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ABSTRACT

As global financial markets continue to evolve and change, financial risk monitoring and early warning 
have become increasingly important. However, the complexity and diversity of financial markets have 
led to the emergence of multidimensional and multimodal data. Traditional risk monitoring methods 
face difficulties in handling such diverse data and adapting to the monitoring and early warning 
needs of emerging risk types. To address these issues, this article proposes a financial risk intelligent 
monitoring and early warning model that integrates deep learning to better cope with uncertainty and 
risk in the financial market. Firstly, the authors introduce an LSTM model in the initial approach, 
trained on historical financial market data, to capture long-term dependencies and trends in the data, 
enabling effective monitoring of financial risk. They also optimize the model architecture to improve 
its performance and prediction accuracy. Secondly, the authors further introduce a transformer model 
with self-attention mechanism to better handle sequential data.
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1. INTRODUCTION

As an integral component of a country’s economy, the financial market not only reflects the 
nation’s competitiveness but also carries significant responsibilities in the context of the country’s 
socioeconomic mission. With the rapid development of the socioeconomic landscape, the complexity 
and diversity of financial markets have been on the rise, leading to the accumulation of vast volumes 
of financial data. This has also raised higher demands for financial information, making the efficient 
extraction, analysis, and prediction of financial data a pressing challenge in both academia and industry. 
Therefore, research into intelligent monitoring and early warning models for financial risks holds 
substantial practical value. The financial sector generates a plethora of structured and unstructured 
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data, including market trading data, news reports, economic indicators, company financial reports, 
among other information sources. These data not only come in massive quantities but also typically 
exhibit highly dynamic and diverse characteristics, reflecting the intricacies and uncertainties of 
financial markets. Traditional time series analysis methods find widespread application in the field 
of finance, including autoregressive models (AR) (Kaur, Parmar & Singh, 2023), moving average 
models (MA) (Xu et al., 2023), autoregressive Moving Average Models (ARMA) (Rapoo, Chanza 
& Motlhwe, 2023), and autoregressive integrated moving average models (ARIMA) (Wang et al., 
2023a). Autoregressive (AR) models are advantageous for their simplicity, intuitiveness, and ease 
of understanding and implementation. They effectively capture the local patterns and trends in data, 
offering flexibility by adjusting the order to control model complexity. However, AR models, based 
on the assumption of linear relationships, may struggle to capture nonlinear dynamics and complex 
relationships. They are sensitive to initial values, require data stationarity, and may have limited 
effectiveness when dealing with non-stationary or complex data. Moving Average (MA) models, on 
the other hand, excel at adapting to short-term fluctuations in data. By considering the moving average 
of past observations, they reduce the impact of noise and random fluctuations, resulting in a smoother 
and more stable model. MA models are particularly effective in handling seasonal and periodic time 
series data. However, they have limitations in modeling trends and long-term dependencies, as they 
primarily focus on short-term average effects and may not fully capture long-term trends in time series. 
Additionally, MA models may perform poorly with long-term memory in noise, requiring a careful 
balance and selection based on the data’s characteristics in practical applications. Autoregressive 
Moving Average (ARMA) models combine the strengths of both AR and MA components. They 
capture long-term dependencies and trends (via the AR part) while effectively handling short-term 
fluctuations and noise (via the MA part). ARMA model parameter estimation is relatively intuitive, 
exhibiting strong adaptability to time series data of different natures. However, ARMA models 
have limited capabilities in modeling nonlinearity and non-stationarity, requiring prior assurance 
of data stationarity. Additionally, parameter selection for the model may demand empirical and 
domain knowledge. Careful consideration is necessary when balancing model complexity and fitting 
performance, especially when dealing with high-order models to avoid overfitting. Autoregressive 
Integrated Moving Average (ARIMA) models are widely used, decomposing time series data into 
trend, seasonality, and residual components for predicting future trends. Although traditional methods 
perform well in certain situations, they often rely on strong domain knowledge and manual feature 
engineering. Their ability to handle nonlinear and non-stationary data is limited, and they typically 
depend on statistical models and rule-based systems, posing constraints when dealing with large-
scale, multimodal, and high-dimensional data.

With the rapid advancement of deep learning technologies, particularly the emergence of models 
such as Long Short-Term Memory (LSTM) (Alizamir et al., 2023) and Transformer (Korthikanti et 
al., 2023), we have the opportunity to leverage these advanced methods to gain a better understanding 
of financial markets, capture non-linear relationships, handle multidimensional data, and predict 
potential risk events(Cheng, van Dongen, & van der Aalst, 2019). This paper aims to delve into deep 
learning-based models for intelligent monitoring and early warning of financial risks. We begin by 
introducing the LSTM model and applying it to historical data from financial markets (Gupta et al., 
2022). Through training on financial time series data, this model can capture long-term dependencies 
and trends within the data. This is crucial for effective monitoring of financial risks since risk events 
in financial markets often exhibit temporal correlations. Subsequently, we optimize the architecture 
of the LSTM model to enhance its performance and prediction accuracy. Furthermore, we introduce 
the Transformer model to complement the LSTM model, further improving prediction accuracy. 
The Transformer model, with its self-attention mechanism (Hong, Zhang & Xu, 2023), possesses 
exceptional capabilities in modeling multidimensional time series data and adaptive feature extraction. 
It efficiently handles multidimensional financial data, automatically captures complex market trends, 
and long-term dependencies, thus enabling more accurate risk prediction and real-time monitoring(Liu, 
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Zeng, Cheng, Duan, & Cheng, 2021). Moreover, the Transformer model can also be utilized for 
anomaly detection and portfolio optimization, aiding in the identification of exceptional events and 
optimizing investment portfolios (Al Janabi, 2022). Compared to traditional statistical and linear 
models, the Transformer model excels at capturing non-linear relationships and complex market 
dynamics within the data, thereby enhancing the accuracy of financial risk prediction.

This study integrates deep learning methods such as LSTM and Transformer to harness their 
unique strengths in the field of financial risk monitoring. We will delve into how to construct a more 
comprehensive and efficient financial risk monitoring and early warning system by combining the 
outputs of these deep learning models. This fusion approach will leverage LSTM’s ability to model 
long-term dependencies in time series data and Transformer’s self-attention mechanism for capturing 
global correlations within sequences to better address the complexity and uncertainty of financial 
markets. We will also consider other factors such as market sentiment indicators, macroeconomic 
data, and interrelationships among assets to enrich the input information of the model and enhance 
its sensitivity to financial risk (Mba & Mai, 2022). To validate the performance of the proposed 
financial risk monitoring and early warning model, we will extensively utilize large-scale financial 
time series datasets for experiments. The experimental design will encompass multiple steps, including 
data preprocessing, model training, and performance evaluation, to ensure the model’s effectiveness 
in real financial environments. We will employ various evaluation metrics such as accuracy, recall, 
F1 score, among others (Megdad, Abu-Naser & Abu-Nasser, 2022), to comprehensively assess the 
model and conduct in-depth comparisons with various methods to demonstrate its superiority and 
practicality. Through this research, we aim to provide a more comprehensive and flexible approach to 
financial risk monitoring and early warning, better equipped to handle market fluctuations and risks.

The contributions of this paper can be summarized in the following three aspects:

(1) 	 Our research introduces Long Short-Term Memory (LSTM) networks into the field of financial 
risk monitoring. This initiative not only adds innovation to our model but also expands the 
boundaries of traditional financial risk monitoring frameworks. Through the incorporation 
of LSTM, we are better equipped to capture long-term dependencies in time series data from 
financial markets. This aids in more accurately predicting various potential risk events, including 
market volatility and credit risks, thereby enhancing risk management in financial markets and 
safeguarding financial stability.

(2) 	 We introduce the Transformer model, emphasizing its sensitivity to non-linear relationships 
and complex dynamics in financial markets. Traditional statistical and linear models have 
limitations in capturing the non-linear characteristics of financial markets. The Transformer 
model, with its self-attention mechanism, is better at capturing non-linear relationships in 
the data, thereby increasing sensitivity to the diversity of financial market data. This enables 
financial risk monitoring models to more comprehensively understand the dynamic changes 
in financial markets.

(3) 	 We introduce deep learning techniques, combining traditional statistical and machine learning 
methods with deep learning. This integrated approach not only captures non-linear relationships 
in financial markets more effectively but also handles multidimensional data and long-term 
dependencies in time series. As a result, it improves the accuracy of financial risk prediction 
and enhances the sensitivity of monitoring models to complex market dynamics and uncertainty. 
This approach brings a new paradigm to financial market risk management, providing financial 
institutions with more reliable and comprehensive tools to address risks.

The organizational structure of this paper is as follows: Firstly, in the introduction, we emphasize 
the crucial role of financial markets in the national economy. Traditional methods such as AR, MA, 
ARMA, and ARIMA are noted for their limitations in handling non-linear and non-stationary data. By 
integrating deep learning models like LSTM and Transformer, we elucidate the paper’s objective—to 
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enhance the efficiency of financial risk monitoring through deep learning models. In the literature 
review section, we review traditional financial risk monitoring methods including VaR, cointegration 
models, and rule-based systems, as well as the application of deep learning technologies such as 
CNN, RNN, GRU, and GAN. Given the challenges they face in dealing with dynamic markets and 
multi-source data, we emphasize the key models employed—LSTM and Transformer—to improve 
comprehensiveness and accuracy. Subsequently, in the methodology section, we provide a detailed 
overview of the comprehensive model based on LSTM, Transformer, and deep learning. This includes 
model architecture, data preprocessing strategies, and training methods. Additionally, we introduce 
considerations for model design, taking into account factors such as data quality, interpretability, and 
computational resources. In the experimental section, we construct a financial risk monitoring and 
warning model using high-performance computing servers and the Python programming language, 
incorporating multiple datasets such as Fama-French, CRSP, Compustat, and World Bank. Through a 
synthesis of metrics such as accuracy, precision, recall, and F1 score, we demonstrate the outstanding 
performance of the model, particularly when combining LSTM and Transformer, leading to significant 
improvements in accuracy and recall. Comparative analysis also indicates the competitiveness of 
our model in terms of parameters, inference time, and training time, showcasing efficiency and 
scalability. Furthermore, the discussion section delves into a thorough analysis of experimental 
results, highlighting the model’s advantages in risk monitoring while addressing limitations and 
challenges such as interpretability, data quality, and resource consumption. External factors, such as 
macroeconomic changes and policy adjustments affecting risk, are also considered to enhance the 
study’s comprehensiveness. Finally, the conclusion section summarizes the main contributions of the 
research, emphasizing the potential value of the comprehensive model in financial risk monitoring. 
Future research directions are outlined, including improving model efficiency, practical application in 
financial markets, and further investigation into interpretability. This organizational structure aims to 
provide readers with a comprehensive understanding of our research, delving into the issues, solutions, 
and future prospects while considering the multifaceted factors in the field of financial risk monitoring.

2. RELEVANT WORK

Financial risk monitoring and early warning have always been core tasks in the field of finance, 
and an excellent model can provide crucial decision support for financial institutions and investors. 
Traditional models for financial risk monitoring and early warning have made significant progress 
over the past few decades, primarily focused on the development of statistical and econometric 
models, as well as rule-based methods. For instance, (Behera et al., 2023) introduced the Value at 
Risk (VaR) model, a risk measurement method based on statistical approaches aimed at estimating 
potential losses in a portfolio or asset. It typically uses historical data and probability distributions to 
calculate the maximum possible loss at a certain confidence level. By leveraging historical data and 
probability distributions, the model is capable of quantifying various risk levels, providing investors 
with decision-making references. However, due to its sensitivity to market assumptions, this may 
result in inaccurate estimations of real market conditions and relative difficulties in handling extreme 
events and dynamic market changes. (Gianfreda et al., 2023) proposed a cointegration model based on 
time series analysis methods, used to study long-term relationships among multiple related variables. 
Its core concept is that although these variables may be non-stationary, there exists a stationary 
linear combination among them, known as cointegration, indicating their long-term association. 
This provides researchers with a more in-depth understanding of the dynamic relationships between 
variables, particularly with significant applications in the fields of economics and finance. However, 
the model’s identification of cointegration relationships requires thorough testing of the data and is 
susceptible to factors such as sample period and data quality in empirical studies. Therefore, caution 
should be exercised in its application, taking these limitations into account to ensure the reliability of 
the results. Traditional financial institutions often use rule-based systems, as described in (Hassan et al., 
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2023), to monitor potential risk signals. These systems rely on manually defined rules and thresholds 
to detect situations such as abnormal transactions, credit defaults, or market volatility. However, these 
systems often struggle to cope with complex market conditions and emerging risks. Traditional time 
series analysis methods, such as the ARIMA (AutoRegressive Integrated Moving Average) model 
introduced in (Mgammal, Al-Matari & Alruwaili, 2023), aim to capture trends, seasonality, and 
randomness in time series data. It combines an AutoRegressive (AR) model to describe the correlation 
between the current value and past values and a Moving Average (MA) model to describe the 
correlation between the current value and white noise errors. It also includes a differencing operation 
to transform non-stationary time series into stationary ones for better application of the AR and MA 
models. This model finds widespread use in modeling and forecasting time series data in fields such 
as economics and finance. However, this model has relatively high data requirements, necessitating 
a certain level of stationarity and recognizability of trends. Additionally, its treatment of seasonality 
is relatively simplified. In practical applications, researchers should be mindful of the characteristics 
of the data to ensure the accuracy and effectiveness of the model. (Chen, Huang & Liang, 2023) 
discusses GARCH (Generalized Autoregressive Conditional Heteroskedasticity), a statistical model 
used for modeling volatility in time series data, particularly suitable for the financial domain. This 
model allows volatility to change over time and predicts future volatility based on past observations. 
This makes it crucial in risk management and asset pricing within the financial domain, particularly 
in modeling and forecasting financial market volatility. However, the limitation of GARCH models 
lies in their assumption that the conditional heteroscedasticity of volatility is stationary, potentially 
overlooking some nonlinear features. Predictive performance may be relatively limited in scenarios 
involving extreme events and fat-tail distributions. Therefore, it is essential to carefully consider the 
model’s assumptions and applicability in practical applications. Although traditional methods have 
played a crucial role in financial risk management, they often face limitations in adapting to non-
linear relationships and handling large-scale data, as well as challenges in real-time monitoring and 
early warning. With the emergence of deep learning technologies, we have the opportunity to explore 
new approaches, leveraging the capabilities of neural networks to capture complex relationships in 
data and enhance the accuracy and efficiency of risk prediction.

The application of deep learning techniques in the field of financial risk monitoring has garnered 
widespread attention and research. These models leverage deep neural network architectures to 
automatically extract crucial features from large-scale financial data, enabling accurate monitoring 
and early warning of potential risks.For example, (Mousapour Mamoudan et al., 2023) introduces 
a financial risk monitoring model based on Convolutional Neural Networks (CNNs). This model 
autonomously learns and extracts complex features from financial market data, such as stock price 
trends and heatmaps, by employing multi-level feature extraction and pooling operations in the 
convolutional layers. It can capture local patterns and trends in time series data, making it highly 
effective for monitoring short-term volatility. (Ashtiani & Raahmei, 2023) presents a Recurrent 
Neural Network (RNN) model designed for handling time series data such as stock prices, exchange 
rates, and interest rates. This model harnesses the sequential modeling capability of RNNs to better 
capture temporal and complex dynamics in financial market data, making it perform well in long-
term risk monitoring and prediction. However, traditional RNN models suffer from the vanishing 
gradient problem. Therefore, more advanced variants like Gated Recurrent Units (GRUs) address 
this issue effectively, offering fewer parameters and faster training speeds. (Hu, Chang & Yan, 2023) 
introduces an innovative financial risk monitoring model that utilizes GRUs as its core structure to 
model historical market data, capturing dynamic market features. With its built-in gating mechanisms, 
it efficiently handles data at different time scales and captures both long-term and short-term 
dependencies, enabling the model to better identify and predict potential risk signals. Additionally, 
this model offers faster training speeds, making it suitable for high-frequency trading and real-
time decision-making scenarios. (Vuletić, Prenzel & Cucuringu, 2023) proposes a model based on 
Generative Adversarial Networks (GANs) for synthesizing financial data and improving data quality 
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to enhance the performance of monitoring models. By generating realistic synthetic data, GANs help 
expand the training dataset, mitigate overfitting issues, and improve model generalization. This model 
can monitor new data in real-time and provide alerts upon detecting abnormal behavior, facilitating 
timely risk mitigation. (Fuchs & Horvath, 2023) introduces a financial risk monitoring model based 
on Wasserstein Generative Adversarial Networks (WGANs). This model uses Wasserstein distance 
to enhance data quality and training stability, employing it to measure the distance between generated 
data and real data for anomaly detection, thereby improving the accuracy of anomaly detection. These 
applications of deep learning in financial risk monitoring demonstrate the potential of neural networks 
in capturing complex relationships and enhancing the accuracy and efficiency of risk prediction.

When it comes to financial risk monitoring, despite the significant achievements of deep 
learning methods, they still face some challenges and issues. Firstly, the dynamism and complexity 
of financial markets may impose limitations on traditional deep learning models in capturing long-
term dependencies and nonlinear features in time-series data. This introduces our first model: the 
LSTM model, which excels at memorizing time-series data and can better handle the temporal and 
dynamic nature of the market. By introducing this model, we can more accurately model historical 
financial market data and predict future risk trends. On the other hand, financial markets involve a 
large amount of multisource data, including market trading data, news events, social media sentiment, 
and more. Traditional deep learning models may face challenges in integrating and jointly modeling 
multisource data. Therefore, we introduce the second model: the Transformer model, renowned for 
its self-attention mechanism’s ability to effectively handle correlation learning and feature extraction 
between different data sources. By introducing this model, we can more comprehensively leverage 
information from multisource data, enhancing the comprehensiveness and accuracy of risk monitoring. 
Most importantly, while the introduction of deep learning methods can improve the efficiency and 
automation of risk monitoring, it still requires a large amount of training data and computational 
resources. Additionally, robustness and generalization need to be considered to ensure reliability in 
different market environments. The application of these models not only contributes to enhancing 
the stability and efficiency of financial markets but also provides better tools for investors, financial 
institutions, and regulatory authorities to manage financial risks. However, given the complexity 
and risks of financial markets, the research and application of these models still require continuous 
improvement and validation. We will continue to explore how to better integrate the strengths of 
different deep learning models, enhance model robustness and practicality, to better address the 
challenges and changes in financial markets.

3. METHOD

The overall flowchart of the algorithm in this article is shown in Figure 1.

3.1 LSTM Architecture
Long Short-Term Memory (LSTM) is a variant of Recurrent Neural Network (RNN) (Lazcano, 
Herrera & Monge, 2023) widely employed for handling sequential data, particularly in domains 
such as natural language processing, time series analysis, and financial forecasting. This architecture, 
distinguished by its unique structure, excels at effectively capturing long-term dependencies and 
retaining information within sequences, rendering it a potent tool for processing time series data. Its 
role in intelligent financial risk monitoring and early warning is also significant. To begin with, one of 
the core advantages of this network is its outstanding ability for time series modeling. Financial market 
data often exhibits pronounced temporal correlations and long-term dependencies, as seen in stock 
prices, exchange rates, and interest rates (Adebayo, Akadiri & Rjoub, 2022). LSTM, equipped with its 
internal gate units and memory cells, efficiently captures these long-term dependencies, resulting in 
more precise predictions of future market trends and risk events. Secondly, this architecture is adept 
at addressing the nonlinear characteristics prevalent in financial markets. Financial market behavior 
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is influenced by various factors, and these factors often exhibit intricate nonlinear relationships that 
traditional linear models struggle to encapsulate. Leveraging its multi-layer neural network structure 
and activation functions, LSTM can adeptly model the nonlinear features inherent in financial data, 
thereby enhancing the comprehension and prediction of market behavior (Ali et al., 2023).Furthermore, 
LSTM excels in handling sequence data, which is ubiquitous in financial datasets, encompassing 
historical prices, trading volumes, financial indicators, and more. It efficiently captures the correlations 
between different time points, facilitating a more comprehensive analysis of market conditions. It can 
also be employed to establish sequence-to-sequence models, such as mapping a series of historical data 
to future predictions, a technique with extensive applications in financial risk early warning systems.

This architecture consists of multiple units, with each unit containing three gate units: the Forget 
Gate, the Input Gate, and the Output Gate. These gate units regulate the flow of information through 
a Sigmoid function and a dot product operation (Liu et al., 2023).The model diagram of the LSTM 
is shown in Figure 2.

The Forget Gate determines which information to discard from the cell state. Its output ranges 
from 0 to 1, where 0 means complete forgetting, and 1 means complete retention. The output of the 
Forget Gate can be represented by the following formula:

f W h x bt f t t f= ⋅ +−σ( [ , ] )
1

	

where ft  is the output of the Forget Gate, Wf  and bf  are the weights and bias of the Forget Gate, 
ht-1  is the previous time step’s hidden state, and xt  is the input at the current time step.

The Input Gate determines how much information to add from the new input to the cell state. 
It also uses a sigmoid function to decide which values to update. The Input Gate can be represented 
by the following formula:

Figure 1. Overall algorithm flowchart
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i W h x bt i t t i= ⋅ +−σ( [ , ] )
1

	

C W h x bt C t t C

~

tanh( [ , ] )= ⋅ +−1 	

where it  is the output of the Input Gate, ct  is the new candidate cell state, Wi ,WC , bi , and bC  are 
the respective weights and biases.

The cell state is the core of LSTM and is updated through the Forget Gate and Input Gate. The 
cell state can be represented using the following formula:

C f C i Ct t t t= ⋅ + ⋅−1

~

t 	

Among them, Ct  is the new cell state, and Ct-1  is the cell state of the previous time step.
The output gate determines how much information is output from the cell state. It can be expressed 

by the following formula:

o W h x bt o t t o= ⋅ +−σ( [ , ] )
1

	

h o Ct t t= ⋅ tanh( ) 	

Figure 2. Model diagram of the LSTM
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Among them, ht  is the hidden state of the current time step, ot  is the output of the output gate, 
Wo  and bo  are the weights and biases of the output gate.

3.2 Transformer Architecture
The Transformer architecture is a deep learning model used for sequence-to-sequence tasks (Chen 
et al., 2023). Its design goal is to overcome the computational bottleneck issues present in recurrent 
neural networks (RNNs) and handle longer sequence data. This architecture introduces self-attention 
mechanisms, allowing the model to compute representations for all positions in the sequence in parallel, 
without the need for sequential processing like RNNs. Therefore, it is more suitable for tasks such as 
financial risk monitoring and forecasting. The model diagram of the Transformer is shown in Figure 3.

One of the core ideas of the Transformer is the self-attention mechanism, which allows the model to 
learn dependencies between each position in a sequence and other positions. The self-attention mechanism 
computes a weighted sum of representations, where each position is weighted based on its relationship 
with other positions. The self-attention mechanism can be represented using the following formula:

Attention Q K V soft QK

d
V

T

k

( , , ) max( )= 	

where Q, K, and V are representations of Query, Key, and Value, and dk  is the dimension of the 
query and key.

Figure 3. Model diagram of the transformer
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To enhance the model’s representational capacity, the architecture introduces multi-head self-
attention mechanism (Wang et al., 2023b). This is a core component of the architecture that allows 
the model to simultaneously focus on information from different positions in the input sequence to 
capture various types of relationships and dependencies. The introduction of this mechanism enables 
the model to better handle sequence data, including natural language text, time series, and financial 
data, among others. The multi-head attention mechanism can be represented by the following formula:

MultiHead Q K V Concat head head head Wn
O( , , ) ( , ,..., )=

1 2
	

head Attention QW KW VWi i
Q

i
K

i
V= ( , , ) 	

where Wi
Q , Wi

K , and Wi
V  are the weight matrices for each head.

Positional encoding is typically represented as a matrix with the same dimensions as the input 
data. Its values vary based on position to provide a unique encoding for each position. Positional 
encoding can be expressed using the following formula:

PE pos i pos i d el( , ) sin( / )/ mod2 100002= 	

PE pos i pos i d el( , ) cos( / )/ mod2 1 100002+ = 	

where “pos” is the position, “i” is the dimension, and “ dmodel ” is the model’s dimension.
The architecture consists of encoders and decoders, where encoders handle input sequences, 

and decoders generate output sequences. Each encoder and decoder layer includes multi-head self-
attention and feedforward neural network layers (Dai, 2022). This can be represented using the 
following formula:

E x M S x x F x( ) ( ( ) ) ( )= + + 	

D y enc output M S y y M ED y enc output y F y( , _ ) ( ( ) ) ( ( , _ )) ( )= + + + + 	

Here, x represents the input to the encoder. In this process, the encoder first captures dependencies 
within the input sequence using the Multi Head Self-Attention mechanism. The result is then added to 
the input x using residual connections, and finally processed through a Feed Forward neural network 
layer. Y represents the input to the decoder, and enc_output is the output from the encoder. In the 
decoder, a similar process occurs. It starts with capturing self-dependencies within the input sequence 
using Multi Head Self-Attention, followed by capturing relationships between the input sequence and 
the decoder input using the Multi Head Encoder-Decoder Attention mechanism. Finally, the data is 
processed through a Feed Forward neural network layer.

3.3 Deep Learning Model
Deep learning models, with multi-layer neural networks at their core, have the capability to 
automatically extract high-level features and representations from data. In the financial domain, deep 
learning models find extensive applications in risk monitoring and warning tasks, including credit 
risk assessment, market risk analysis, and fraud detection, among others (Wang & Han, 2021). These 
models typically consist of multiple neural network layers, including input layers, hidden layers, and 
output layers. Each hidden layer contains multiple neurons, which communicate information through 
weighted connections. The model diagram of the deep learning is shown in Figure 4.
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The training process of a deep learning model involves multiple steps, including data preparation, 
selection of loss functions, and the use of optimization algorithms. In deep learning, proper data 
preparation is a crucial first step. This involves steps such as data cleaning, standardization, and splitting 
into training, validation, and test sets. Ensuring the quality and diversity of data is crucial for the 
performance of deep learning models. The loss function is used to measure the difference between the 
model’s predictions and the actual values. During training, the goal is to minimize the loss function. 
Common loss functions in the financial domain include Mean Squared Error and Cross-Entropy, with 
the specific choice depending on the nature of the task. In the forward propagation stage, activation 
functions perform non-linear transformations on the output of neurons. Common activation functions 
include ReLU, Sigmoid, and Tanh. Choosing an appropriate activation function helps the model 
better learn complex data representations. Optimization algorithms are used to adjust the model’s 
weights to minimize the loss function. Common optimization algorithms include Stochastic Gradient 
Descent (SGD), Adam, and RMSprop. Selecting the right optimization algorithm is crucial for the 
convergence speed and performance of the model. During the training process, forward propagation 
calculates the model’s output, and then backpropagation computes the gradient of the loss function. 
Finally, the model’s weights are updated using gradient information. This process iterates multiple 
times until the model converges to a satisfactory state.

Forward propagation is the process in deep learning models used to compute the output by 
passing input data through the layers of the network, ultimately producing the model’s predictions 
or outputs. It can be represented using the following formula:

z w x bi ij j ij

n
= ⋅ +

=∑ ( )
1

	

a f zi i= ( ) 	

In this equation, zi  represents the weighted input of neuron i, x j  is the input data, wij  is the 
weight, bi  is the bias, ai  is the activation function output of neuron i, and f() is the activation function.

Backpropagation is the process in deep learning models used to update weights in order to 
minimize the loss function. It calculates gradients and updates weights in the direction of the gradient. 
It can be represented using the following formula:

Figure 4. The model diagram of the deep learning
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where L is the loss function, and ¶
¶
L
wij

 represents the gradient of weight wij .

We incorporate LSTM and Transformer architectures into the model for handling financial 
risk monitoring tasks through deep learning. LSTM, a variant of Recurrent Neural Network 
(RNN), is specifically designed for processing and learning sequential data. Its core concept 
introduces gated units, including forget gates, input gates, and output gates, to better capture long-
term dependencies in time series data. The input gate determines the information to be updated, the 
forget gate decides the information to be discarded, and the output gate determines the information 
to be outputted. Through these gating mechanisms, LSTM effectively addresses issues such as 
gradient vanishing and exploding, enabling it to capture long-term dependencies in time series 
more effectively. In financial risk monitoring, LSTM finds extensive applications in modeling 
time series data, such as stock prices, exchange rates, and interest rates. Its characteristics of 
long-term memory enable better capturing of the complex dynamics in financial markets, aiding 
in improving the accuracy of future risk predictions. Transformer is an architecture based on the 
self-attention mechanism initially used for natural language processing tasks. Its core idea is 
to establish connections between different positions through self-attention, allowing the model 
to simultaneously consider all positions in the input sequence. The self-attention mechanism 
enables the model to dynamically focus on different parts of the input sequence without being 
constrained by a fixed window size. Transformers consist of encoders for extracting features from 
the input sequence and decoders for generating output sequences. In financial risk monitoring, 
the nonlinear relationship modeling capability of Transformer makes it suitable for handling 
complex, nonlinear relationships in financial markets. It can more flexibly capture features in 
market data, including correlations and nonlinear dynamics between different assets, providing 
a more comprehensive perspective for risk monitoring.

The combined deep learning models incorporating LSTM and Transformer architectures 
not only demonstrate improved predictive performance in the field of intelligent financial risk 
monitoring and early warning but also play a crucial role in the following aspects. Firstly, 
these models are better equipped to handle the complexity of the financial market, including 
factors such as market volatility, asset price changes, and investor sentiment, thereby enhancing 
their sensitivity to market risks and aiding in the early detection of potential issues. Secondly, 
deep learning models exhibit superior generalization capabilities, enabling them to adapt to 
different types of financial data and market conditions, thus extending their applicability across 
various financial domains, including stock markets, bond markets, and forex markets, among 
others (Wang, Zhao & Qiu, 2022). Additionally, these models provide financial practitioners 
with enhanced decision support, assisting them in risk management, portfolio optimization, 
and strategic planning. Most importantly, deep learning models offer a novel approach to 
financial risk monitoring, better equipped to address the uncertainty and complexity of financial 
markets, thereby providing new insights and opportunities for future research and practice in 
the financial field.

The pseudocode of the algorithm in this paper is shown in Algorithm 1.

4. EXPERIMENT

The experimental flow chart of this paper is shown in Figure 5.
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4.1 Experimental Environment
4.1.1 Hardware Environment
This experiment utilized a high-performance computing server, which provided excellent computational 
and storage capabilities to support research on financial risk monitoring and warning models. The 
server was equipped with an Intel Xeon E5-2690 v4 @ 2.60GHz CPU, a high-performance multi-
core processor that offered powerful computational capabilities suitable for deep learning tasks. 
With 512GB of RAM, it ensured ample memory resources for model training and data processing, 

Algorithm 1. LSTM: Transformer training

Figure 5. Experiment flow chart
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contributing to improved experimental efficiency. The server was equipped with eight Nvidia Tesla 
P100 16GB GPUs, which excelled in deep learning tasks, significantly accelerating model training 
and inference processes. These GPUs provided researchers with robust data processing capabilities, 
allowing the model to converge faster and make more accurate predictions in the realm of financial risk.

4.1.2 Software Environment
In this research, we chose Python as the primary programming language and PyTorch as the deep 
learning framework to explore efficient approaches to financial risk monitoring and warning models. 
Leveraging the powerful capabilities of deep learning, our aim was to enhance the performance 
and efficiency of financial risk monitoring and warning tasks. Taking full advantage of Python’s 
convenience and flexibility, we swiftly constructed intelligent risk control models based on deep 
learning. PyTorch, as our preferred deep learning framework, provided us with a rich set of tools and 
algorithm libraries, greatly simplifying the process of model development and training. By utilizing 
PyTorch’s dynamic computation graph mechanism and built-in automatic differentiation functionality, 
we were able to more easily build, optimize, and fine-tune models to achieve more precise financial 
risk monitoring and warning results.

4.2 Experimental Data
4.2.1 Fama-French Three-Factor Dataset
This dataset is an essential resource for researching financial markets and asset pricing. The dataset 
is named after economists Eugene F. Fama and Kenneth R. French, who proposed the famous three-
factor model to explain the volatility of stock returns. The dataset originates from historical data of the 
U.S. stock market. It contains a vast amount of financial market indicators and stock data, spanning 
multiple years, and even decades. The dataset includes monthly, quarterly, or yearly data, typically 
encompassing stock returns, market capitalization, price-to-book ratios, and more. These data allow 
researchers to analyze the performance of stocks and portfolios under different time periods and market 
conditions. This data can be used to validate risk models, explore the behavior of financial markets, 
assess the risk and return of portfolios, and develop intelligent risk monitoring and warning systems.

4.2.2 CRSP Dataset
This dataset is maintained and provided by the Center for Research in Security Prices (CRSP) at the 
University of Chicago. It originates from the U.S. stock market, covering multiple exchanges, including 
the New York Stock Exchange (NYSE), NASDAQ, and various types of financial assets. The dataset 
contains multidimensional financial market data, including stock opening prices, closing prices, 
high prices, low prices, and other price-related information. It also records daily trading volumes, 
dividend payments, and stock splits, which help analyze trading activity and liquidity and make timely 
adjustments to stock prices and returns. Additionally, it includes historical data for various market 
indices, such as the S&P 500 index, which is used to study overall market performance. This dataset 
finds wide applications in fields such as finance, asset pricing, portfolio management, and market 
behavior research. It can be used for tasks such as stock price analysis, portfolio construction, and 
the development of risk models.

4.2.3 Compustat Dataset
The Compustat dataset is a global financial and accounting data resource provided by S&P Global 
Market Intelligence. It includes rich financial and accounting information for both public and private 
companies from different countries and industries. This dataset comprises financial statements, 
accounting metrics, company information, and stock market data, covering various aspects of a 
company’s financial condition, operational performance, and market value. The Compustat dataset 
finds extensive applications in fields such as finance, corporate analysis, investment decision-
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making, supporting researchers and investment professionals in tasks such as company valuation, 
risk assessment, and portfolio construction.

4.2.4 World Bank Dataset
The World Bank Dataset is a comprehensive resource managed and maintained by the World Bank, 
which extensively collects and provides macroeconomic, social, environmental, and development 
data from countries and regions worldwide. This dataset includes multidimensional information such 
as a country’s Gross Domestic Product (GDP), population statistics, education levels, poverty rates, 
environmental indicators, and offers a range of specialized thematic data in areas like infrastructure, 
agriculture, urban development, and more. It aims to support research, policymaking, and international 
development efforts. Researchers and policymakers can use the World Bank dataset to analyze global 
development trends, conduct socio-economic research, assess policies, and formulate international 
cooperation projects, thereby enhancing their ability to predict and assess financial risks effectively.

4.3 Evaluation Metrics
Multiple evaluation metrics are used in the study to comprehensively assess the performance of 
financial risk intelligence monitoring and warning models, ensuring that the models achieve the 
expected performance levels across various aspects. These metrics include accuracy, precision, recall, 
and F1 score. By taking into account the results of these metrics in combination, it is possible to 
assess and compare the performance of different models more comprehensively, thereby providing 
a more reliable basis for financial risk assessment.

4.3.1 Accuracy
Accuracy is used to evaluate the performance of a model in classification tasks. It measures the 
proportion of correctly classified samples by the model out of the total number of samples, typically 
expressed as a percentage. Specifically, accuracy represents the model’s ability to correctly classify 
samples into their respective categories. The formula for calculating accuracy is as follows:

Accuracy TP TN
TP FP FN TN

=
+

+ + +
	

In this context, TP represents the number of risk events correctly identified as risk events, TN 
represents the number of normal cases correctly identified as normal cases, FP represents the number 
of normal cases incorrectly identified as risk events, and FN represents the number of risk events 
incorrectly identified as normal cases.

4.3.2 Precision
Precision focuses on the accuracy of a model’s predictions for the positive class (e.g., risk events). 
Precision represents the proportion of samples correctly predicted as the positive class out of all 
samples predicted as the positive class by the model. Its formula for calculation is as follows:

Pr ecision TP
TP FP

=
+

	

Precision’s higher values indicate greater accuracy in the model’s predictions for the positive 
class. A high precision implies that the model rarely misclassifies negative cases as positive, making 
it crucial in applications like financial risk monitoring to avoid incorrect risk alerts.
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4.3.3 Recall
Recall measures the model’s ability to successfully identify the positive class (such as risk events). 
It represents the proportion of samples that the model correctly predicts as the positive class out of 
all the actual positive class samples. The formula for calculating recall is as follows:

Re call TP
TP FN

=
+

	

where FN represents the number of samples that the model incorrectly predicts as the negative class, 
i.e., the number of risk events incorrectly identified as normal cases.

Higher values of recall indicate better performance by the model in capturing actual positive class 
samples. A high recall means that the model can effectively discover potential risk events. However, 
in some cases, a high recall may come with a lower precision. Therefore, in practical applications, 
it is necessary to strike a balance between recall and precision to meet specific task requirements.

4.3.4 F1-Score
The F1 score (F1-Score) is a comprehensive performance metric for classification models that 
combines precision and recall. It is used to provide a holistic assessment of a model’s performance. 
The F1 score aims to balance a model’s prediction accuracy for the positive class (precision) and its 
ability to capture the positive class (recall), making it particularly useful for addressing class imbalance 
issues. The formula for calculating the F1 score is as follows:

F Score Precision Recall
Precision Recall

1
2

� =
⋅ ⋅

+
	

Higher values of the F1 score indicate that the model performs better in balancing precision and 
recall. When both precision and recall of the model are high, the F1 score will also be high, and vice 
versa. In applications like financial risk assessment, researchers may place greater emphasis on the 
F1 score because it provides a comprehensive performance evaluation by considering both model 
errors and omissions.

4.4 Experimental Comparison and Analysis
In the research of intelligent monitoring and warning models for financial risk, we utilized four crucial 
financial datasets: the Fama-French Three-Factor Dataset, CRSP Dataset, Compustat Dataset, and 
World Bank Dataset. These datasets contain extensive information on financial markets and companies, 
covering areas such as stock markets, financial data, and macroeconomic indicators, providing us 
with rich data resources. To evaluate the performance of our model in financial risk monitoring 
tasks, we employed four core evaluation metrics: Accuracy, Precision, Recall, and F1-Score. These 
metrics have different strengths and can help us gain a comprehensive understanding of the model’s 
performance, thereby providing valuable insights for financial risk management and decision-making.

In this section, first, we compared the performance of our approach with methods proposed by 
Du, Peng et al., Li, Xuetao et al., and others. We presented the results of the experimental comparisons 
and analyses using tables and visualizations. Additionally, we conducted comparative analyses of 
different models in terms of parameter count, inference time, and training time.

From the results in Table 1, we can analyze and compare the performance of different models on 
the Fama-French Three-Factor Dataset and CRSP Dataset. First, on the Fama-French Three-Factor 
Dataset, our model excels in all four metrics: Accuracy, Precision, Recall, and F1-Score, achieving 
94.37%, 93.21%, 91.65%, and 92.42%, respectively. Specifically, Li, Xuetao et al.’s method also 
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performs well on this dataset, with high precision and recall. Compared to Du, Peng et al.’s method, our 
approach shows improvements of 5.16% in recall and 6.89% in F1-Score.Next, on the CRSP Dataset, 
our model also outperforms others, with the highest values in all metrics, including an accuracy of 
93.84% and an F1-Score of 92.91%. This indicates that our method exhibits excellent performance 
on this dataset as well. Li, Xuetao et al.’s model also performs well on the CRSP Dataset, especially 
in terms of precision and F1-Score. Regin, R et al.’s model shows relatively lower performance on 
this dataset, particularly in precision. By comparing the metrics on both datasets, it is evident that our 
method outperforms other models in terms of overall performance. Additionally, we have visualized 
the results from Table 1 for comparison, as shown in the following Figure 6.

Table 2 displays the performance of different experimental methods on the Compustat Dataset 
and World Bank Dataset. On the Compustat Dataset, our method achieves significantly better results 
in terms of accuracy, precision, recall, and F1-Score, with values of 95.13%, 93.42%, 91.49%, and 
92.44%, respectively, outperforming other methods. Compared to Li, Xuetao et al.’s method, our 
approach improves accuracy and F1-Score by 8.91% and 4.03%, respectively. Overall, our model 
exhibits remarkable performance improvements on the Compustat Dataset, demonstrating higher 
classification accuracy and overall performance. On the World Bank Dataset, our method also 
performs exceptionally well. It achieves an accuracy of 94.34%, which is 6.54% higher than the 
average performance of other methods. Precision is 92.54%, surpassing the average performance of 
other methods. Recall is 92.31%, which is 5.36% higher than other methods, and the F1-Score reaches 

Table 1. Comparison of accuracy and other aspects between the method in this article and other methods under Fama-French 
three-factor dataset and CRSP dataset

Figure 6. Under the Fama-French three-factor dataset and CRSP dataset, the comparison of the accuracy of this method and 
other methods is visually displayed
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92.42%, 4.01% higher than the average performance of other methods. These results indicate that our 
model demonstrates excellent stability and generalization across different financial datasets, further 
validating the reliability of our approach. Similarly, we have visualized the results from Table 2 for 
comparison, as shown in Figure 7.

From the data in Table 3, it can be observed that we conducted a comparative analysis of parameter 
count, inference time, and training time between other methods and our method on four datasets. First, 
on the Fama-French Three-Factor Dataset, our model has a relatively low parameter count (336.34M), 
indicating its efficiency in terms of model storage and computational resources, making it capable of 
running in resource-constrained environments. Compared to other methods, our model demonstrates 
excellent performance in inference time, requiring only 213.58ms, showcasing its potential for real-time 

Table 2. Comparison of accuracy and other aspects between the method in this article and other methods under Compustat 
Dataset and World Bank Dataset

Figure 7. Under the Compustat Dataset and World Bank Dataset, the comparison between the accuracy and other aspects of this 
method and other methods is visually displayed

Table 3. Under the four data sets, the method in this article is compared with other methods in terms of parameters and 
other indicators
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monitoring and warning. In terms of training time, our model is also competitive, completing the entire 
training process in just 147.24 seconds, which accelerates model iteration and optimization. On the 
CRSP Dataset, Compustat Dataset, and World Bank Dataset, our model also performs exceptionally 
well. On these datasets, our model has a relatively low parameter count, and both inference time and 
training time are significantly shorter than other methods. Particularly on the CRSP Dataset, our 
model achieves the best training time of 137.91 seconds. These results indicate that our intelligent 
monitoring and warning model for financial risk exhibits efficiency and scalability across different 
financial datasets. These advantages make our model well-suited for practical financial monitoring 
and warning tasks, especially when analyzing and applying it across multiple datasets. Similarly, we 
have visualized the results from Table 3 for comparison, as shown in Figure 8.

In Table 4, we compared the performance metrics, including precision, recall, and F1-Score, of 
different models on the Fama-French Three-Factor Dataset and CRSP Dataset. On the Fama-French 
Three-Factor Dataset, the baseline model has a precision of 76.82%, recall of 74.92%, and an F1-Score 
of 75.86%. With the addition of an LSTM layer, there is a slight improvement in performance, with 
precision increasing to 81.73%, recall to 80.25%, and F1-Score to 80.98%. Further incorporating the 
Transformer, the performance is enhanced, with precision reaching 87.92%, recall at 86.92%, and 
an F1-Score of 87.42%. Finally, by combining LSTM and Transformer, the model achieves the best 
performance on the Fama-French Three-Factor Dataset, with precision at 93.21%, recall at 91.65%, 
and an F1-Score of 92.42%.On the CRSP Dataset, a similar trend is observed. The baseline model 
performs relatively poorly, with precision at 74.94%, recall at 72.42%, and an F1-Score of 73.66%. 
Adding LSTM and Transformer individually improves performance, but the best performance is still 
achieved when combining LSTM and Transformer, with precision at 94.62%, recall at 91.27%, and 
an F1-Score of 92.91%. These results indicate that on both datasets, the model that combines LSTM 
and Transformer achieves the best performance in financial risk monitoring, playing a crucial role 

Figure 8. Under four data sets, the comparison of parameters and other indicators between this method and other methods is 
visually displayed

Table 4. In ablation experiments on Fama-French Three-Factor Dataset and CRSP Dataset, precision, recall, and F1-score 
metrics are selected for evaluation
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in improving model accuracy and recall. Additionally, we have visualized the results from Table 4 
for comparison, as shown in Figure 9.

In Table 5, we conducted a comparative analysis of experimental results on the Compustat Dataset 
and World Bank Dataset. On the Compustat Dataset, the baseline model’s performance exhibited a 
precision of 75.25%, recall of 73.42%, and an F1-Score of 74.32%. When we introduced an LSTM 
layer, the performance significantly improved, with precision increasing to 82.93%, recall to 79.64%, 
and F1-Score to 81.25%. With the further addition of the Transformer, the performance improved 
once again, with precision reaching 86.27%, recall at 83.35%, and an F1-Score of 84.78%. Finally, 
the model that combined LSTM and Transformer achieved the best performance on the Compustat 
Dataset, with precision at 93.42%, recall at 91.49%, and an F1-Score of 92.44%.On the World Bank 
Dataset, a similar trend was observed. The baseline model’s performance was relatively low, with 
precision at 72.83%, recall at 75.28%, and an F1-Score of 74.03%. Adding LSTM and Transformer 
individually improved performance, but the best performance was still achieved when combining 
LSTM and Transformer, with precision at 92.54%, recall at 92.31%, and an F1-Score of 92.42%. 
This series of results emphasizes the outstanding performance of the model that combines LSTM 
and Transformer in financial risk monitoring, significantly enhancing model accuracy and recall, 
especially across different datasets. Finally, I have visualized the results from Table 5 for comparison, 
as shown in Figure 10.

Figure 9. Visual comparison of precision, recall, and F1 score metrics in ablation experiments on Fama-French Three-Factor 
Dataset and CRSP Dataset

Table 5. In ablation experiments on Compustat Dataset and World Bank Dataset, precision, recall, and F1-score metrics are 
selected for evaluation
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5. DISCUSSION

Our research aims to explore a novel deep learning model that combines the strengths of LSTM and 
Transformer for financial risk monitoring and warning. We conducted extensive experiments on 
multiple financial datasets to validate the exceptional performance of this model. The experimental 
results demonstrate that our deep learning model excels in key metrics such as accuracy, precision, 
recall, and F1-Score, affirming its significant advantages in the field of financial risk. However, 
it’s important to acknowledge some limitations in our study. Firstly, the datasets we used still have 
room for improvement in terms of scale and diversity to better reflect the variability of real financial 
markets. Secondly, the model’s computational resource requirements are relatively high, which 
may pose deployment challenges in practical scenarios. Further research is needed to optimize the 
computational efficiency of the model. Thirdly, the interpretability of deep learning models remains 
a subject that requires deeper investigation to help financial practitioners better understand the 
decision-making processes of the models. Additionally, our research did not consider the impact of 
external factors on risk, such as changes in the macroeconomic environment and policy adjustments. 
This is an important direction for future research. Finally, model performance may vary in different 
financial markets or industries, necessitating further experimental validation.

On the other hand, our experimental results suggest that the deep learning model combining 
LSTM and Transformer may offer new insights for financial risk monitoring. Beyond the improvement 
in accuracy and recall, our model can detect potential risk signals at an earlier stage, facilitating 
proactive risk management strategies. Furthermore, our research underscores the importance of data 
quality in model performance, emphasizing the critical role of data preprocessing and cleansing in 
financial risk monitoring. Future research directions include exploring the applicability of this model 
in different financial domains and further enhancing model interpretability. Our study validates the 
potential value of the proposed hybrid model in financial data analysis, but challenges related to 
interpretability and data quality need to be addressed further.

In the future, we will work on improving the efficiency of the model to accommodate larger-
scale financial data and consider the impact of external factors. Additionally, we plan to apply the 
model to real financial markets to assess its practical utility in risk monitoring and decision-making. 
In summary, our research highlights several key advantages of the model we proposed, including 
enhanced predictive accuracy and earlier risk detection, providing new insights and opportunities for 
future research and development in the field of financial risk management.

Figure 10. Visual comparison of precision, recall, and F1 score metrics in ablation experiments on Compustat Dataset and World 
Bank Dataset
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6. CONCLUSION

In this study, we are committed to advancing innovation in the field of financial risk monitoring 
by introducing deep learning technologies, specifically Long Short-Term Memory (LSTM) and 
Transformer models. Our contributions are multifaceted. Firstly, the incorporation of the LSTM model 
successfully extends traditional monitoring methods, enabling our model to more effectively capture 
the long-term dependency relationships in time series data within financial markets. This is crucial for 
predicting risk events in financial markets, as traditional methods may struggle to accurately capture 
these complex temporal dynamics. Secondly, the introduction of the Transformer model further 
emphasizes our focus on nonlinear relationships and complex dynamics in financial markets. Compared 
to traditional statistical and linear models, the Transformer model, with its self-attention mechanism, 
more flexibly captures nonlinear relationships in the data, enhancing our model’s adaptability to 
complex market changes. Most importantly, we have innovatively blended deep learning techniques 
with traditional statistical and machine learning approaches, creating a new methodological paradigm. 
This fusion allows our model to comprehensively understand the dynamic changes in financial 
markets, improving predictive accuracy and market sensitivity.In summary, our research brings a 
fresh perspective and methodology to the field of financial risk monitoring. Compared to existing 
work, our model possesses unique advantages in capturing nonlinear relationships, multidimensional 
data, and long-term dependencies in time series. This innovation not only provides new directions for 
theoretical research but also offers a critical tool for practical risk management in financial markets. 
In the future, we aim to further optimize the efficiency of the model, expand its application to larger-
scale financial datasets, and consider the impact of external factors to validate its utility in real-world 
applications. Through continued research, we anticipate bringing more innovation and opportunities 
to the field of financial risk management.
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