signals and frequency-tagging techniques enable researchers 
to individually measure the cortical neural group responses associated with simultaneously 
presented stimuli. Due to its excellent signal-to-noise ratio (SNR), SSVEP offers the possibility 
of tracking the dynamics of visual cortical changes over extended time scales in single trials. 
Given the aforementioned advantages of SSVEP in researching selective attention, we utilized 
the sweep SSVEP paradigm in this study to explore participants’ cognitive performance as 
they observed images of animals with varying threat levels, with the blurriness of these images 
decreasing systematically over time. This methodology aligns with recent studies emphasizing the 
importance of semantic features in image analysis and machine learning classifiers (Almomani et 
al., 2022). To achieve this, we utilized random image structure evolution techniques, enabling a 
systematic increase in image clarity. Inducing SSVEP involves making the image stream flicker 
at a fixed frequency, which embeds low-level information into the images. This technique is 
closely related to our study, where we explore human visual responses to potential threats. The 
ability to detect and interpret visual cues is crucial in both natural settings and technological 
applications such as DFT-based image steganography (Jelušić et al., 2022). This approach not 
only allows us to evaluate detection thresholds based on participants’ behavior but also to study 
specific SSVEP response components in the EEG spectra as the structural visibility of the animal 
images incrementally improves. Ultimately, this provides a means to assess the human visual 
system’s response capabilities to potential threats, which can be applied to future image semantic 
segmentation technologies. By focusing attention on specific features within the image, such 
as the shape and texture of snakes, we gain insights into how humans rapidly and accurately 
identify these patterns. This knowledge can be translated into algorithms that enhance image 
analysis technology, particularly relevant for applications in security monitoring, autonomous 
vehicles, and augmented reality (Memos et al. 2018). These advancements will enable machines 
to not only ‘see’ but also ‘understand’ the content of images, responding and making decisions 
based on this understanding. Our aim is to learn from the human visual recognition mechanism 
to improve machine interaction with the real world.

2. RELATED WORK

In exploring Selective attention, behavioral psychologists have developed a variety of experiments, 
many involving visual search tasks, which are intended to evaluate visual cognition when 
visibility is impaired. One prominent method is the continuous flash suppression (CFS) technique, 
which incrementally degrades visual clarity (Gomes et al., 2018). In parallel, research in image 
watermarking and encryption highlights the complexity of visual processing in digital domains (Li 
et al., 2019; Yu et al., 2018). Findings from these studies have shown that participants can swiftly 
identify snake images by discerning low spatial frequency information (Kawai, & He, 2016). This 
observation suggests that the superior colliculus (SC)-pulvinar pathway, leading to the amygdala, 
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may play a pivotal role in the mechanisms for rapid fear detection. Building upon this premise, other 
experiments have incorporated the Random Image Structure Evolution technique. This technique, 
which perturbs image phases to produce blurred visual perceptions, has shown remarkable results. 
This method perturbs image phases to produce blurred visual perceptions. Remarkably, results have 
revealed that humans can still accurately identify snake images even in these compromised visual 
conditions . Collectively, these experimental findings provide preliminary behavioral evidence in 
support of the Snake Detection Theory (SDT). While behavioral experiments have shed significant 
light on the heightened visual sensitivity of primates, including humans, towards snakes, they are 
not without their constraints. Solely depending on behavioral data is fraught with complications. 
For instance, these results can be influenced by individual biases, strategies, or other cognitive 
factors, potentially clouding our understanding of the true biological mechanisms at play. Moreover, 
there’s the risk that behavioral responses might not capture the full spectrum of nuanced neural 
activities elicited by varied visual stimuli, thus curtailing a comprehensive understanding of the 
specialized sensitivity mechanisms. In light of these considerations, the scientific community 
increasingly acknowledges the pivotal role of electrophysiological evidence in corroborating the 
Snake Detection Theory (SDT)(Van Le et al., 2013; Le et al., 2014; Le et al., 2016; Van Strien, 
Franken, Huijding, 2014).

Building on this, numerous studies employing early posterior negativity(EPN) measures have 
provided compelling evidence in support of the Snake Detection Theory. The Early Posterior 
Negativity(EPN) is a distinctive component of the Event-Related Potential(ERP). It is intricately 
linked to the emotional processing of stimuli, with a notable emphasis on handling aversive visual 
stimuli. As such, researchers commonly utilize ERP measurements to systematically assess the 
interplay between emotion and attention across various stages of cognitive processing (Schupp 
et al., 2006). Consistent with the Snake Detection Theory(SDT), it’s been observed that snake 
imagery induces a considerably more pronounced EPN response than other animal images, 
drawing attention to the unique sinuous form of snakes as a possible catalyst for this amplified 
reaction (Strien et al., 2014; Van Strien, & Isbell, 2017). Further emphasizing the evolutionary 
importance of snakes, one investigation postulated that the instant visual attention garnered by 
snake images is an innate response, rather than merely a reaction to reported fear, especially when 
compared to reactions towards spider images Validating this hypothesis, subsequent research 
revealed that, in contrast to spiders, snakes invariably command heightened attention (Tsuchiya, 
& Koch, 2005). Adding another layer of intrigue, the unique scale patterns distinctive to snake 
skin, scarcely seen elsewhere in nature, have been associated with stronger EPN responses further 
highlighting the inbuilt vigilance and detection mechanisms tailored for these reptiles. While 
early posterior negativity (EPN) measures have provided significant insights into the Snake 
Detection Theory, the inherent limitations of transient ERP methodologies cannot be overlooked. 
The inherent low signal-to-noise ratio of the transient ERP method demands the recording and 
averaging of numerous trials to yield consistent transient ERP responses that differentiate specified 
images from control stimuli across a group of participants. This challenge is magnified when 
attempting to discern such differences within the data of a singular observer, let alone when 
focusing on distinct groups such as infants, children, or clinical populations (Tsuchiya, & Koch, 
2005). Our research aims to achieve a more nuanced understanding of human perception toward 
threatening stimuli. To this end, we intend to employ brain-computer interface (BCI) technology, 
focusing particularly on steady-state visual evoked potential (SSVEP) features. The selection 
of the sweep SSVEP is based on its capability to capture the variations in visuocortical shifts 
at individual trial levels. Additionally, its connection with BCIs is noteworthy, as they usually 
offer improved bit rates and stability (Öhman et al., 2012). These characteristics position the 
sweep SSVEP as an especially suitable tool for addressing the dynamics of attentional bias in 
the context of Snake Detection Theory (Coelho et al., 2019).
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3. MATERIALS AND METHODS

3.1. Participants
From the School of Mechatronic Engineering and Automation, six individuals participated in the 
study. Participants received academic credits or literature gifts for their involvement. The study 
included six participants: five men and one woman, all right-handed, with an average age of 23.95 
years (standard deviation = 1.51). Based on their own declarations, none had any history of psychiatric 
illnesses, nor were they under medications impacting the central nervous system. Participants were 
instructed to rest adequately, avoid strenuous physical activities, and abstain from caffeine, nicotine, 
or any substances affecting the central nervous system before each testing session. Comprehensive 
details about the experimental procedure were provided, and participants gave their written consent. 
The study strictly adhered to the ethical guidelines outlined in the Declaration of Helsinki (1964).

3.2. Random Image Structure Evolution
Random Image Structure Evolution is considered a type of image morphing or degradation process, 
primarily used to create a series of transitional images between two grayscale images, smoothly 
transitioning in structure from a starting image to an ending one. This smooth transition effect of the 
images is achieved by manipulating the phase of the images in the frequency domain (Fourier space), 
which is commonly used in visual science research to study perceptual and cognitive processes. 
(Figure 1 had been presented)

The specific steps are as follows: First, the code converts the input starting and ending images into 
smoothly transitioning in structure, then performs a two-dimensional Fourier transform (FFT) on both 
the starting and ending images, extracting the phase angle and amplitude of these two images. The 
angle difference between the starting phase and the ending phase is calculated, and an interpolation 
method is used to create a series of phase angles. These phase angles smoothly transition from the 
phase of the starting image to that of the ending image, combining each phase angle with the amplitude 
of the ending image to form a complex image representation. Each complex image undergoes an 
inverse Fourier transform, generating the actual image sequence. These images gradually transform 
from the starting image to the ending image. This process enables localized structural randomization 
within a small range. The original image can depict anything of interest, such as objects, faces, scenes, 
abstract shapes, etc. In addition to being computationally straightforward, this method also precisely 
maintains global luminance properties such as brightness and color histograms, thereby avoiding 
confounding experimental results with variations in these low-level attributes.

In the schematic shown in Figure 1, any image is represented as a point within a high-dimensional 
‘image space.’ In recognition studies, the specific images of objects and scenes form a sparse subset 
within this space, similar to the small spheres in the diagram. Typically, inferring high-level visual 
processes from responses measured at only a few of these points is challenging. RISE was developed 
to address this challenge by exploring perception along continuous trajectories within this image space. 
These trajectories intersect points of interest, creating sequences that represent well-controlled visual 
transformations. This method facilitates a more comprehensive understanding of visual processing.

3.3. Stimuli Generation
In our study, we converted high-resolution images of four animal groups (snakes, birds, cats, and fish) 
to grayscale while maintaining consistent luminance across all images (Figure 2). Every animal in 
the source photos was distinctly presented, with the main subject at the center of the picture. These 
images were standardized to dimensions of 675 × 532 pixels and were displayed on a 24-inch LCD 
screen placed about 60 cm from the participants, producing a viewing angle of 16.5 × 12.1°. The 
collection of images was derived from the source photos through the application of the Random Image 
Structure Evolution (RISE) approach (Kawai, & He, 2016). The RISE sequences alter only the spatial 
structure of the original images by modifying their random phase spectrum; the amplitude spectrum, 
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luminance, and contrast remain unchanged. Each sequence covered a range from 95% to 0% of the 
original phase spectrum interpolation ratios, decreasing in 5% increments, yielding 20 images per 
sequence. A 100% interpolation ratio corresponds to a completely random phase spectrum, while 
0% maintains the original phase spectrum. This method allows for a gradual transition in image 
clarity, from less to more distinct. Notably, our RISE sequences featured a consistently scrambled 
background to prevent any background-induced inconsistencies, ensuring that the participants’ focus 
stayed on the stimuli.

Figure 2 illustrates the progressive clarification of stimuli depicting four types of animals: snakes, 
fish, cats, and birds. It shows a transition from the least clear representation (almost random noise) 
to increasingly distinct and recognizable forms.

Figure 3 illustrates the procedure of collecting electrophysiological data from the occipital lobe 
of the human brain, specifically from electrode positions O1, O2, and Oz. The Brain-Computer 
Interface (BCI) Device acquires neural signals, which are then digitized and transmitted to an upper-
level computer system, such as a laptop. The laptop processes these signals to analyze and display 
the grand-averaged frequency spectra and spectrograms. This process showcases the progression of 
visual stimuli from initial noise patterns to a recognizable snake image, while the corresponding neural 
responses are recorded and visualized, providing insights into the cognitive processing of potential 
threats. The two graphs on the right side of the figure depict the amplitude-frequency relationship 
and the changes in brain activity over time, respectively, offering a comprehensive overview of the 
brain’s dynamic response to visual stimuli.

Figure 4 provides a schematic illustration of the RISE sequence coherence sweep SSVEP 
paradigm. In this approach, an image with randomized phase cycles between a stimulus that transitions 

Figure 1. Random image structure evolution (RISE) graphical example
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from a scrambled representation of an animal to a fully coherent form. This oscillation occurs at a 
frequency of 6 Hz, spanning a total of 40 seconds during the stimulation period. Initially, the image 
displaying the face possesses a spectrum that is almost entirely randomized in phase. As the experiment 
progresses, the level of phase-scrambling is incrementally reduced in uniform steps. Three of these 
steps are depicted for clarification. Black bars and corresponding square symbols signify images 
that are fully randomized, whereas the gray counterparts represent those with partial randomization. 
Lighter shades within these gray icons and bars indicate lesser degrees of scrambling.

3.4. Experimental Paradigm
In our experiment, we conducted four 40-second sessions for each animal category. In these sessions, 
images progressively emerged from an almost indiscernible 1% coherence state. This trial design 
was repeated 20 times, with some sessions incorporating blank control images without any animal 
patterns. Images with animal patterns alternated with a black background at a frequency of 6Hz. 
Figure 2 illustrates the early sequence of images during the image stream presentation. Within a single 
session, 20 images at different perturbation levels were displayed. Within a single session, 20 images 
at different perturbation levels were displayed. Figure 4 shows a sample progression of these images, 
illustrating how the depictions of snakes evolved from initially indiscernible to clearly distinguishable. 

Figure 2. Progressive visual clarity of threat and non-threat animal stimuli
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Each perturbed image was displayed for 2 seconds, with 12 of these images interleaved with images 
at 1% coherence. To reduce the transient visual evoked potential (VEP) resulting from initial contrast 
variations, each perturbation sequence began with a 2-second presentation of the primary image from 
the perturbation set, facilitating a transition to a steady state. The experiment included three non-
snake pattern images to diminish participants’ anticipatory perceptions and speculation of threatening 
stimuli. Participants were tasked to press a designated key upon recognizing an image and to refrain 
from pressing if no clear image was discernible. A pre-session key response test was conducted to 
ensure a conditioned reflex. Participants were informed about the possible appearance of specific 
animal species and that the sequence would continue until all 20 images were displayed, regardless 
of correct identification.

Figure 5 shows Sample Progression in a Random Image Structure Evolution (RISE) Sequence 
for Depictions of Snakes. The sequence encompasses 20 images, beginning with an interpolation 
ratio of 95% and decrementing in 5% intervals. Over the course of the sequence, the visual clarity 
transitions from chaotic to readily distinguishable.

3.5. Data Recording and Analysis
In our study, we used an EEG recording system equipped with the Texas Instruments ADS1299 
chipset, which includes an eight-channel high-precision amplifier specifically designed for EEG 
data acquisition. EEG data was recorded from three electrodes (O1, Oz, O2) in the occipital region, 

Figure 3. Experimental setup for SSVEP paradigm and brain response measurement
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following the 10-20 system, with a sampling rate of 250Hz, using the prefrontal electrode (Fpz) 
as our reference. We applied a 4th-order Butterworth band-pass filter to the signal data, limiting 
the frequency range between 1 Hz and 40 Hz, as it captures the pertinent SSVEP details. This 
process aids in eliminating interference from DC drift and other high-frequency disruptions. For 
data analysis, a sliding window of 2 seconds with a 90% overlap was used, and the temporal 
variations of the spectral power at 6 Hz were evaluated using the Fast Fourier Transform (FFT). 
The spectral power sequences were then z-score normalized, and a grand average was performed 
across all participants and for the O1, Oz, and O2 channels. We utilized polynomial regression to 
deduce the general trend of spectral power over time. The optimal order for this regression was 
identified when the root mean square error (RMSE) for the polynomial regression fell below 0.9 
times a . In this context, a  represents the RMSE for a first-order polynomial regression. Ultimately, 
we settled on a 5th-order regression. In the end, we compared the results from the regression with 
the behavioral data from participants’ keypress actions, both qualitatively and quantitatively. 
Subsequently, to assess the correlation between the regression results and behavioral data, the 
Pearson correlation coefficient was calculated in this study.

The Short-Time Fourier Transform (STFT) was utilized to analyze the EEG signals in the time-
frequency domain. The STFT is a sequence of Fourier Transforms performed on a small window 
that slides over the signal. It is defined as:

STFT x t f x t w t e dtj ft( ){ }( ) = ( ) −( )
−∞

∞
−∫� �τ τ π2 	 (1)

where x(t) is the signal, w(t) is the window function centered around zero, f is the frequency, and 
τ is the time around which the window is centered. This approach enables the observation of the 

Figure 4. Stages of image coherence in SSVEP stimulus presentation
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signal’s frequency content as it evolves over time. The window function w(t), typically a Gaussian 
or a Hamming window, is used to localize the signal in time. The choice of window size influences 
the time-frequency resolution trade-off in the STFT analysis.

3.6. SSVEP SNR Calculation
In the SSVEP paradigm, we computed the SNR of the data preceding and following each recognition 
task button press. Initially, the signal spectrum was estimated using the Fourier transform in tandem 
with the Welch method. The Signal-to-Noise Ratio (SNR) was subsequently calculated by contrasting 
the power spectral densities. The SNR formula employed in this paper is expressed as:

SNR
S f

S f
signal

noise

=
( )
( )












10

10

0log 	 (2)

In this equation, Ssignal(f0) represents the mean power spectral density of the signal, while Snoise(f) 
denotes the mean power spectral density of the noise. f0 is the anticipated frequency of the signal, 
and f0 encompasses noise frequencies ranging from 1Hz up to half the sampling rate.

Figure 5. RISE sequence: Clarity transition of snake
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4. RESULTS

4.1. Confirmation of Successful SSVEP Induction
To ascertain if the image sequence produced through our random image structure evolution method 
successfully triggered the SSVEP, we computed the grand average of the spectral power from the 
EEG recordings taken during the image sequence display (shown in Figure 6) Spectral analyses 
revealed distinct peaks at the 6 Hz stimulation frequency. From the SSVEP signals collected during 
the image sequence stimuli of various animal patterns, we processed and derived spectrograms. 
These spectrograms, which depict the grand average variations in spectral power, are presented in 
Figure 6 respectively. In the initial segments of the spectrograms, we observed minimal fluctuations. 
However, the latter segments unequivocally demonstrated that in all four experiments, the spectral 
power at the stimulation frequency exceeded that of other frequency bands. Based on this data, we 
inferred that the rapid-paced image sequence, crafted using our random image structure evolution 
method, effectively induced the SSVEP response.

Figure 6 illustrates the grand-averaged frequency spectra and spectrograms, derived from EEG 
data gathered during the continuous presentation of a RISE sequence. This sequence transitions 
from a state of disorganization to one of clear discernibility in 20 incremental steps. The figure is 
composed of two panels representing different aspects of the data obtained from the RISE sequence 
playback: Panel (A) exhibits the grand-averaged frequency spectra, while Panel (B) displays the 
corresponding spectrograms.

4.2 Comparison of SSVEP and Psychophysical Detection 
Thresholds for Various Animal Images
The regression results of the grand-averaged temporal power changes at 6 Hz frequency during the 
presentation of flickering RISE sequences of four categories of animals are displayed in Figure 
7. Notably, the graph illustrates two distinct phases, along with the average amplitude and the 
corresponding timestamps for each phase. The observed upward trend and eventual peak of the 
SSVEP signal elicited by the RISE sequences of the four animal categories can be attributed to the 
progressively increasing image recognizability perceived by the participants. The escalation in the 
SSVEP amplitude likely stems from heightened attention and cognitive processing as participants 
successfully identified the animals in the images, leading to a gradual increase in the SSVEP amplitude 
and its eventual peak.

Figure 7 shows Chart Normalized cumulative amplitude difference for the RISE sequences of 
four categories of animals used in the study. The SSVEP data from various types of experiments 

Figure 6. EEG frequency analysis of snake image recognition
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have been subjected to fifth-order linear regression processing. Amplitude of the SSVEP response at 
6Hz as a function of coherence. Error bars represent 1 standard error of the mean across participants.

The response speed to animal images (snake, fish, cat, bird) is shown in Figure 8. We used 
Spearman’s correlation analysis to investigate the link between recognition speed and amplitude 
trends. Our results show a significant positive correlation for snake patterns (coefficient 0.948, p 
< 0.05), indicating that quicker responses to snake images coincide with increasing amplitudes. 
Fish patterns also displayed a strong correlation (coefficient 0.952, p < 0.05). For cat and bird 
images, the correlations were also positive, albeit with a slightly slower response speed (cat: 
coefficient 0.895, p = 0.016; bird: coefficient 0.846, p = 0.034). This indicates that participants 
generally reacted more slowly to these images, and the increase in SSVEP amplitude occurred 
later compared to the other stimuli.

Table 1 summarizes participants’ behavioral latencies and average SSVEP response times for 
each animal category. The data, measured in seconds with standard error, indicate varying response 
times based on the stimulus type, hinting at different cognitive processing speeds and levels of neural 
engagement for each category. These findings point to heightened sensitivity to specific stimuli, 
reflected in faster recognition speeds and corresponding amplitude increases, although the exact 
mechanisms remain to be further explored.

Figure 8 illustrating the average behavioral animal image detection response time for each 
category of animal image. Each box represents the interquartile range of response times, with the 
median indicated by the line within the box. Dots represent individual participants’ response times 
for each animal image.

Table 1. The table presents participants’ behavioral response latencies and average Steady-State 
Visual Evoked Potential (SSVEP) response times when identifying four different targets: snakes, 
fish, cats, and birds. Both the behavioral response latencies and SSVEP response times are measured 
in seconds, with the standard error of the mean indicated by the ± values alongside the averages.

Figure 7. Comparative SSVEP amplitude responses to animal stimuli over
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An analysis of variance (ANOVA) was used to evaluate the SSVEP Signal-to-Noise Ratio (SNR) 
data. Compared to images with a high degree of perturbation, the capabilities of Brain-Computer 
Interfaces (BCIs) are enhanced when individuals are exposed to flickering stimuli of images with a 
lower degree of perturbation. This enhancement is evidenced by an increase in both the amplitude 
of Steady-State Visual Evoked Potentials (SSVEPs) and the Signal-to-Noise Ratio (SNR) after 
participants press a button to indicate recognition of the image content. However, trends in SSVEP 
amplitude (F = 11.856, p < 0.05) and SNR (F = 13.560, p < 0.05) vary depending on the type of 
image stimulus. The most significant increases in SSVEP amplitude and SNR are observed when 
the perturbation level of threatening images is reduced, suggesting a heightened engagement or 
sensitivity to these stimuli. The variance data for the SNR of the SSVEP following a button press 
showed no significant differences for other non-threatening stimuli. This indicates that the SNR in 
SSVEP stimuli can be influenced by the intensity of the stimulus and the clarity of cognitive pattern 
recognition, as illustrated in Figure 9.

Figure 8. Distribution of response times to animal image stream stimuli

Table 1. Behavioral and SSVEP response times by animal stimulus

Target Behavioral Response Latencies(sec) Average SSVEP Response Time(sec)

Snake 9.372 ±0.919 14.843 ±1.01

Fish 10.099 ±1.365 18.843 ±1.995

Cat 10.592 ±1.369 18.189 ±0.734

Bird 11.671 ±0.790 21.625 ±2.327
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5. DISCUSSION

This research seeks to corroborate the theory that the human visual system exhibits a heightened 
sensitivity to snake images, especially in visual search tasks where image clarity is reduced. Previous 
studies have explored human proficiency in recognizing snakes in suboptimal visual conditions and 
investigated the role of low spatial frequencies in fear detection (Lobue & Rakison, 2013; Kawai 
& He, 2016). To further explore the brain’s electrophysiological response to rapid recognition of 
different animal patterns, we refined our experiments based on Signal Detection Theory (SDT). To 
ensure consistency and comparability, the types of animal patterns embedded in our SSVEP stimuli 
were consistent with those used in previous studies (Kawai, & He, 2016), which featured snakes, fish, 
birds, and cats as psychological stimuli. Specifically, we chose snake patterns and compared them 
with other emotionally neutral images of fish, cats, and birds. In our experiments, we introduced 
a 6Hz alternating image stream in completely scrambled images, transitioning from 100% to 0% 
coherence to capture the brain’s 6Hz SSVEP response. We hypothesized a quicker ascending trend in 
SSVEP signals for snake patterns compared to other animals, observable in the EEG’s time domain. 
Steady-State Visual Evoked Potential (SSVEP) is an electrophysiological measurement technique, 
widely employed to investigate attention to external visual stimuli (Norcia et al., 2015; Vialatte 
et al., 2010). Our study found that during continuous stimuli presentation, the brain’s response 
amplitude and SNR to SSVEP stimuli are modulated upon cognitive recognition. These observations 
concur with previous research, underscoring that distinct cognition of patterns augments attention to 
SSVEP stimuli. Investigations into the neural underpinnings of conscious perception predominantly 
demonstrate that neural responses are heightened upon stimulus recognition (Sadr, & Sinha, 2004). 
Furthermore, the concept of RDF query path optimization in Semantic Web and Data-Intensive 
Cloud Computing contexts offers an interesting parallel to our study(Ilyas et al., 2022). Just as 

Figure 9. Signal-to-Noise Ratio (SNR) analysis of the SSVEP response
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RDF query optimization requires intricate processing to efficiently retrieve relevant data, our 
research into SSVEP signals and visual perception involves complex cognitive processing for 
accurately identifying and responding to visual stimuli. This similarity highlights how advanced 
computational techniques can mirror human cognitive processes, underscoring the potential for 
cross-disciplinary insights between cognitive neuroscience and computational technology. Previous 
studies on RISE sequences show that viewers can quantitatively assess the perceptual onset and 
offset points of an object’s appearance and disappearance within the sequence. The initial metric, 
termed the ‘perceptual onset point’, marks the spot in the beginning phase of the RISE sequence 
where the viewer starts to accurately discern the emerging object. The latter metric, referred to as 
the ‘perceptual offset point’, signifies the point in the concluding phase of the RISE sequence after 
which the viewer ceases to recognize the primary image. The Scanning SSVEP curves from our 
study also display a perceptual onset point, dividing into two distinct phases. We also observed a 
slight delay in behavioral confirmation compared to EEG signal transitions, which can be attributed 
to an inherent visual processing pathway in the human brain (Kawai, 2019).

Initially, visual stimuli are captured by the retina and relayed to the brain. This information 
travels via the optic nerve and progresses to the lateral geniculate nucleus (LGN), before finally 
arriving at the primary visual cortex (V1), which serves as a central hub for processing visual 
information. From V1, visual information follows two primary pathways: the dorsal stream, which 
handles spatial location and motion (‘where’ pathway), and the ventral stream, focusing on object 
shape and color (‘what’ pathway). Here, we illustrate the ventral processing stream that begins 
at V1 and involves V2, V4, and terminates in the inferotemporal cortex. Known as the ‘content 
pathway’ or ‘Who/What pathway,’ this stream is crucial in object recognition tasks, including facial 
recognition. SSVEP signals are primarily acquired from the V1 cortex, but comprehensive object 
recognition requires the integrated processing of both V1 and V2 cortices. This accounts for the 
observed delay between alterations in SSVEP amplitude and the initiation of behavioral responses. 
(Isbell, 2006; Morand et al., 2000).

Unscrambled images, when contrasted with their fully scrambled counterparts, produced SSVEP 
signals characterized by a significantly elevated amplitude and an enhanced signal-to-noise ratio. 
This underscores the effectiveness of low-level visual cues in capturing human attention, as reflected 
in the heightened SSVEP responses (James et al., 2000). Our behavioral experiments revealed 
participants’ proficiency in accurately identifying snake images at scrambling levels ranging from 
approximately 50% to complete clarity. Conversely, participants took longer to recognize images of 
other animals compared to snake images. These experimental observations are consistent with the 
findings of Nobuyuki (Van Le et al., 2013). These patterns may originate from more fundamental 
visual processing mechanisms. Studies in non-human primates suggest the existence of specialized 
neurons in the superior colliculus of subcortical regions, which might be adapted for identifying 
snake-specific features, influencing early visual object processing. Furthermore, the distinct scales 
and patterns of snake skin could activate specific neurons in the visual cortex. Due to their sensitivity 
to specific directional lines or rhomboidal patterns, these neurons may facilitate the quick detection 
of snakes as potential threats (Lobue, 2014).

Earlier SSVEP studies suggest that the distinct curvilinear shape characteristic of snake stimuli 
may contribute to the heightened SSVEP response observed for snake images. Notably, both snake 
and worm images elicited more robust SSVEP responses than beetle images, indicating a more 
pronounced attentional capture for curvilinear organisms. However, the response to snake images 
exceeded that for worm images, implying the presence of additional threat-related cues in snakes, 
apart from their curvilinear shape. Future research is needed to ascertain whether the unique scale 
patterns of snake skin can independently intensify SSVEP responses, and if these patterns transmit 
more immediate threat signals compared to just curvilinear shapes (Beligiannis, & Van Strien, 2019). 
In the context of image semantic segmentation technology and information systems, these findings 
have significant implications. The heightened SSVEP responses to snake images, particularly due 
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to their curvilinear shapes and distinctive scale patterns, suggest a specialized focus for developing 
advanced image recognition algorithms. Integrating these biological insights into algorithmic design 
can enhance semantic segmentation models, enabling more effective identification and prioritization 
of such distinct features. This enhancement could be pivotal in applications requiring rapid and 
accurate identification of specific patterns or threats, such as in automated surveillance systems, 
wildlife monitoring, and even in medical imaging where recognizing particular shapes and textures 
can be crucial. The integration of these perceptual cues into information systems promises to enhance 
their sensitivity and accuracy, aligning more closely with human cognitive processing and threat 
detection capabilities.

6. CONCLUSION

In summary, this research investigates the dynamics of visual attention, particularly in response 
to varying threat levels represented by animal images, using steady-state visual evoked potentials 
(SSVEP). Key findings of our study demonstrate that human attention, when specifically focused 
on certain stimuli, notably enhances SSVEP amplitude, underscoring a strong neural response 
to such targeted objects. This observation is particularly evident when participants engage with 
images that progressively clarify from blurry to distinct forms, such as images of snakes and 
other animals. A major impact of this research lies in its contribution to cognitive neuroscience, 
offering deeper insights into the mechanisms underlying selective attention and threat detection. 
The research offers evidence supporting the notion that the human visual system is finely tuned 
to identify and react to potential threats, a feature that likely has evolutionary roots. Our study 
presents a promising avenue for integrating SSVEP-based assessments into the development of 
advanced image semantic segmentation and information systems. Real-time tracking of emotional 
arousal via SSVEP responses introduces an innovative approach to customize image segmentation 
algorithms, allowing them to adapt to users’ cognitive states. This could revolutionize user interfaces 
by enabling systems to dynamically adjust visual content based on the viewer’s emotional cues, 
thereby improving the relevance and impact of the displayed information. Looking forward, the 
interplay between cognitive state assessments and image processing can be leveraged to create more 
intuitive and responsive information systems. These systems could use the insights gleaned from 
SSVEP responses to prioritize or alter the display of content, ensuring that users are presented with 
imagery that aligns with their current emotional and cognitive states. Moreover, this technology 
holds potential for enhancing the accuracy of threat detection in security systems, assisting in 
medical diagnostics by highlighting areas of concern in medical imagery, and providing more 
immersive experiences in virtual and augmented reality platforms.

As we continue to bridge the gap between human cognitive processes and machine learning 
algorithms, the integration of SSVEP markers into semantic segmentation tools will not only make 
these systems more efficient but also more empathetic to the human experience. This integration of 
human neuroscience and artificial intelligence marks the advent of a new era in image processing 
and information technology.
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