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ABSTRACT

The recommender system can be viewed as a matrix completion problem, which aims to predict 
unknown values within a matrix. Solutions to this problem are categorized into two approaches: 
transductive and inductive reasoning. In transductive reasoning, the model cannot be applied to 
new cases unseen during training. In contrast, IGMC, the state-of-the-art inductive algorithm, only 
requires subgraphs for target users and items, without needing any other content information. While 
the absence of a requirement for content information simplifies the model and enhances transferability 
to new tasks, incorporating content information could still improve the model’s performance. In 
this article, the authors introduce Hi-GMC, a hybrid version of the IGMC model that incorporates 
content information alongside users and items. They present a novel graph model to encapsulate the 
side information related to users and items and develop a learning method based on graph neural 
networks. This proposed method achieves state-of-the-art performance on the MovieLens-100K 
dataset for both warm and cold start scenarios.
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INTRODUCTION

In the vast ocean of information, navigating to the desired data has become a formidable challenge, 
thereby amplifying interest in recommender systems. These systems streamline the process for users, 
enabling them to discover the information they need more efficiently and swiftly, while also offering 
companies an avenue to enhance service engagement and foster business advantages (Zamanzadeh 
Darban & Valipour, 2022).

Recommender systems align predominantly with two main frameworks: content-based methods 
and collaborative filtering methods. Content-based methods suggest items that mirror the user’s 
historical preferences. In contrast, collaborative filtering works by leveraging the aggregated 
preferences of other users to predict what an individual might like. While content-based strategies 
might limit suggestions to items closely related to those previously preferred by the user, thus narrowing 
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the breadth of recommendations, collaborative filtering broadens the spectrum of suggestions by 
reaching beyond similarities in content alone (Almazro et al., 2010).

Among various approaches to implementing collaborative filtering, matrix completion—
organizing a matrix with users on one axis and items on the other—has gained prominence (Candès 
& Recht, 2009). By hypothesizing that the rating matrix is of low rank, numerous leading matrix 
completion algorithms employ factorization techniques, which have proven to be highly effective. 
However, matrix factorization faces an inherent limitation: it is transductive (Koren et al., 2009). This 
means that the latent features learned from users and items in the given dataset cannot be applied 
to new users or items not seen during training. Consequently, changes in the rating matrix, such as 
updates or the addition of new data, often necessitate a full retraining to generate new embeddings. 
To overcome this challenge, various studies have introduced methods to achieve inductive matrix 
completion (Michalski, 1983). One notable study in this area is the inductive graph-based matrix 
completion (IGMC) model (Zhang & Chen, 2020). IGMC leverages a graph neural network (GNN) 
that processes 1-hop subgraphs around user-item pairs from the rating matrix, associating these 
subgraphs with their respective ratings to enable inductive generalization effectively.

Although the IGMC model successfully introduced inductiveness into matrix completion, it also 
underscored a critical limitation inherent in collaborative filtering models by strategically avoiding 
content information to capitalize on its inductive strengths. A critical challenge faced by IGMC is 
the cold-start problem. This occurs when new users or items are introduced into the system without 
enough interaction data to form a reliable recommendation. This issue primarily affects collaborative 
filtering algorithms, which depend on past interactions to make their recommendations. In the 
absence of such data, a collaborative algorithm is unable to make a certain recommendation. Even 
with a minimal amount of interaction data, while a collaborative algorithm may still be able to offer 
recommendations, the reliability and quality of these recommendations are likely to be substandard.

Another key limitation of IGMC lies in its inability to finely integrate and weigh the preferences of 
neighboring users. Consider the scenario, depicted in Figure 1, where movie B might be recommended 
to user A. The graphs in Figure 1 illustrate interactions between users and movies with a 1-to-5 rating 
scale. In the graph on the left, since user A and all other users rate movies highly together except for 
movie B, the preferences of the other users influence the decision to recommend movie B to user 
A in collaborative filtering. However, in the graph, ratings for movie B diverge significantly among 
other users, and thus its recommendation to user A becomes less clear-cut. The addition of content 
information, like movie genres, can change this situation. The graphs on the right incorporate genre 
information, suggesting that recommendations for movie B, identified as a romance, could differ on 
the basis of the genres of movies that other users have rated. Assuming the scenario where ratings 
for the same genre have more weight than ratings for different genres, movie B might be strongly 
recommended to user A in the graph at upper right, since the neighbor user’s rating for romance has 
more weight than that for thriller. Conversely, movie B might not be recommended to user A in the 
graph at lower right. Therefore, incorporating content information into collaborative filtering not 
only improves performance but also allows for more tailored recommendations.

In this study, we introduce a cutting-edge hybrid recommendation technique, termed hybrid 
inductive graph matrix completion (Hi-GMC), which enhances the accuracy of inductive matrix 
completion and its effectiveness in cold-start scenarios. Unlike IGMC, which foregoes the use of 
content information to optimize inductive generalization, Hi-GMC leverages additional content-
related clues alongside user-item interaction data. On the MovieLens 100K dataset (Miller et al., 
2003), Hi-GMC outperformed most contemporary leading models (Code, 2022), establishing a new 
state of the art in recommendation system performance.

In the subsequent sections of this paper, we first review literature pertinent to our study before 
detailing the methodologies and mathematical formulations underpinning IGMC. In the method 
section, we elaborate on the approaches and mathematical frameworks that form the foundation 
of IGMC, offering comprehensive insights into the mechanisms driving our proposed model. This 
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account includes an in-depth exploration of the techniques and algorithms employed to enhance 
recommendation accuracy and address cold-start challenges in recommendation systems. In the 
experimental analysis, we conduct an exhaustive evaluation of Hi-GMC’s performance in comparison 
to other leading methods using the MovieLens 100K dataset, followed by a discussion of the findings. 
We conclude by summarizing our research and highlighting its contributions.

RELATED WORK

Recommender System
Recommendation systems are generally divided into two primary methodologies: content-based and 
collaborative filtering. Content-based methods offer suggestions by aligning with the user’s past 
preferences. For example, if a user shows interest in a specific item, the system will recommend 
similar items. This approach, while straightforward, tends to circumscribe the variety of suggestions, 
often overlooking the potential for serendipity (the joy of unexpected discoveries) and novelty (the 
introduction to previously unknown items) in recommendations (Maksai et al., 2015). In contrast, 
collaborative filtering expands recommendation horizons by leveraging the collective preferences of 
users with similar tastes. It operates on the assumption that if two users share similar interests, they 
are likely to appreciate each other’s favorites, thus offering a broader range of recommendations. 
Despite the acclaim collaborative filtering has received for its role in enhancing recommendation 
diversity, it is imperative to recognize the value of content-specific data, which may be overlooked 
by models that are based solely on interaction. Consequently, the industry frequently adopts a hybrid 
approach, combining the strengths of both content-based and collaborative filtering, to deliver more 
comprehensive and nuanced recommendations (Almazro et al., 2010; Berg et al., 2017; Cai et al., 
2021; Candès & Recht, 2009; Code, 2022; Zamanzadeh Darban & Valipour, 2022; Grover & Leskovec, 
2016; Hamilton et al., 2018; He et al., 2020; Kim et al., 2021; Koren et al., 2009; Lam et al., 2008; 
Liu et al., 2020; Lops et al., 2011).

In the research conducted on recommenders, one area that has recently gained attention is 
fairness (Giap et al., 2022; Deldjoo et al., 2024). A drawback of recommendation systems is the 
issue of confirmation bias, which arises when diverse options that might be of interest are blocked, 

Figure 1. Collaborative filtering recommender systems without vs. with content information
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and recommendations are limited mainly to popular items. Additionally, with the advancement of 
large language model (LLM) technologies, research on recommendation systems utilizing these 
technologies is also being actively conducted (Fan et al., 2023). This research includes not only 
studies that leverage the characteristics of LLM networks (Cui et al., 2023) but also research into the 
explainability of LLM’s recommendation results (Gao et al., 2023).

Graph Neural Networks for Recommender System
Recent advancements in recommendation models have seen the integration of GNNs in various 
innovative ways (Berg et al., 2017; Monti et al., 2017). These models leverage the natural graph 
structure of user-item interactions, enhancing recommendation systems significantly. LightGCN 
simplifies the graph convolutional network (GCN) framework by removing nonessential components 
such as feature transformation and nonlinear activation functions, focusing instead on neighborhood 
aggregation for improved recommendations (He et al., 2020). On the other hand, the graph convolutional 
matrix completion (GCMC) employs the GCN approach, showing remarkable performance but falling 
short in capturing higher-order connectivity because of its single-layer structure (Liu et al., 2020). 
Moreover, it faces challenges with memory efficiency, as it requires loading the entire graph into 
memory simultaneously (Berg et al., 2017).

A common limitation among these models is their transductive nature, necessitating retraining to 
accommodate new, untrained nodes. In contrast, GraphSage extends GCN capabilities for segmental 
graph training, making it suitable for inductive settings where the model learns from parts of the 
graph (He et al., 2020). Similarly, the IGMC model adopts an inductive approach, learning local 
subgraph patterns through new node labeling, although it struggles to leverage user or item content 
information effectively. Content information, which encompasses a wealth of data beyond simple 
interaction details, plays a crucial role in enhancing recommendation quality. Attempts to incorporate 
content information into IGMC by converting it into feature vectors for final embedding have shown 
negligible performance improvements, indicating a challenge in utilizing content information 
effectively (Zhang & Chen, 2020).

PinSage represents a step forward by integrating node content into the GraphSage framework, 
tailored for platforms like Pinterest that have abundant node content information. However, its utility is 
limited in environments lacking rich node content (Ying et al., 2018). Another approach, CoRGi, adds 
content attention to the GNN model, enabling personalized recommendations through this mechanism, 
but it still requires substantial node content and retains the transductive model limitations (Kim et al., 
2021). The challenges highlighted for existing inductive models, such as the ineffectiveness of IGMC 
in harnessing content information and the dependency on rich features for models like PinSage and 
CoRGi, underscore the ongoing quest for optimizing GNN-based recommendation systems (Ying et 
al., 2018; Zhang & Chen, 2020).

Cold Start Problem
A sufficient amount of data is required to make high-quality recommendations to users. However, not 
every organization possesses large datasets, and newly introduced users and items often lack enough 
interaction data to generate reliable recommendations. This dilemma is known as the cold-start 
problem, in which the absence of adequate data hampers the ability to offer accurate recommendations 
(Lam et al., 2008). Despite extensive research in recommendation systems, the cold-start issue 
persists as a fundamental challenge. Utilizing content information is a common strategy to mitigate 
this problem, but basic application methods have shown limited effectiveness.

The heterogeneous graph neural recommender (HGNR) model presents an innovative solution 
designed to address the cold-start challenge within heterogeneous graphs. It enhances the utilization 
of content information by expanding the traditional user-item matrix into a combined (user+item)-
by-(user+item) matrix. This expansion includes additional connections between users based on 
social network insights and between items that share similar reviews, thereby enriching the graph’s 
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structure. Such an approach enables the content information to be integrated more effectively than 
merely including it as a feature attribute, offering a more nuanced and comprehensive framework for 
overcoming the cold-start obstacle (Liu et al., 2020).

METHODS

Preliminaries
The IGMC model operates by predicting the relationship between a target user and an item through 
the analysis of local subgraph patterns. Given the inefficiency of training on the entire graph, it 
instead focuses on a 1-hop subgraph surrounding the target user and item. This process includes 
relabeling within the subgraph, a process in which target users and items are assigned labels 0 and 1, 
respectively, while their 1-hop neighbors receive labels 2—i.e., number of hops * 2—for users and 
3—i.e., number of hops * 2 + 1—for items. A unique aspect of this approach is that the same user 
or item can receive different labels in different subgraphs, enabling the model to learn inductively 
and adapt its predictions to varying contexts (Zhang & Chen, 2020).

While IGMC shows strong performance as an inductive model, rivalling even some transductive 
models, it falls short in leveraging additional content information effectively. Attempts to enhance its 
performance by incorporating feature vectors directly into the final embedding yielded no substantial 
improvement. In the subsequent sections, considering that content information can greatly aid in 
accurately predicting user preferences, we will integrate content information into the IGMC framework 
more effectively, allowing for a nuanced use of node content to enrich the recommendation process.

Creation of Heterogeneous Graph
Graphs can be divided into two main types: homogeneous and heterogeneous. Homogeneous graphs 
contain only a single type of node and edge, akin to relationships in social networks. Conversely, 
heterogeneous graphs have nodes and edges of multiple types (Wang et al., 2020). Recommendation 
datasets typically fall into the latter category, being heterogeneous in nature (Zhao et al., 2020). 
These graphs comprise nodes that represent users and items. In the case of implicit data, there is 
only a single type of edge, but explicit data may contain various types of edges, each representing 
a different rating level. Despite their complexity, traditional graph-based recommendation systems 
often limit their focus to users, items, and ratings, without exploring beyond these elements, even in 
the context of heterogeneous graphs.

In developing our graph-based recommendation system, we initially create a graph that maps 
interactions between users and items. However, in contrast to traditional approaches, we enrich this 
graph with additional node content that provides deeper insights into the nodes, such as movie genres 
or user demographics. For instance, a movie recommendation graph may include nodes enriched with 
features like movie genre or user gender. An illustration of constructing a graph with this content 
information is provided in Figure 2. For categorical variables (e.g., genre, gender, occupation), the 
nodes can directly represent these categories. Numeric variables, however, need to be categorized 
on the basis of defined intervals for this purpose. During our experiments, we converted numerical 
variables into categorical ones based on specified ranges. The selection of features from node content is 
flexible; one may utilize all available features or selectively use only a few. Through extensive testing, 
we opted to use a single feature for each user and item. This choice was driven by the observation 
that employing the full array of features did not yield a sufficient improvement in performance to 
justify the time inefficiency.

Subgraph Extraction
Training an entire graph in memory is not resource-efficient. Therefore, our approach involves 
extracting 1-hop subgraphs, similar to the method used by IGMC, where a 1-hop subgraph is drawn 
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between the target user and the target item. Although IGMC explored the potential of extending 
beyond 1-hop, Zhang and Chen (2020) found that the marginal gains in performance did not justify 
the additional time required.

In this context, items that the target user has rated become 1-hop neighbors to the target user, and 
conversely, users who have rated the target item become 1-hop neighbors to that item. This expansion 
mirrors the breadth-first search algorithm, extending the graph through layers of direct connections. 
Node content, which is defined by the characteristics of users and items, is inherently incorporated 
into the subgraph once the constituents of the subgraph are selected, seamlessly integrating relevant 
features into the model’s learning process (Zhang & Chen, 2020). In Figure 3, an example subgraph 
is given. The subgraph is constructed from a specific target user-item pair, incorporating all 1-hop 
adjacent users and items. Furthermore, it includes all related feature nodes associated with these users 
and items. The user or item associated with a feature node is called the mother node of the feature node.

Edge Labeling
The rating serves as the edge value connecting users to items. The challenge lies in determining the 
edge value between a feature node and its mother node. Note that the edge value assigned to a feature 
node does not mean any rate of value judgement, but is just for the consistency of graph structure. We 
explored several alternative assignment methods, such as the average rating value or serial numbers, 

Figure 2. Representation of users, items, and all content information as nodes in a heterogeneous graph

Figure 3. Inclusion of all related feature nodes as well as 1-hop item and user nodes in a subgraph from the heterogeneous graph
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as shown in Table 1. As verified in the experimental section, the most effective approach was value 
replication, and thus we adopted this value replication strategy for Hi-GMC.

Let us explain each method by using the examples illustrated in Figure 4. In the initial subgraph 
(a), only the target user and item nodes have the edge values. If the average rating value is applied, all 
feature nodes have the same edge value, which is determined by calculating the average rating scale. 
Supposing 1-5 Likert scale, this average rating scale is 3, and every feature node has the edge value 
of 3 in (b). The subgraph in (c) shows the case of applying the number of features. The target user 
has a single feature node, which has the edge value of 1, and the target item has two feature nodes, 
which have the edge values of 2. For the serial number method, we need to know all types of features. 
In the subgraph (d), we assume that there are only two types of features, gender and genre; the first 
serial number 1 is assigned to gender feature nodes, and the second serial number 2 is assigned to 
genre feature nodes. In the case of the value replication, the edge value of a mother node is replicated 
as those of its feature nodes, as shown in the subgraph (e). The feature nodes of the target user and 
item have the edge values as the replication of the edge value between the target user and item. The 
feature nodes of a 1-hop user (or item) have the replication of the edge value between the 1-hop user 
(or item) and the target item (or user).

Node Labeling
After extracting a subgraph, a new label is assigned to each node. The target user and item are assigned 
0 and 1 are assigned, respectively, and 2 and 3 are used for 1-hop users and items, respectively. Here, 
note that the labels give only topological clues but not semantic ones. We assign labels to feature 
nodes as well, but intend to introduce minimal semantic distinction into labels. First, we distinguish 
the type of feature and its value. For example, if a user is female, the feature type is “gender,” and 
the feature value is “female.” Then, we divide all feature values into four groups. The first group 
contains feature values of the target user, and the second group contains those of the target item. The 
feature values of 1-hop users and those of 1-hop item are classified into the third and fourth groups, 

Table 1. Edge value assignment methods for feature nodes

Method Description

Average rating scale Use the average rating scale for all feature nodes

Number of features Assign the edge value as the number of sibling feature nodes

Serial number Assign a serial number to each distinct feature

Value replication Replicate the edge value of mother node

Figure 4. Edge value assignment methods for feature nodes
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respectively. If a feature value can be classified into multiple groups, we define that the feature value 
is assigned to the first former group in order to make the four groups disjoint. Finally, assuming that 
the zero-base order is arbitrarily assigned to every feature type of user (or item), the label of a feature 
node is calculated as 3+(4i+j), where i is the order of feature type having the value of j-th group.

For example, let us consider the case given in Figure 5. There are six feature values in all: female, 
male, romance, comedy, action, and drama. Thus, the first group is {female}, the second group is 
{romance, comedy}, and the third and fourth groups are {male} and {action, drama}, respectively. 
Notice that although “female” is found in not only the target user’s feature but also 1-hop user’s 
feature, it is contained only in the first group. For the order of features, since user and item have only 
a single feature type in this example, the order of gender is 0, and that of genre is 0 as well. Therefore, 
the label of the target user’s feature node is 4 (=3+(4*0+1)), and those of the target item’s feature 
nodes are 5 (=3+(4*0+2)) together. However, feature nodes of 1-hop users have different labels. 
Since the feature value “female” of the upper 1-hop user is classified into the first group, its label 
is 4 (=3+(4*0+1)), but because the feature value “male” of the lower 1-hop user is classified into 
the third group, its label is 6 (=3+(4*0+3)). Similarly, feature nodes of 1-hop items having value 
of “romance” or “comedy” have labels as 5 (=3+(4*0+2)), and those having value of “action” or 
“drama” have labels as 7 (=3+(4*0+4)).

This node labeling method serves two goals: inductiveness and content-awareness. The 
inductiveness is achieved through simple numbering. Numbers do not depend on specific context, 
but indicate the topological relation. Even if a user or item has a new feature value unseen in training, 
its node label in a subgraph is determined simply by classifying this value into a group. Therefore, 
the trained model can be applied to the new feature value inductively without retraining. In addition, 
we should notice that the feature value grouping is a means for minimal semantic distinction. Even 
though the proposed labeling method does not consider specific feature values, the grouping of values 
reveals common features among 1-hop user (or item) nodes related to the target user (or item). As 
evaluated in the experimental section, this minimal semantic distinction enables the proposed model 
to significantly improve recommendation performance in cold-start cases.

Model Training
The model architecture is based on the design principles of IGMC (Zhang & Chen, 2020). It 
incorporates the relational graph convolutional network (R-GCN), a type of GCN layer, which is 
distinctive for its method of training with varying weights according to the type of edge involved. 
This approach offers a significant benefit: it enables the model to capture the complex patterns within 
graphs more effectively than it would by applying uniform weights. Therefore, Hi-GMC employs 
R-GCN as its core mechanism for the message-passing layer, as formulated in Equation (1):

Figure 5. Example of feature node labeling
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where hi
l means the embedding of node i at layer l, and R denotes the set of edge values presented 

within the graph. For example, in MovieLens, R = {1, 2, 3, 4, 5}. The term Ni
r refers to node i’s 

neighborhood with the edge value of r, and ci,r is the number of neighborhood in Ni
r. W0

l and Wr
l are 

trainable parameter matrices. Equation (1) implies that the embedding of node i at layer (l + 1) is 
calculated by aggregating the embeddings of node i ’s neighbors at layer l using different weights 
for each rating.

The message passing layer processes through a total of L levels, where the output embedding 
from each level serves as the input for the subsequent level. Initially, the input for the first layer is 
derived from one-hot encoding of node labels, which are assigned within the extracted subgraph. 
The final node embedding is obtained by concatenating the embedding from each layer as shown in 
Equation (2) (Zhang & Chen, 2020; Zhang et al., 2018).

x h h h
i i i i

L= …( )concat 0 1, , , 	 (2)

To generate embeddings that represent an entire subgraph, we aggregate the embeddings of 
selected nodes as given in Equation (3). Specifically, Hi-GMC focuses on aggregating the embeddings 
of only the target users, target items, and target feature nodes within the subgraph. This approach 
is adopted because target nodes are deemed more critical than their neighboring nodes, making it 
more effective to concentrate solely on these nodes for aggregation (Zhang & Chen, 2020). The 
message passing layer, by its design, has demonstrated commendable performance by considering 
just the target user and target item embeddings, i.e., xu and xv, respectively. Nevertheless, to achieve 
marginally improved performance, we have also incorporated the embeddings of target feature nodes, 
i.e., xf1, xf2, … .

g x x x x
u v f f

= …( )concat , , , ,
1 2

	 (3)

The final subgraph representation g  serves as the input to a linear layer, which is employed to 
compute the rating r  for the recommendation. In this process, the ReLU activation function, σ, is 
utilized (Zhang & Chen, 2020). This approach is formally described in Equation (4).

r w Wg= ( )s 	 (4)

We employ mean squared error (MSE) as the loss function, where R
u v,( )  represents the true 

rating, and R u v

,( )  represents the predicted ratings. A pair u v,( )  signifies a user-item combination 
that exists within the rating matrix (Zhang & Chen, 2020), as shown in Equation (5).

 =
( )

∑ −( )1 2

u v
R R
u v u v

,
, ,

 	 (5)
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The R-GCN layer operates with parameters tailored to various types of ratings. However, this 
approach has a limitation: it does not account for the relative values of the edges. For instance, 
although a rating of 4 is numerically closer to 5 than to 1, the R-GCN treats ratings 1, 4, and 5 as 
distinct categories without considering their numerical proximity. To address this issue, we normalize 
adjacent ratings to yield matrices that reflect their similarity (Zhang & Chen, 2020).

Feature Selection
Each dataset contains a vast array of feature information, making it crucial to discern which features 
to utilize for constructing the graph. Among these features, some are pivotal for predictions, while 
others are less important. Ideally, selecting the graph structure that delivers optimal performance 
would involve experimenting with every possible feature combination. However, given the extensive 
diversity of feature combinations, conducting such exhaustive experiments is impractical. Therefore, 
we assessed the simplest subset of feature combinations—the 1:1 user-item pairings—against the 
comprehensive approach where all features are included. Our findings, detailed in the experimental 
section, reveal instances where selected 1:1 combinations outperformed the all-inclusive approach. 
Moreover, limiting the scope to a subset of side information proves to be more memory-efficient. 
Thus, this paper introduces a weighted voting ensemble method tailored for viable 1:1 combinations, 
aiming to enhance accuracy.

Voting is an ensemble technique that determines the final output through a majority-vote principle. 
In weighted voting, each model is assigned a varying weight based on its confidence level. However, 
this voting method is applied predominantly in classification tasks and is not suitable for regression 
scenarios (Mendes-Moreira et al., 2012). Therefore, we have adapted the weighted voting approach 
as detailed in Equation (6).

r
p

p
r

i N

i
i

 =
∈
∑

sum

	 (6)

where N  represents the total number of models, each based on every possible 1:1 feature combination. 
p
i
 denotes the performance of each individual model, while p

sum
 is the cumulative performance of 

all models. Consequently, the final rating is calculated by allocating weights in proportion to the 
performance metrics of all models.

EXPERIMENTS

Dataset and Experimental Setup
We carried out studies utilizing the MovieLens 100K dataset to support the Hi-GMC project. This 
dataset is designed for movie recommendation purposes, comprising 100,000 ratings across 1,682 
movies from 943 users. Out of the total 100,000 rating cases, we allocated 60,000 ratings for training, 
20,000 for validation, and the remaining 20,000 for testing. Each rating is explicit, spanning from 1 
to 5, with every user contributing a minimum of 20 ratings. Users are associated with supplementary 
demographic details, including gender, age, and occupation. Additionally, movies are cataloged with 
their titles, genres, and release years. The dataset classifies movies into 19 distinct genres (Miller et 
al., 2003).

We conducted experiments using a single Nvidia TITAN XP GPU. After the subgraphs are 
extracted by the CPU, the GPU focuses solely on training, allowing for efficient training with reduced 
memory requirements. Our training protocol included 30 epochs, a learning rate of 0.001, and the Adam 
optimization algorithm. We incorporated four message-passing layers into the model’s architecture. 
To mitigate overfitting, we applied an edge dropout with a rate of 0.2 during the training process.
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Edge Labeling Test
As mentioned in the Edge Labeling section, we carried out experiments to evaluate the edge values 
connecting user or item nodes with feature nodes, focusing on the genre feature from the MovieLens 
100K dataset for performance comparison. As shown in Table 2, the efficacy of these experiments 
was evaluated on the basis of the root mean squared error (RMSE). RMSE represents the square root 
of the MSE, which itself is the average of the squared differences between actual and predicted values. 
This metric serves as an indicator of the model’s accuracy in forecasting actual ratings, with a lower 
RMSE signifying higher prediction accuracy. The technique of replicating edge values demonstrated 
the best performance in comparison to other methodologies.

Feature Selection Test
The Hi-GMC model is capable of utilizing multiple pieces of content information, offering the 
flexibility to select different combinations. This process resembles the selection of a meta-path in 
a heterogeneous graph (Cai et al., 2021). We conducted experiments with various combinations of 
features on the MovieLens 100K dataset.

Utilizing the full set of features resulted in an RMSE of 0.861, indicating commendable 
performance. However, subsequent experiments revealed superior performance in terms of time 
and memory efficiency when a single feature was selected for each user and item. According to the 
results presented in Table 3, the optimal feature combination was identified as the pair of genre and 
gender, though other combinations also yielded satisfactory results. Furthermore, as discussed in 
Feature Selection section, we adapted the weighted voting technique to experiment with ensembles 
of 1:1 combination models. This modification led to an improved performance, lowering the RMSE 
to 0.851. It was observed that the graph structure is better understood when evaluating each feature 
combination individually, rather than aggregating all features together.

Table 2. Experiment Results of Edge Value Determination

Method RMSE

Average rating scale 0.946

Number of features 0.950

Serial number 0.923

Value replication 0.901

Table 3. Performance comparison of Hi-GMC by changing feature combinations

Use Features RMSE

gender, genre 0.855

gender, year 0.885

occupation, genre 0.860

occupation, year 0.880

age, genre 0.866

age, year 0.872

weighted ensemble 0.851

all features 0.861
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Warm Start Test
Our model, Hi-GMC, was benchmarked against several notable graph-based recommendation 
models, including GC-MC, PinSage, GHRS, GraphRec, and IGMC, drawing from the works of 
Berg et al. (2017), Zamanzadeh Darban & Valipour (2022), Rashed et al. (2019), Ying et al. (2018), 
and Zhang & Chen (2020). GC-MC operates as a transductive model, utilizing one-hot encoding 
to differentiate nodes, but its efficiency is limited by the requirement to load the entire graph into 
memory for training. PinSage, in contrast, is an inductive model that leverages rich feature vectors 
and employs importance-based neighbor selection through random walks instead of simple k-hop 
subgraph extraction. However, PinSage’s dependence on extensive side information (owing to its 
having been originally designed for image recommendations on Pinterest) may limit its effectiveness 
in other contexts. GHRS, a hybrid model, enhances feature extraction through the integration of 
autoencoders, demonstrating strong performance on the MovieLens dataset. GraphRec addresses 
the challenge of sparse user attributes due to privacy concerns by embedding users and items into 
a shared latent space, effectively operating without extensive side information. Finally, IGMC, the 
precursor to Hi-GMC, emphasizes memory efficiency by extracting 1-hop subgraphs and focuses on 
learning graph structures inductively, without relying on side information.

As detailed in Table 4, Hi-GMC outperformed all other models in our comparison, achieving 
a state-of-the-art RMSE of 0.855 on the MovieLens 100K dataset. This benchmark includes not 
only the models evaluated in this study but also those listed on the authoritative ranking platform, 
paperswithcode.com. When compared to the least effective combination of gender and year highlighted 
in Table 3, Hi-GMC’s performance exceeds that of the existing SOTA. Furthermore, while models 
like GC-MC (Berg et al., 2017) and GraphRec (Rashed et al., 2019) show negligible performance 
variation with the inclusion of content information, Hi-GMC demonstrates a notable enhancement 
over IGMC, despite the structural similarities between the two. This result underscores the efficiency 
of Hi-GMC’s graph structure in processing and learning from feature data.

Cold Start Test
We carried out cold-start tests to evaluate Hi-GMC against IGMC, focusing on the challenges posed by 
the sparsity of interactions among sub-users with low activity. IGMC, a model that learns from graph 
patterns, does not address cold-start scenarios (Zhang & Chen, 2020). However, Hi-GMC performed 
better in cold-start situations. Our experiment was designed on the premise that no preference 
information is available for the target user within the MovieLens 100K dataset. Although learning 

Table 4. Test results on Movielens 100K

Model Inductive Content RMSE

GC-MC no no 0.910

GC-MC+Feat no yes 0.905

GraphRec no no 0.904

GraphRec+Feat no yes 0.897

GHRS no yes 0.887

IGMC yes no 0.905

PinSage yes yes 0.951

Hi-GMC yes yes (gender, genre) 0.855

Hi-GMC yes yes (weighted ensemble) 0.851
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patterns from graphs is generally less effective for cold starts (Zhang & Chen, 2020), we showed that 
the inclusion of feature nodes in Hi-GMC could offer relative improvements (Prando et al., 2017).

First, we assessed the performance of the bottom 3 ~ 20% of users based on their interaction 
frequency. In the MovieLens 100K dataset, the minimum interaction count is 20, with 32 users 
(approximately 3%) having exactly 20 interactions. Figure 6(a) illustrates that the performance 
disparity between IGMC and Hi-GMC widens as the number of interactions decreases, approaching 
a cold-start scenario.

For the sparsity test, we generated a sparse graph by randomly eliminating edges. The performance 
impact was then evaluated across varying levels of sparsity, progressively set at 0.2, 0.1, 0.05, 

Figure 6. (a) RMSE results for various ratios of lower users and (b) RMSE Results for various sparsity ratios
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0.01, and 0.001. As depicted in Figure 6(b), the performance gap between IGMC and Hi-GMC 
widened in correlation with increased sparsity. These experiments demonstrate Hi-GMC’s superior 
recommendation capability in sparse contexts compared to IGMC, due to its ability to leverage side 
information to compensate for the lack of interactions. This advantage is achieved by the relational 
benefits garnered from structuring the content information into the graph.

CONCLUSION

In this study, we introduced Hi-GMC, a model that encapsulates side information within nodes and 
utilizes inductive training. Despite sharing a structural similarity with the IGMC model, Hi-GMC 
demonstrates markedly enhanced performance. It outperforms both transductive models and other 
models that incorporate content information. Notably, Hi-GMC also exhibits superior handling of 
the cold-start problem in comparison to IGMC. A significant benefit of our approach is the ability to 
train feature nodes while preserving inductive properties, eliminating the need for retraining with the 
introduction of new feature nodes. This method, pioneered by Hi-GMC, holds potential applicability 
across various graph-based recommendation models.

Hi-GMC distinguishes itself by not merely treating side information as vectors but integrating 
it directly into the graph structure. This novel approach is expected to surpass traditional methods 
that are reliant on feature vectors. Furthermore, the inductive feature training opens avenues for 
transferring learning across distinctly different datasets, an aspect we aim to explore in future 
research. We hope Hi-GMC sets a new precedent for incorporating feature information into graph-
based recommendation systems.
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