International Journal on Semantic Web and Information Systems
Volume 20 - Issue 1

Digital Copyright Management
Mechanism Based on Dynamic
Encryption for Multiplatform Browsers

Ming-Te Chen, National Chin-Yi University of Technology, Taiwan*
https://orcid.org/0000-0001-9583-4419

Yi Yang Chang, National Chin-Yi University of Technology, Taiwan
Ta Jen Wu, National Chin-Yi University of Technology, Taiwan
https://orcid.org/0009-0003-6731-8187

ABSTRACT

In recent years, the internet and smart devices have developed rapidly. Many people no longer rely on
newspapers, magazines, or television to receive news. They can see the latest news using computers
or mobile phones. According to a study by the Taiwan Internet Information Center, nearly 90%
of Taiwanese people have used the internet. Many online streaming services have emerged, and
people can easily watch movies and TV programs through computers or mobile phones. Hence,
some websites use digital copyright management mechanisms to protect videos from being directly
downloaded. However, 30% of websites use AES-128 encryption to protect their content. If the key
access mechanism is not well protected, the encryption methodology may be useless. Therefore, this
paper proposes a cross-platform digital copyright management mechanism for adaptive streaming.
With this mechanism, users do not need to download additional applications, as the mechanism
implements Web-Assembly language through the browser.

KEYWORDS

Adaptive Streaming, Digital Right Management, Dynamic Encryption, RSA Encryption, Web-Assembly
Language

INTRODUCTION

With the advancement of technology and the popularization of the internet, many people have begun
chatting or watching news or other videos online. Figure 1 depicts the 2019 Taiwan Internet Report
released by the Taiwan Internet Information Center (Taiwan Network Information Center, 2019).
According to this report, 89.6% of the domestic population older than 12 has used the internet, and
85.6% have used audio-visual and live broadcasts. This report also demonstrates that most people
watch videos through the internet. Modern people no longer obtain news and entertainment through

DOI: 10.4018/1JSWIS.334591 *Corresponding Author

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,
provided the author of the original work and original publication source are properly credited.

https://orcid.org/0000-0001-9583-4419
https://orcid.org/0009-0003-6731-8187

International Journal on Semantic Web and Information Systems
Volume 20 - Issue 1

only television programs or newspapers and magazines, and they do not need to stay in front of
the TV or go to the cinema to watch movies and TV series. Modern people are adopting different
electronic products, such as computers, tablets, mobile phones or TV boxes, to obtain information,
watch videos or listen to music.

Various audio and video streaming formats such as Moving Picture Experts Group-Dynamic
Adaptive Streaming over HTTP (MPEG_DASH) and HTTP Live Streaming (HLS), as well as digital
rights management systems such as Widevine and FairPlay, have been developed to facilitate the
smooth transmission of audio and video content over the internet. Many movie production companies
and TV stations have started to provide users with online platforms to stream movies or music and
have developed video streaming platforms, such as HBO Max and Disney+, which use digital rights
management to mitigate the spread of piracy and directly downloading movies. However, most
user’s device has the limitation on the device such as the mobile phone or tablet. Some of them are
equipment with limited memory space and lower computation power in their above devices. On
the other hand, the streaming media format does not have the standard such as the HLS format for
Apple’s device, another is MPEG-DASH, RTMP, and the last on is the SMOOTH format. In order
to provide services to users across various devices, these streaming services must convert videos into
various formats, which is a large burden on storage space. Furthermore, different DRMs support only
specific browsers or operating systems. To protect video and audio content, 44.8% of platforms use
paid third-party DRM solutions. As shown in Figure 2, 40% of video and audio platforms still do
not use any digital rights management systems. 29% of platforms use HLS+AES-128; however, this
system may not have any effect if the key acquisition method is not controlled.

Therefore, this paper uses (Wu, 2020) as a foundation to propose building a streaming digital
rights management mechanism that supports multiplatform browsers and stores only one file format
with the dynamic encryption of video clips. Not only this approach can let users prevent installing
extra software or browser’s plugins to fetch the desired video clip efficiently but also it also reduces
the redundant encrypted media file format to decrypt by the video server.

Figure 1. Estimated number of internet users in Taiwan in 2019
Source: 2019 Taiwan internet Report

25000000 23593794
21192246

20000000 18979974 20202706

15000000

10000000

5000000 2401548

1222731
e
Under 12 years old 12 years old and 0-100+ years old
above

50.9% 89.6% 85.6%

m Number of people using the Internet m Total number of people

International Journal on Semantic Web and Information Systems
Volume 20 - Issue 1

Figure 2. Statistics on the use of encryption methods in the industry
Source: Bitmovin 2019 Developer Report

HLS AES-128 I 29%
HLS Fairplay NG 34%
DASH Wideevene [N 32%
DASH PlayReady |G 29%
Unused [40%

0% 10% 20% 30% 40% 50%

RELATED WORKS

In recently years, there are some articles to discuss the digital right management methods such as
the Attrapadung et al., (2018) proposed their scheme which their method could implement two level
homomorphic public-key encryption with bilinear mapping group by adopting WebAssembly. Their
approach does not have any other plugins and could execute on the web-browser efficiently. However,
their scheme also needs higher computation cost due to the applying bilinear-mapping operation with
homomorphic encryption. By the way, their scheme will increase the cipher-text size when applying
on the second level encryption under the addition operations. Song et al., (2023) proposed a new
data sharing mechanism called COAB-PRE that it could outsource the attribute encryption to other
nodes, and it also implements by adopting WebAssembly. Their approach does not state the video size
limitation and brings lots of burden to the edge devices or computation power limitation equipments.
Cabreraet al., (2021) proposed a CROW tool that it could apply to the libsodium library and combine
the libsodium into WebAssembly together. The CROW tool only could divide the LLVM IR code
but not on the WebAssembly code directly. This causes the CROW limitation on the WebAssembly
code. We thought that if it could divide the WebAssembly code directly without transferring the code
to LLVM IR type. It will cause lots of help to WebAssembly diversification more. Sun et al., (2019)
proposed their method that it adopts WebAssembly to design a code protection mechanism called
SELWasm for offering encrypting Wasm executing code by applying the cryptographic algorithms. But
their scheme also has the whitelist to check which code needs to be encrypted or not. This whitelist’s
security protection is a serious problem. Meanwhile, this protection mechanism also brings the code to
expand its own size. It also increases the decryption time especially when applying AES on the large
media files to performing decryption. Sun et al., (2020) showed their attribute encryption method called
CP-AB-KEM that it also adopts WebAssembly and Crypto library to perform files access-control. It
provides the data privacy protection, users key revocation, and other features. But it also has to build
up its own cloud servers and it cannot apply on the computation power limitation resources. By the
way, the cloud server’s trust level assumption has also to be considered in their scheme.

All above discuss the mechanism that adopting WebAssembly to design the application or
new encryption/decryption methods. Some of them must use the asymmetric encryption method or
complicated encryption method to design the digital right management application. In one hand, it
also fits to specific situation and brings large burden to users. In common cases, most users prefer
to use light-weight software or plugins to fetch media stream clips. Hence, we thought that if there
is a light-weight method without further installing extra software or plugins. We found that the
digital rights management method proposed by Hassan et al., (2020) is based on AES, elliptic curve

International Journal on Semantic Web and Information Systems
Volume 20 - Issue 1

cryptography (ECC), and other methods. These methods include 256 encryption, user authentication,
key transfer and decryption through the desktop application, and digital signature and shared key
through ECC-256. Although this method improves that encryption strength of AES-256, the current
streaming standard still uses AES-128. However, users must download additional applications to
watch videos, which may degrade the user experience. Hence, it may still result lots of decryption
time to users when they download large video stream clips from the web site. By the way, users must
install the dedicated software to download the desired video clip from the web site after they have
authentication with server completely. Therefore, based on the analysis of current methods and related
research, this paper improves the security of AES-128 and proposes a digital rights management
approach that complies with the streaming standard and can be executed directly through a browser
without the need to install additional programs to protect the key efficiently.

EXPERIMENTAL METHODS

1. Experimental Architecture:
In this paper, the experiment has two main parts, namely, the server side and the user side. The
server side includes the authentication server, the audio/video server and the key server, and the
user side executes JavaScript and WebAssembly through the browser of a computer, cell phone
or tablet. The overall experimental architecture is shown in Figure 3.

The server side is divided into three parts, as shown in Figure 4. The authentication server handles
user authentication and key issuance, the video server delivers video playlists and clips, and the key
server delivers clip encryption keys. The user side is divided into two parts, as shown in Figure 5.
JavaScript handles the video player, and WebAssembly sends authentication, play URL and key
requests to each server.

The front-end part is controlled by JavaScript, and the general streaming request is executed
through JavaScript. In this paper, WebAssembly controls user authentication, video URL requests and
key requests and decryption. On the back-end, the authentication server is responsible for confirming
user privileges and then allocating a set of tokens for subsequent calls to other APIs. The server will
also provide an RSA public key to use when requesting fragment keys later. After obtaining the token,
the user can request the video playlist from the video server and send it to the player; when the player
is ready to play, it obtains the video encryption key from the key server through WebAssembly key
encryption and then provides the RSA public key generated on the user side to the server. The key
server decrypts the request with its own private key and confirms that the request is valid, encrypts
it with the public key of the user side, and sends it back to the user side. This request is then sent to

Figure 3. Experimental architecture

USER SERVER

sm O 00

Authentication Video Key

serve serve
Computer/Phone/tablet server rver rver

International Journal on Semantic Web and Information Systems
Volume 20 « Issue 1

Figure 4. Server architecture

SERVER

Authentication server

Video server

Key server

Figure 5. Client architecture

USER

JavaScript

WebAssembly

the user throu gh WebAssembly decrypting with the private key of the user and finally passed to the
player for playback. The overall playback process is shown in Figure 6, and the overall request flow
is shown in Figure 7.-

International Journal on Semantic Web and Information Systems
Volume 20 « Issue 1

Figure 6. Playback flow chart

NO

YES YES

YES

¢l

EXPERIMENTAL RESULTS

1. Experimental Environment: The video used is from Big Buck Bunny and uses ffmpeg to convert
the video to 1920x1080, 1280x720, 720x480, and 640x360. The bit rates are 3000k, 2400k, 1400k,
and 800k. The video then uses Bento4’s mp4-hls.py to convert to unencrypted HLS format and
divide the video into 5 second segments, with 106 segments in total. The authentication server
and key server use nginx and PHP, the video server uses NodeJS’s Express, and all servers use
the HTTPS protocol to encrypt the connection. The server CPU is Intel i7-7700. The front-end
player uses Video.js and modifies the key request process, while the WebAssembly portion is
written and compiled in Go.

2. Experimental Results: When WebAssembly is initialized, a set of RSA 2048-bit private and
public keys are generated. The private key is only stored internally and used to decrypt the key
data returned by the server. The public key is provided to the server to generate the result, as
shown in Figure 8.

International Journal on Semantic Web and Information Systems
Volume 20 - Issue 1

Figure 7. Authentication and playback flow chart
Key server Video server Authentication server JavaScript WebAssembly

1. generation
Private/Public key

e | 2.Req uest Token

3. Respondr 'foken and
Server public key

4. Use :réken
Request Playlist

1
t

| 5.Respond Playlist |
L i |

6.Use Token request
Video Fragment

-

[7. Respond encryption |
Video Fragment |

8. Request key
fragment

9.5pply Tofcen.a-nd Public key
Request fragment key

10.Use Public key
encryption fragment key

11.Decryption fragment key
and return

11.Decryption and play
video fragment

Before playing the video, a set of tokens is obtained from the server. The token corresponds to the ID
of the user, the video to be played and the public key provided by the server. The successful request
results are shown in Figure 9, and the original data of the token is shown in Figure 10.

After the token is obtained, the playlist URL can be obtained from the server. This request result
is shown in Figure 11.

The player then requests the playlist. The main playlist is shown in Figure 12, and the clip playlist
is shown in Figure 13.

During playback time, the player finds an EXT-X-KEY tag, which means that the content is
encrypted, so it requests the URL in the tag. Here, through the modified player request process,
the part after key is provided to the key and the server makes a request. The request results and the
unencrypted original data are shown in Figure 14. The original data of the key request is shown in
Figure 15, and the original data of the key response is shown in Figure 16.

3. Cross Platform Testing: After completing the playback processing program, the next step is
to test whether it can be executed normally on various browsers in commonly used operating

International Journal on Semantic Web and Information Systems
Volume 20 - Issue 1

Figure 8. WebAssembly RSA public and private key generation results

RSA Private Key & Public Key Generate by WASM

~—--BEGIN PRIVATE KEY-——-

MIIEvgIBADANBgkghkiGSWOBAQEFAASCBK gwegSkASEAACIBAQDySKD3KZILYS
Nwéd YOuMO5zpsa4OqSEz2MZOWdy4GmSws60QN Tee NPSZXF 2nelswTDYuc2nPu
52G4ry+kMpe VLBJez2vuXuMUY VLR S+ MwR YQVxbF qF 93plag+ VMWY S VuyuVPn
ufHQads 10v20ChPUMBu2 TXOXTIXDZVZO 1 2NpHCA6m: QKCBHBS%W
STIUSXRg Y OckrcEaGm/'6NEWNJTid Xnzrvwpk4 Z 1 DmoMyqePTd7py

tMhTGL7NHy SPIMvzed/ 5+ Nfbo++oBm7kOgP6aw Y+W3rJodz!ﬂ2020mBlenHtx*
J+3J46RIAgMBAAECgeEAY+GIHLIMEJssOIBp2 FyQm3PcXIx5Jg/4263Pef/ xnC1K
eE7v XZrlLB) DOOnaciaF TQRR9w15bs 1laiCZscr6USSoffOk WIBudtaj4 1ORxrB6F
xFAaV5hRIp+Fr+5q1 X3JO)BXLiIFmU7dvUuwKpinU3VEISzZNDsM3r60P/s TGs02YH
PYGXJINXIFxrx ASxP/ T7 TseMQtA etk 2 guWWIVISs YZOEpeOTG 7q3MNF 3kK9naBaT

V22 1CAXUVQVVZPISViaBAWZSBE 2 3nTI7TIPDYaZKx6LK 98 Kvintie VMMKCPaJA

zZUNuwvgZktK SSBR4dc VirCW2xH4d+ ET6csNbXZrl AQKBeQDwEhAtkHfldsaEaTTZ
TO3PVUOZIA TITTt ejjupwhLeGpNX3UMTn Ye TvWSPIRKHeS4ZZy Ny 3bIUNXZMpNN
BEOIxdxDnZYJe VIEOy Vhv IMIME S [z Y+-0WErYIQVDtp9BIGZh9ZOt4AS IPVX4Hy
uCuaWOmMEDymoOerCOf1c)KroyQKBgQDyBys)ywvxSF 1k 7213 5zbAfuk 79IPIrT2dx
nl9NNpaVERYwWZbYERPMCXTpXCS Y1eQwAQeONipxivMFobbN) SUXCIXSTPsIQVeY
sWXau+ Yae Vel Jix YK pNARg UKD Tnwx Bt 1nWpo WK YrheOS6KkwPzHoetIWpizobk
IsTXxZxKAhQKBgAQ5ajkySDfYrkBSC+AneMEm7RBSOUSOpGys+3Sy1VwlgSHQOKX
UxDVxaSoNkb6 YWBOvEDoqUES AdzN+zEony INVEbexwpl TRhppQOigpV13wYe P+
AAAKTIXTIV9T79eC8 5+ 3 XaMeZI3GeMIMXOCVhzv+x38 TfW+er+ 106 WpAoGBAL V7
NpfyP3q1 TU4aldmMqUB+TTHHY o TIL xGpremMQky TIMSDjz4w3R +W5:GzU SXD
T9ONNKpLHIuehSqCbL 3hxnOwTZhbsOneBIUQsFwk WuHB W
ZtlakYkgmUrd6c4zCwUKYWwq4FESuAcgIxE42zsrZA0GBAKGtjqMgchkyl :35:\'[1
2VDIejEeK3CNVvUOBYDWIB YtvSdLBPY VNIRfCNpSy/ 10g+ TEEWZoDn 7JTJEKGILT

COOMGRQ4SXPOMhgOIXorzqY

~—END PRIVATEKEY——

----- BEGIN PUBLIC KEY---

MIIBANBgkghkiGIWOBAQEF AAOCAQSAMIIBCgK CAQEA45uSg9ysyLS2E)cOnf2D
YksLOtEDe 3Hj T/G VxdqinpbMEwW2LaNpz udhulsv

pDI3FSWSXM7 7171 TFMISOfY uffME WEF c Wxahfd6Z YKvITFmL Y Fbsrl TS 70iXx01
nbNdL9gAmz1 DN 7tk 1/ VOTV2 VW TtezaR winepvOCgaRwd9+ObtB 3 DEMXjKulS VPFO
YGDIK3BGhpv+jRFj YO4uF S8 7SKZOGAQSqDMgoD03e6b0rdAa cxww 7siL TTUxi+
ZRSuTYTLS3nf+X2/ vqAZuSDqj+msGPIt6yaOs4ZWTHL SWSGOCZR TcfifrCeOk

——END PUBLIC KEY'-—-

systems. Figure 17 shows the operating system and browser versions used in the test and the
results of the test. Figures 18-23 show the playback status of each browser.

Analysis and Comparison

a. Result Analysis: Figure 24 shows the time it takes for the key server to decrypt the encrypted
data sent from the client and the time it takes for the server to encrypt the encrypted data with
the client’s public key. Server decryption takes approximately 1 millisecond to 1.5 milliseconds,
and server encryption with a public key takes 0.04 to 0.1 milliseconds. Figure 25 shows the time

International Journal on Semantic Web and Information Systems
Volume 20 « Issue 1

Figure 9. Token request results

Request
GET /getToken/94¢99dc2-dSe2-41b5-b294-2a3d74a0926
Response - Success

"result”: "success”,
"token": "

eyJ0eXAIOUKVIQIL CIhbGeiOUIU=TIINI9 eyJ=dWIiOnsidmIkZW9
pZCIGLKOZTEKS ZGMyLWQI ZTIINGZINS LMkOLWY yYTNKNzRh
MDEyNilsInV=ZXJpZCI6[jMxMDIzIn0OsImIhdCI6MTU4O0TK2MDY
wOCWIZXhwljoxNTegS0TexNDA4Q.20M-apmdE74H7JgBK8oZq0
ZCkwiAlq 90mYWdxBMH7U ",

"cert": "-—-BEGIN PUBLIC KEY -—-— —END PUBLIC KEY-—-

H
Response - Failed

"result": "failed",
"message”: "unauthorized”

H

Figure 10. Token raw data

"Token Payload Raw Data
{
"sub"; {
*videoid": "04¢09dc2-d%e2-40b5-b294- 20347420926,
"usend™: *31023"

"jat": 1589960608,
"exp”: 1589971408

Lk

Figure 11. Playlist URL request results

Request

GET /getPlaybackURL/94e99dc2-d5e2-4fb3-b294-1223d 7420926
authorization:

Bearer

evJ0eX AIOITKV1QILCIhbGeiOUTUZI INIT9 ey JzdWIiOnsidm1k ZWopZ
CI6LK0ZTRSZGMyLWQIZTIINGZIN S 1iMjkOL W Yy YTNkNzRhMDky
NilsInVzZXTpZCI6MxMDIzIn0sImthdCIGMTU40Tk2MDYwOCwWiZ
XhwljoxNTg50TexNDA4fQ.20MzapmdET4H7IgBK 80Zq0ZCkwiAlg
0mYWdxBMHTU

Response - Success

{

"result”: "success",

"url"; " hitps://vod. wufat.com/94e99dc2-d5e2-4fb5-b294-
f2a3d7420926/master.m3ul "token=MGQ2MDAINWM3INWImMGQ
4MQ==HDv116sKgTxYh4j7eTNIkG4 GsagLgdOPcZ031Z_vYDWol
4f75czx10TIOKEOYMOPR7RwIFPRG4KG4qB_JOrdQ=—="

}
Response - Failed

"result”: "failed"”,
"message": "unauthorized"

International Journal on Semantic Web and Information Systems

Volume 20 - Issue 1

Figure 12. Main playlist contents

-

—

Request

Il'l... Al f_‘h"\

SErcew

GET hitps://vod wufat, com/94e09dc2-d5e2-4b3-b204-
122547420926/ master m 3uf token~MGQIMDAINWMINW ImMG
QIMQe= HDvUSKgTxVhdjTeTNIKGA_GaaglgdOPcZ0IZ_vYD
Woldfl5cz JKEOYMOPR 7R B_JOrdQ

Salit s

| HEXTM3U
Created with Bentod mpd-bls.py version 1.1.0r629

WEXT-X-VERSIONA

¥ Media Playlists
HEXT-X-STREAM-INF-AAVERAGE-

| BANDWIDTH=1292543 BANDWIDTH= 540763 LOODECS="ave | 4D
4028, mpda 40 2" FRAME-RATE=30.0,RESOLUTION=1920x 1 080
I 10 20e-ce | K-48c8-9167-

| BleecdbTd stream.m3us Moken MGQIMDAINWMINWImMG Q4
MO HDvDEKg T Yied)Te TNIKGH_Ciragl gdOPZIILZ v YDWolD3
cex10TIOKEDY MOPRTRWIFPRGAK GigR_JOmd)—

| WEXT-X-STREAM-INF-AVERAGE-

| BANDWIDTH=2674998 BANDWIDTH=473283 T.00DECS="ave | 4D

| 401F 402" FRAME-RATE=30,0,RESOLUTION= | 28(x 720
ARBIDZA] - 256 —4340-b4 b
3541 00bdddeR stream mul?

| HEXT-X-STREAM-INFAVERAGE-

| BANDWIDTH=162TT04 BANDWIDTH=267561 6.CODECS="ave | AD

| 401 Empla 40 2" FRAME-RATE=30 0, RESOLUTION = 7200480
dS075a-cbcb-4568-91d1-

RSt S | O streamm ud oken = MGO MDA TN WMINWImMGO4

| MQ==HDVIGKgTx YR4{TTNILGS. GraqlgdOPCZINIZ vYDWoldDS
e l0TIOKEDY MOPRTRw FPRGAK GHqB_JOrd—

| FEXT-X-STREAM-INF-AVERAGE-
BANDWIDTH= 1003243 BANDWIDTH= | 67044 LOODECS="avc | 4D
401 .40 2" FRAME-RA TE=300RESOLUTION 6400 360

| el2chS65-c8 1 (-4b1b-F228.

Figure 13. Clip playlist contents

. Reguesi
GET hitps:/'vod wufal com94e99%dc2 -d5e2-41h5-h294-
2a3dT4alF263d8 | d2oc-ce | B-4KC5-0167-
81 cecd 610 Td Y stream mIus Moken=MGOIMDASN WMINWImMG
Q4MQ== HDVUIsKgTx YhdjTe TNTRGH_Gisaql gdORZIDNZ_vYD
Wold 0 Scax | ITIOKEDY MOPRTRWAFPRCGIK GG JOndQ—

Hesponse - Success

FEXTM3U
FEXT-X-VERSIONA4

SEXT-X-PLAYLIST-TYPEVOD
FEXT-X-INDEPENDENT-SEGMENTS
SEXT-X-TARGETDURATION: 6

FEXT-X-MEDIA-SEQUENCEAD

SEXT-X-KEY:METHOD=AES-1 28 URI="key-/ 3d8 | dlac-ce | B-48c5-
9167

1 cocds 1743 Moken=MGOIMDAINWMINWIMMGOIMOQ=—
sKgTRYRATCTNIKGH GiaaqLgdOPCZ03IZ vYDWol S [0TIOKED
YMOPRTRWIFPRGAKGAGB_JOrQ=—=&sequence=("
SEXTINF-6,000000,

0 15 "Token=MGOIMDAIN WININWImMGO4MQ== HDvUGsKgTxYh
4T TNIKGH GuaglgdOPCZ0MZ v Y DWold05cen | 0TIOKEDYMOPR T
SEXT-X-KEY-METHOD=AES- | 25 URI-"key 738 1 d20e-ce 18485
9167

¥l ceedf 703 token=MGQIMDAINWMINWImMGQIMQ= HIvII6
g TaYdjTeTNIKGY GuaglgdOPcZONZ vYDWoldlScr | ITIOKED
YMOPRTRWIFPROIKGAGE JOndQ==&soquence=1"
SEXTINF 6. 000000,

segment-

1 i3 oken=MGQZMDAINWAMINWImMGOIMQ— HDv LK gTxYh
4TeTNIKGH GraqLedOPZ0MZ v¥DWold05czx 0TIOKEDY MOPRT
RWIFPRGAKG4B_JOndQ=—

9167-

H#EXTINF:6.000000,
segment-

RTRWIFPRG4KG4gB_JOrd(Q==

9167-

H#EXTINF:4.166667,

segmenl-

R7RwIFPRG4KGA4qB_JOrdQ==
#EXT-X-ENDLIST

HEXT-X-KEY:METHOD=AES-128 URI="key://3d8 1d2ac-cc18-48c5-

8leeed6f07d3 Mtoken=MGQZMDAINWMINWImMGQ4MQ==HDvlJ6
sKgTxYh4j7eTNIkG4 GsaqLgdOPcZ031Z vYDWoldfl5czx10TIOKED
YMOPRTRwWIFPRG4KG4qB_JOrdQ==&sequence=104"

104. 1s7token=MGQZMDAINWM3INWImMGOQ4MQ==HDvLI6sKgTx
Yh4j7eTNIKG4 GsaqLgdOPcZ031Z vYDWoldfJ5czx10TIOKEOYMOP
H#EXT-X-KEY:METHOD=AES-128,URI="Kkey.//3d8 1 d2ac-cc 1 8-48¢5-
8leecd6f07d3 token=MGQZMDAINWMINWImMGQ4MQ==HDvlJ6

sKgTxYh4jTeTNIKG4 GsaqLgdOPcZ03IZ vYDWoldfI5czx10TIOKED
YMOPRTRwIFPRG4KG4qB_JOrdQ==&sequence=105"

105. s 7token=-MGQ2MDA3NWM3NWImMGQ4MQ—HDvIJ6sKgTx
Yh4jTeTNIKG4 GsaqLgdOPeZ031Z vYDWol4f)5ezx10TIOKEOYMOP

Response - Failed

HTTP 403

10

International Journal on Semantic Web and Information Systems
Volume 20 « Issue 1

Figure 14. Key request results

| Request
POST /getKey
authorization:
Bearer
eyJ0eXAIOUKV IQILCIhbGeiOl Uz INU9. eyl 2dWTHiOnsidmlkZ
WIpZCIGHKOZTKSZGMyLWQIZTINGZINS liMikOLWY yY TNk
NzRhMDkyNilsinVzZXJpZCloliMxMDIzliwia2V51jp7TImFsZy161
KEyNTZLVylsImt0eSI6Im9jdClsimsiOUaZ 1 dnZ XY xSGIvbWhUZL
EUycDIZHROVUNIeVNyZ I STUxweElte)ViTVIVIn 1 9LClpY XQ
10jE10DgINDE4AMzMsImV4AcCI6MTU40De | MY 2M30.1Sg WaO
kSAcYGNjU4HNGC35yvSClaPOAILE jLIC0aMg
Body:

{
"payload":
“nel kUniWSOLgynOeNZYS4HK-HD8knPqDFniNT6ubJiD5-E
kéezR chaHXrhxjUFLN Xcg8QPSRkGgdHILFC2wOEwgjzlyzR
9k1 XAcl PGZPgpGIIXxQgdFIWG32iIU2C8gGC-34m3nK 5-a9
BHK;j0YotVkq0kXqDeuQpsze6VAPHHBMudLVVueHR-apTI0
GronPW6Qd-ITbpsXoAcSHDOhhhJ0oxVHOggU20LI08SQ18PB
LeevWCxuQnF15K2UmybMn-swiFwbEjay2 lwW-120NeCvrm
hoiLu7BknGmjQX5gHy YR jSua3rp6 TWXHSr3k-nVVKEnnoh

"',

gSw2wOrll
"publicKey":
"--—--BEGIN PUBLIC KEY~--- .., --—END PUBLIC KEY -~
!
| Response - Success

"result”: "ok",

"payload™:

"BOXIx01:9Za0y WENTY 3FIa79FEsK viVmLQbednNIXEOyqHp/ THER
q68yCNsQr TXBXGHSMIDzfjS/oTyal7 13PRzUt rislagBSuD+0bCU
FKHLEorPI+Hlew2S{RidZXHTP2SV2mQadQVoz TSKIFxV,
XBFAWZSWNITH12F +pOxPIAzIMY pswLWEFhQIrV41ji87190Y5C
CrLxfxxtb6xg2 ViX1xqMeeSFbZuBeMDLDGemTiwEXh3LEDIzga
JHK oeuD0xjKbdHZ Ug) Y 3sAdFK8F6q901VgevHH6 ThX X Fsi/qulz8

W2z5qMobyBrxEoYaqSHILeJuviD+WANg=—"

i
| Response - Failed
|
“result”: "failed”,
“message”: "unauthorized”

Figure 15. Key request raw data

Request Payload Raw Data
{

"contentid™: "ef2cb965-¢810-4b1b-8228-062¢d6047063",
"token™
"MGQZMDAINWMINWIMMGQ4MQ=—=HDvIJosKgTxYh4jTeTN
kG4 _GsaqLgdOPcZ031Z_vYDWoldf15czx10TIOKEOYMOPRTRw{
FPRG4KG4qB_JOrdQ==",

"sequence": 0

i

Figure 16. Key response raw data

Response Payload Raw Data
INvXImIQSdeMd8pEOK WklIw==

1

International Journal on Semantic Web and Information Systems
Volume 20 « Issue 1

Figure 17. Cross-platform test results

0S Browser Result
Google Chrome 81
Windows 10 |Mozilla Firefox 76
Opera 68 Web Browser

macOS 10.15 |Safari 13.0
Google Chrome 81
samsung Internet App 11.2
iPad OS 13.3 [Safari

i0S 13.3 |Safani No support

could support

Android 8.1

Figure 18. Windows-Google Chrome playback

@ Video Player * X 4

€ C & streamwufatcom/playernew.hir

!

Figure 19. Windows-Mozilla Firefox playback

- Video Player

- G @ O &y hnpw/streamwafateom/playe o NN DEF =

12

International Journal on Semantic Web and Information Systems
Volume 20 « Issue 1

Figure 20. Android-Google Chrome playback

0 € O B strwams et oo payertes i o 4

& stream.wufat.com

it takes for the video server to perform dynamic AES-128 encryption for each video quality
segment. The larger the file size is, the longer the encryption time.

b. Security Analysis: In this paper, our proposed methodology adopts the authentication server to
authenticate users and allow successfully authenticated users to obtain the token. At the same time,

13

International Journal on Semantic Web and Information Systems
Volume 20 « Issue 1

Figure 22. Android-Google Chrome playback

Q ¢ O § stresouwulat com paperen b &

Figure 23. Android-Samsung internet playback

@ tresen wulel oo 3 m v @O

B Vides Maye X +

our method also takes RSA (Rivest et al., 1978) asymmetric encryption as the digital envelope
to protect the AES-128 symmetric key. Adversaries cannot obtain the AES-128 decryption key
by factoring the RSA encryption algorithm with nonnegligible probability. In addition, our
method plays the video clip by fetching the AES-128 decryption key with authentication tokens,
as demonstrated on different platform browsers. The user’s browsers do not have to preserve the
decryption key under different platforms and do not install any additional software to play the

video clip.

14

International Journal on Semantic Web and Information Systems
Volume 20 -« Issue 1

Figure 24. Key server RSA encryption and decryption time

[l

Server Private key Server Public key
decryption time encryption time

0.0016

0.0014

0.0012

Time(second)

RN

g

0

Figure 25. Video server dynamic encryption time spent

12

10

(2]

Time(second)

=]

if“'.e, ‘ J \
‘N‘« nhth N |
—360p —480p —720p ——1080p

c. Comparison of methods: The proposed method supports browsers with various operating systems
by executing WebAssembly and media source expansion in the browser. Table 1 compares the
supported environment of this paper with other methods. The environment supports all browsers
except for iPhone 10S, which does not support media source expansion, to a greater extent than
the original Widevine and FairPlay supported environments.

15

International Journal on Semantic Web and Information Systems
Volume 20 - Issue 1

Table 1. Comparison with other method support environments

Web Minimum | DASH | DSH HLS HLS The

Browser | System Widvine | HLS AES128 | FairPlay | Proposed
version Play Scheme

Ready

Google | Minimum v v v

Chrome | Version of

Mozilla | the same v 4 v

Firefox browser

Opera v v v

Safari macOS v v

10+ Sierra

Microsoft | Windows v v v v

Edge 10

Google Android 4 v v

Chrome |4.4

SafaRi 10S 11 v v iPad

11.2

v': Support iPad: It runs the test only on the iPad.

The method proposed by Hassan et al. (2020) is compared with the method proposed in this paper.
The former uses a desktop application that the user must download before playing. Elliptic curve
cryptography is used to encrypt the shared key and signature. In contrast, the proposed method is
played directly through the browser and uses RSA encryption. Although the data generated by RSA
is longer, research by Roetteler et al. (2017) indicates that the quantum computation required to crack
ECC is less than that of RSA. The research by Hassan et al. Qubits can be cracked, but the RSA
2048-bit cracking used in this paper requires 4098 qubits, and n qubits can handle 2» information
operations (Wikipedia, n.d.). Therefore, if quantum computers are successfully developed in the
future, ECC will be cracked before RSA.

CONCLUSION AND FUTURE PROSPECTS

This paper proposes an adaptive streaming-based digital rights management system. This system
authenticates the user’s identity through the JSON Web Token, encrypts the request parameters with
the server’s RSA public key, and generates a set of RSA public and private keys from the user. When
the server sends the request back, it is encrypted with the public key of the user side. The private
key is available only on the user side, which it protects the request process from man-in-the-middle
attacks and ensures that others cannot decrypt it after receiving it. The entire process is executed
in WebAssembly to prevent direct access to the RSA private key and the video key. The video uses
AES-128 dynamic encryption, and the key generated each time it is played is different, which makes
it more difficult to crack. Only one format needs to be stored; it is no longer necessary to store
multiple formats to support each platform device, thereby reducing the cost of storage space. If the
browser supports WebAssembly and media source extensions, other browsers on Windows, macOS
and Safari on iPad can be used. However, iOS Safari on iPhone, which does not yet support media

16

International Journal on Semantic Web and Information Systems
Volume 20 - Issue 1

source extensions, is not supported. Users do not need to install additional applications or settings,
easing installation and use. Compared with direct transmission of AES-128 keys, the proposed method
better protects the keys from direct access; it also supports more environments than Widevine or
FairPlay do. At present, only software is used with the encryption protection key. If decryption can
be combined with hardware to be independent of the operating system, it will be more difficult to
crack. For example, the L1 of Widevine must be used with a Google-certified device. In the future,
experiments regarding supporting low-latency live streaming and offline playback can be conducted.

ACKNOWLEDGMENT

Author Contributions: “Conceptualization, Ta-Jen Wu; Data curation, Ta-Jen Wu and Yi-Ying Chang;
Formal analysis, Ming-Te Chen; Methodology, Yi-Ying Chang; Software, Ta-Jen Wu; Supervision,
Yi-Ying Chang; Writing — original draft, Ming-Te Chen; Writing — review & editing, Ming-Te Chen.”
Conflicts of Interest: “The authors declare no conflict of interest.”
This research received no specific grant from any funding agency in the public, commercial, or
not-for-profit sectors.

17

International Journal on Semantic Web and Information Systems
Volume 20 - Issue 1

REFERENCES

Apple Inc. (2016, Sept). FairPlay Streaming. https://developer.apple.com/streaming/fps/

Barker, E., & Barker, W. (2018). Recommendation for key management, part 2: best practices for key management
organization (No. NIST Special Publication (SP) 800-57 Part 2 Rev. 1 (Draft)). National Institute of Standards
and Technology.

Bitmovin Docs. (2019). DRM Support. https://developer.bitmovin.com/playback/docs/drm-content-protection
Dorwin, D., Smith, J., Watson, M., & Bateman, A. (2015). Encrypted media extensions. Academic Press.
Dworkin, M. (2016). Recommendation for block cipher modes of operation. NIST Special Publication, 800, 38G.

Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., & Bastien, J. F. et al. (2017, June).
Bringing the web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (pp. 185-200). doi:10.1145/3062341.3062363

Hassan, H. E. R., Tahoun, M., & ElTaweel, G. S. (2020). A robust computational DRM framework for protecting
multimedia contents using AES and ECC. Alexandria Engineering Journal, 59(3), 1275-1286. doi:10.1016/j.
2ej.2020.02.020

Hughes, K., & Singer, D. (2017). Information technology—Multimedia application format (MPEG-A)—Part 19:
Common media application format (CMAF) for segmented media. ISO/IEC, 19, 23000.

Jian, S., Cao, D., Ximing, L., Ziyi, Z., Wenwen, W., Xiaoli, G., & Jin, Z. (2019). SELWasm: A Code
Protection Mechanism for WebAssembly. 2019 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing &
Networking (ISPA/BDCloud/SocialCom/SustainCom), 1099-1106. doi:10.1109/ISPA-BDCloud-SustainCom-
SocialCom48970.2019.00157

Joan, D., & Vincent, R. (2002). The design of Rijndael: AES-the advanced encryption standard. Information
Security and Cryptography.

Jones, M., Bradley, J., & Sakimura, N. (2015). RFC 7519: JISON Web Token (JWT).
Lederer, S. (2019) Video Developer Report. https://go.bitmovin.com/video-developer-report-2019

Martin, R., Michael, N., Krysta, S., & Kristin, L. (2017). Quantum Resource Estimates for Computing Elliptic
Curve Discrete Logarithms. Advances in Cryptology - ASIACRYPT 2017, 241-270. https://doi.org/.10.1007/978-
3-319-70697-9_9

Nuttapong, A., Goichiro, H., Shigeo, M., Yusuke, S., Kana, S., & Tadanori, T. (2018). Efficient Two-Level
Homomorphic Encryption in Prime-Order Bilinear Groups and A Fast Implementation in WebAssembly.
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, AsiaCCS 2018,
685-697. https://doi.org/ doi:10.1145/3196494.3196552

Overdigital. (2016). Streaming Format Evolution — Does CMAF Give Us the Single Format? https://www.
overdigital.net/2016/06/18/cmaf-streaming-format-evolution/

Pantos, R., & May, W. (2017). RFC 8216: HTTP live streaming. Academic Press.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2), 120-126. doi:10.1145/359340.359342

Rossberg, A. (2019, Oct). WebAssembly core specification. W3C First Public Working Draft.

Schmidt, O. (2020). WebCloud: Web-Based Cloud Storage for Secure Data Sharing Across Platforms. /IEEE
Transactions on Dependable and Secure Computing, 19(3), 1871-1884. doi:10.1109/TDSC.2020.3040784

Stockhammer, T. (2011, February). Dynamic adaptive streaming over HTTP— standards and design
principles. In Proceedings of the second annual ACM conference on Multimedia systems (pp. 133-144).
doi:10.1145/1943552.1943572

18

https://developer.apple.com/streaming/fps/
https://developer.bitmovin.com/playback/docs/drm-content-protection
http://dx.doi.org/10.1145/3062341.3062363
http://dx.doi.org/10.1016/j.aej.2020.02.020
http://dx.doi.org/10.1016/j.aej.2020.02.020
http://dx.doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00157
http://dx.doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00157
https://go.bitmovin.com/video-developer-report-2019
http://dx.doi.org/10.1145/3196494.3196552
https://www.overdigital.net/2016/06/18/cmaf-streaming-format-evolution/
https://www.overdigital.net/2016/06/18/cmaf-streaming-format-evolution/
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1109/TDSC.2020.3040784
http://dx.doi.org/10.1145/1943552.1943572

International Journal on Semantic Web and Information Systems
Volume 20 - Issue 1

SYNOPIL. (2016). What Is HLS (HTTP Live Streaming)? How HLS Works? https://www.synopi.com/hls-http-
live-streaming/

Taiwan Network Information Center. (2019). Taiwan Internet Report. https://report.twnic.tw/2019/assets/
download/TWNIC_TaiwanInternetReport_2019_EN.pdf

Wikipedia contributors. (2023). Qubit. In Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.
php?title=Qubit&oldid=1186529789

Wu, T. J. (2020). A Cross Platform Digital Rights Management Based on Dynamic Encryption [Unpublished
master’s thesis]. National Chin-Yi University of Technology, Taichung, Taiwan.

Zishuai, S., Hui, M., Rui, Z., Wenhan, X., & Jianhao, L. (2023). Everything Under Control: Secure Data
Sharing Mechanism for Cloud-Edge Computing. IEEE Transactions on Information Forensics and Security,
18, 2234-2249. doi:10.1109/TIFS.2023.3266164

19

https://www.synopi.com/hls-http-live-streaming/
https://www.synopi.com/hls-http-live-streaming/
https://report.twnic.tw/2019/assets/download/TWNIC_TaiwanInternetReport_2019_EN.pdf
https://report.twnic.tw/2019/assets/download/TWNIC_TaiwanInternetReport_2019_EN.pdf
https://en.wikipedia.org/w/index.php?title=Qubit&oldid=1186529789
https://en.wikipedia.org/w/index.php?title=Qubit&oldid=1186529789
http://dx.doi.org/10.1109/TIFS.2023.3266164

International Journal on Semantic Web and Information Systems
Volume 20 - Issue 1

APPENDIX

1. Experimental Method:

a. Certified Token Generation: The party that generates the authentication token returns a set of JSON
web token by confirming that the user can play the video. This JWT data verification uses HS256,
and the data field contains the video ID and user ID. Other APIs can use this authentication token to
identify licensed videos and objects in Figure 26.

b. Playback URL Generation: When requesting the video playback URL, the token generated in
3.2.1 is used to make the request. After the token is verified, the corresponding video URL will be
generated. The URL contains the URL Token, which contains a set of random numbers and encrypted
data fields. The field is encrypted with AES-256-ECB, and the field contains the URL expiration
time and the SHAS512 hash value calculated by random numbers, video ID, expiration time and secret
string to confirm that the token is legitimate in Figure 27.

c. Playlist generation: In each playlist, there is a URL for each clip of the quality, and the URL token
and clip number are added after the URL in Figure 28 and Figure 29.

Figure 26. Certified token generation

Algorithm 1 Generate authentication token

Input: Video ID V;p. User ID U,p, Secret S;
Output: Token Ty,

: if Authorized (U;p, Vp) then

dt = {"videoid": V;p, "userid":U;p }
TVID = JWT(HS256, dt , S;)

return Ty,

: else
return false
: end

=] On o s W b =

Figure 27. Playback URL generation

Algorithm 2 Generate playback URL
m[npul: Video ID Vm Auth. token]';;m. Secret ;’r
Output: URLLy
1: if Auth. token verified(V, Ty,) then
2: Hrand = substr(hash("sha512", random string), 0, 16)
3: texp = time()+86400
4: A& =Hrand + 5. +Vin+ texp
5: d = {"hash": substr(hash("sha512", &),0,32), "expire": t .yp |

6: I.-,,m ---fpm +"Moken="+baseb6d(Hrand) +"."+base64({d)
¢ returnly,

§: else

9: return false

10: end

20

International Journal on Semantic Web and Information Systems
Volume 20 « Issue 1

d. Key Generation:
e. The fragment output generates the fragment encryption key according to the random hash code in
the provided URL token in Figure 30.

f. Key Delivery:

Figure 28. Master playlist generation

Algorithm 3 Generate master playlist

Input: Video ID V;p, URL token T;,, Master playlist P,
Output: Modified master playlist B,
1: if URL Token verified(V;,, , T,,) then
2: for Segment playlist URL in B,
3: Segment playlist URL+="?token="+T,,
: end
return B,
:else
return false
end

i A

Figure 29. Segment playlist generation

Algorithm 4 Generate segment playlist

Input: Video ID V;;,, URL token T,,, Segment playlist P
Output: Modified segment playlist F;
1: if URL Token verified (V;p, , T;,) then

2:

e R

for Segment URL, Segment key URL, Sequence index in F;
Segment URL+="?token="+T,
Segment key URL+="?token="+T,,+"&sequence="+Index

return F;

return false

Figure 30. Key generation

|Algorithm 5 Generate segment encryption key

Input: Video ID V;,, URL token T,,, Segment indexX i;, 46, » Secret S,
- Output: Segment key K;

1: Verify T,

- 2: Extract kg, from T,

3: hkey = l’I{sall‘ + St + I‘irm!mf

- 4:K; = substr(hash("sha512", hyey).0,32)

~5: returnk;

21

International Journal on Semantic Web and Information Systems
Volume 20 - Issue 1

The keys delivery shows in the Figure 31.

g. Encrypted Fragment Generation:

h. The encrypted segment is requested through the segment URL in the segment playlist obtained in
3.3.3. The server verifies the URL token, generates a key according to 3.3.4, and then encrypts the
key using AES-128-CBC according to the HLS standard definition in Figure 32.

Figure 31. Key delivery

Algorithm 6 Create encrypted payload

Input: Encrypted request R, , Encryption key K; , Client public key C,,,;
Output: Encrypted payloadP;

1: Verify token.

2: Decrypt Client request R, with Server private key.

3: Generate key K; in Algorithm 5.

4: Pi: pubhcencrypt(cpubr K{')

5: return P;

Figure 32. Encrypted segment

Algorithm 7 Generate encrypted segment

Input: Video ID V;p, URL token T,,. Raw segment Se g,.q,,. Segment index i
Output: Encrypted segment playlist Segey,

1: if URL Token verified (V;p ., T,,) then

2: Encryption Key K; = Algorithm 5 (V;p, T, is)

3: return AES-128-CBC(Se g, aw: K;)

4: end

Ming-Te Chen was born in Tainan, Taiwan on August 2, 1980. He received his M.S. degree in computer science
and information engineering from National Sun Yat-sen University, Taiwan, in 2005, and a Ph.D. degree in computer
science and information engineering from National Sun Yat-sen University in 2012. In 2018, he joined the faculty
of the Department of Computer Science and Information Engineering, National Chin-Yi University Technology,
Taichung, Taiwan. His current research interests include information security, applied cryptographic protocols,
digital signatures, loT security, and electronic commerce.

22

