
DOI: 10.4018/IJSWIS.344426

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Semantic Coarse-to-Fine Granularity 
Learning for Two-Stage Few-
Shot Anomaly Detection
Lei Zhang, Hubei University of Automotive Technology, China

Chengzhi Lyu, Hubei University of Automotive Technology, China*

Ziheng Chen, Hubei University of Automotive Technology, China

Shaokang Li, Hubei University of Automotive Technology, China

Bin Xia, Hubei University of Automotive Technology, China

ABSTRACT

Anomaly detection is critical in industrial inspection, where identifying defects significantly impacts 
product quality and safety. Existing models, primarily based on convolutional neural networks (CNNs), 
struggle with noise sensitivity and insufficient resolution for fine-grained feature discrimination. 
To address these issues, we propose a two-stage few-shot anomaly detection network that enhances 
semantic feature granularity and generalization. The network includes a coarse-grained anomaly 
detection module, a multi-scale channel attention module, and a fine-grained detection module. The 
coarse-grained module identifies abnormal regions, serving as the initial filter. The multi-scale channel 
attention module focuses on anomalous features, enhancing sensitivity to fine-grained characteristics. 
This step overcomes limitations in discerning subtle yet critical anomalies. The fine-grained detection 
module refines feature maps, enhancing generalization. Experimental results on the MVTec dataset 
show an image-level Area under the region of convergence (AUROC) of 92.3% and a pixel-level 
AUROC of 95.3%, a 1% to 2% improvement over leading FSAD methods.
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InTRoDuCTIon

Anomaly detection plays a crucial role in industrial settings by identifying irregularities such as 
scratches and broken parts, thereby enhancing production efficiency. While obtaining normal samples 
is typically straightforward in these environments, acquiring diverse and challenging defective 
examples can be challenging. The complexity of the process often renders classical supervised training 
(Ding et al., 2022; Li et al., 2023; Liu et al., 2023; Bozorgtabar & Mahapatra, 2023) impractical, 
leading to the prevalence of unsupervised methods in industrial anomaly detection. These methods, 
which only use normal samples during training, identify anomalies by contrasting the tested data with 
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learned normal features (Ilyas et al., 2022; Salehi et al., 2021; Xu et al., 2023). While unsupervised 
anomaly detection methods (Sun et al., 2023; Fang et al., 2023) primarily focus on feature learning 
to capture normal data’s intrinsic characteristics, recent approaches allow for the labeling of a small 
number of anomalous samples (Atabay & Hassanpour, 2023), albeit at an increased cost.

To address the challenges of limited sample images and reduce labeling costs, few-shot anomaly 
detection has been proposed. Conventional supervised anomaly detection relies on a combination of 
limited anomaly data and a large number of normal samples to detect anomalies (Ding et al., 2022; 
Atabay & Hassanpour, 2023; Bozorgtabar & Mahapatra, 2023; Pang, Yan, et al.,2020), as shown in 
Figure 1(a), but it often exhibits inferior performance compared to unsupervised methods in anomaly 
identification and localization. In contrast, embedding-based, unsupervised anomaly detection 
methods leverage pre-trained models (Wang et al. 2023) eliminating the need for a large amount of 
training data, as shown in Figure 1(b). On the other hand, unsupervised anomaly detection methods 
based on image reconstruction require training the reconstruction model from scratch, necessitating 
a larger training set, as shown in Figure 1(c). However, both methods still require adjustments to fit 
unseen categories.

Recent studies focus on few-shot anomaly detection. The aim of generalized few-shot anomaly 
detection is to use a limited number of labeled anomalies as partial knowledge of anomalies within a 
specific domain of interest for training (Sheynin et al., 2021) requiring only a small number of samples 
for each category, as illustrated in Figure 1(d). In the early stages, the form of transfer learning was 
used to improve the learning effect in related fields, utilizing knowledge from the source domain 
to assist in semantic anomaly detection in the target domain. To address the problem caused by 
insufficient abnormal samples, a single model is used for detection across multiple categories, and 
fine-tuning is conducted based on a small number of high-quality samples. Adversarial models are 
used for sample generation, and multi-scale convolutional networks are combined to differentiate 
images, thereby greatly reducing the demand for training samples. However, the adjustability of the 
adversarial model may pose challenges, and its generalization may decrease with an increase in the 
number of training samples.

Figure 1. Four Different Common Anomaly Detection Methods
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To enhance the model’s generalizability, we propose a novel framework termed the two-stage, 
few-shot anomaly detection model. This model is a deep, one-class anomaly detection algorithm 
designed to explore fine-grained feature distributions for the few-shot anomaly detection problem 
(Ristea et al., 2022). Drawing inspiration from the human cognitive process of comparing differences 
between two objects, the algorithm brings anomaly detection closer to real-world performance. 
Training often stagnates when samples are aggregated for training on new products in production 
lines. For the problem of frequently needing to switch scenarios, few-shot anomaly detection is more 
suitable for this challenge.

The study proposes a two-stage, few-shot anomaly detection approach that aims to learn the 
robust feature distribution of images captured under conditions of clean and consistent lighting. The 
network architecture is easy to understand and incorporates the widely used residual neural network 
(ResNet). Despite its simplicity, it demonstrates outstanding performance and yields improved results, 
enhancing the model’s capability to comprehend location information. In summary, the contributions 
of this paper can be summarized as follows:

• To make the features represent a more fine-grained distribution, we propose a few-shot anomaly 
detection framework from coarse to fine, dividing the coarse and fine anomalies into two stages;

• Multiple categories are aggregated to extract a common framework from normal images of 
multiple categories without fine-tuning of parameters;

• We propose a feature-attention module aiming to enhance the differences between normal and 
abnormal images and increase the focus on significant features.

ReLATeD WoRK

Few-shot learning aims to enable models to recognize classes not seen during the training phase. 
This requires the model to have a certain degree of generalization ability and an understanding of 
semantic concepts. Image semantic learning, a key research area in computer vision, is dedicated 
to enabling computers to not only recognize content in an image but also understand its deeper 
meaning. Through this combined approach, computers will be able to recognize and interpret visual 
information more accurately.

Anomaly Detection
The advancement of deep learning technology has significantly enhanced the adoption of deep-
learning-based anomaly detection methods. These methods are praised for their robustness in tackling 
complex situations. Popular techniques include multivariate Gaussian distributions (Dwivedi et al., 
2021; Wang et al., 2023), normalizing flow (Rudolph et al., 2021; Papamakarios et al.,2021), k-nearest 
neighbor algorithms, and Gaussian mixture models (Ran et al., 2021).

The diversity of anomalies underscores the importance of unsupervised anomaly detection. 
Methods based on embedding similarity (Wang et al. 2023; Zou et al. 2022) compare the distribution 
modeled by the training set of an image or patch embedding to that of a regular image or patch 
embedding. These approaches effectively condense regular features into a compact space with 
anomalous features in the embedding space being distant from the normal clustering. Many methods 
utilize pre-trained networks from ImageNet for feature extraction. For instance, patch distribution 
modeling framework for anomaly detection and localization (PaDIM) (Defard et al., 2021) embeds 
derived anomalous patch features through a multivariate Gaussian distribution using a pre-trained 
model. PatchCore (Roth et al., 2022) optimizes the representation of nominal patch features using 
an in-memory repository and assesses input features using either the Mahalanobis distance or the 
maximum feature distance. However, industrial images often have a different distribution than 
ImageNet, leading to potential mismatch issues. Additionally, computing the inverse of the covariance 
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or searching for nearest neighbors in a memory bank can negatively impact real-time performance, 
especially for edge devices.

Image reconstruction-based methods are also widely used in anomaly detection. The assumption 
here is that anomaly samples cannot be efficiently reconstructed back by compressive reconstruction 
(Liu et al., 2020) or after mapping to the feature space. Anomalies are identified and classified 
by comparing the threshold between the reconstruction errors of normal and anomalous samples. 
Normal image encoding and reconstruction are typically performed for self-encoders and generative 
adversarial networks (GANs). However, classic autoencoder (AE)-based reconstruction techniques may 
lose significant features of the original data. Anomaly detection with generative adversarial network 
(AnoGAN) (Schlegl et al., 2017), one of the pioneering GAN-based methods for image anomaly 
detection, assesses the resemblance between the discriminator-generated and original data to detect 
anomalies. However, it is computationally expensive in terms of training time and prone to instability 
during model training. Recently, new strategies have been developed that involve synthesizing pseudo-
defective data from normal samples and training the network in a supervised manner, but there is no 
guarantee that the trained network will only recreate the normal sample region.

In general, stream-based anomaly detection systems use normalized streams to estimate the density 
of normal data with non-normal data serving as a low likelihood estimate. Normalized streams can 
transform any complex distribution into a tractable basis distribution, such as a Gaussian distribution. 
Early research on normalized streaming models focuses on obtaining feature representations of 
normal images from pre-trained feature extractors and then learning normally distributed data to 
focus on local relevance rather than semantic relevance. A current trend is to extract image patches 
using pre-trained feature encoders. Normalizing flow (NF) (Zavrtanik et al., 2021) is proposed by 
CS-Flow, anomaly detection with conditional normalizing flow (CFLOW-AD) (Gudovskiy et al., 
2022), and DiffNet (Rudolph et al., 2021) to transform normal feature distributions into Gaussian 
distributions. These approaches are resource-intensive, as normalizing flow can only handle full-size 
feature mapping without down-sampling, and the coupling layer requires significantly more memory 
than a regular convolutional layer.

Few-Shot Learning
Unlike traditional anomaly detection methods, which require a large amount of training data for each 
category, few-shot anomaly detection methods only need a small number of samples for each category. 
This significantly reduces the cost and time involved. Recently, embedding-based methods have 
been used to compare embedded vectors in the query set with reference ones. Image reconstruction-
based (Fang et al., 2023) methods have shown better results. For example, masked auto-encoder for 
anomaly-detection(MAEDAY) (Schwartz et al., 2024) recovers missing images in anomaly detection 
with fewer samples using the self-encoder MAE and achieves good results through pre-training and 
fine-tuning. Bias networks can be efficiently utilized with a small amount of labeled data for end-to-
end anomaly scoring learning on multivariate and image data, respectively.

The development of few-shot anomaly detection is still in its early stages with two main setups: 
meta-learning and learning that relies on a small number of normal image samples. Meta-learning 
aims to train a model on various learning tasks so it can solve new learning tasks with only a few 
training samples (Finn et al., 2017). The training model in this method is easily fine-tuned and often 
requires a recurrent training model or a Siamese network to be combined with convolutional neural 
networks (CNNs), full connectivity, or loss functions. On the other hand, methods that rely on a small 
number of normal image samples use feature learning as the first step in model training, which is 
then used to compute the anomaly score.

Due to the wide applicability of the registration network, it can be extended across various 
categories. Therefore, the combination of registration and few-shot anomaly detection is more effective. 
Based on the above theory, we propose a method to learn the feature distribution.
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Semantic Learning
Semantic learning aims to enable machines to understand and process semantic information in human 
language (Hu et al., 2022; Zhou et al., 2022). It has a wide range of applications including industrial 
inspection (Cvitić et al., 2021; Li & Su, 2022; Mishra,Gupta, et al., 2021; Zemmouchi-Ghomari, 2021), 
healthcare (Capuano et al., 2022), and educational research (García et al., 2022). Some researchers 
start from small regions to better establish the association between image features and attributes at a 
fine-grained level. Dense attribute-based attention mechanisms (Khan et al., 2023) allow the model 
to better understand and represent unseen categories, while regional attention mechanisms combined 
with CNNs improve the model’s ability to comprehend and process different semantic information 
in images. Other researchers build regional graphs to capture the relationships between local areas 
in images, extracting richer semantic information. These methods have the potential to enhance the 
performance of few-shot learning.

In weakly supervised semantic segmentation (WSSS) methods, boundary exploration approaches 
also provide positive inspiration for few-shot learning (Li-yi et al., 2020). By improving the model’s 
understanding of the shape and edges of target objects, the visual features of unseen categories can be 
better understood. Methods based on latent semantic embedding utilize the similarities and semantic 
relationships between images to enhance classification performance (Luo et al., 2021), allowing for 
the learning of more robust and effective feature representations with only partially annotated data.

MeThoD

In this section, we detail our model framework, depicted in Figure 2. In the third section, we describe 
the two-stage coarse-to-fine process of few-shot anomaly detection. Afterwards, we explain how the 
model integrates into a registration network. Then we examine feature distribution through pixel 
location-based modeling. Finally, we introduce the Gaussian distribution image model resulting from 
feature extraction and transformation.

Coarse Anomaly (CA) Stage for Tertiary extraction Transformations
The first stage of coarse anomaly (CA) detection aims to locate all images in a batch of sample images 
to a consistent spatial position and direction through geometric transformation to obtain images 

Figure 2. Anomaly Detection Structure Based on Two-Stage Feature Extraction Transformation
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more suitable for feature extraction and subsequent analysis. Unlike traditional methods, semantic 
granularity is achieved by estimating the rotation angle of the image or by randomly attaching and 
removing local regions. This technique guarantees an accurate understanding of the image content at 
each corresponding point. Drawing on the idea that the registration network mainly aligns the input 
image with the reference image and considering that the training data set is not very large. To avoid 
the over-fitting problem, we make full use of ResNet to extract the edge and texture features of the 
image and choose ResNet-18 (Finn et al., 2017) with a shallow network layer as the feature extractor.

Two images of the same category, F
a

 and F
b

, are randomly selected from the training set and 
input into the feature extractor. Moreover, since the feature maps have different resolutions at the 
level of the CNN, an interpolation method is required to unify the resolution of the image before the 
extraction is performed. To ensure that the network possesses spatial transformation capability and 
efficiently performs fundamental operations like convolutional feature extraction, pooling, and feature 
compression, we have selected the initial three residual blocks of ResNet-18, expressed as E

1
, E

2
, 

and E
3

. These blocks are crucial for extracting features at lower layers while maintaining the network’s 
ability to transform spatial information. Meanwhile the image obtained by extracting features is 
expressed as f

a
s

1,
 and f

b
s

1,
. Drawing from the concept of the registration network, a spatial transformation 

network (STN) is integrated into every residual block (Jaderberg et al., 2015). This integration enables 
the neural network to dynamically alter the spatial layout of feature maps. Through the application 
of spatial transformations such as rotation, cropping, and scaling on input data, the model becomes 
proficient in handling a wide array of geometric variations. This adaptability facilitates enhanced 
categorization of samples and improved recognition of critical semantic features.

This module does not require supervision, enabling more flexible learning of feature registration, 
and ultimately, resulting in the generation of the registered image. This strategy skillfully combines the 
power of deep learning (with ResNet-18) and the flexibility of STN to create an efficient and accurate 
image alignment and feature matching module. This well-constructed solution not only overcomes 
the problem of limited training dataset size but also meets the stringent requirements for accurate 
spatial localization in image analysis, demonstrating its excellent performance in image processing. 
We regressed the input image to generate an affine transformation function as shown in Equation 1:
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By incorporating an STN, we not only enhance the flexibility of alignment but also bolster the 
network’s ability to adapt to intricate spatial transformations, this integration empowers the network 
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to autonomously learn and adjust the feature map, effectively achieving precise alignment of global 
embedding positions. This approach allows the network to dynamically adjust its feature map based 
on the specific requirements of the task at hand.

To summarize, the inclusion of an STN in a CNN enables self-learning and autonomous 
adjustment of the feature map, leading to improved alignment flexibility and enhanced adaptability 
to complex spatial transformations.

Multiscale Channel Attention Blocks (MSCAB)
To centralize the task-related areas, that is, the most important parts of the network, the anomaly 
detection and location tasks are enhanced by modeling the importance of each feature channel. 
Therefore, we have designed a special module to strengthen the focus on features. The multiscale 
channel attention blocks (MSCAB) proposed by us is composed of two parts, one is composed of a 
ReLU-controlled masked convolution layer and a multiscale channel attention module (MSCAM), 
and the other is a channel attention squeeze-and-excitation (SE) module. In the first part, the masked 
convolution layer is used to perform zero filling of the image after filtering through mask convolution. 
The masking mechanism guides the network to focus on the key feature regions. Convolution is used 
at the four sensory field locations and the values are merged and placed in the central location.

The MSCAM module is actually similar to the SE module, which is weighted by the attention of 
the channel by a single feature to pay more attention to the channel output by the mask convolution. 
It aggregates multiscale context information along the channel dimension. Finally, the entire module 
uses a fusion module that implements attention features instead of SE attention blocks to pay more 
attention to local and global attention. In deep CNNs, there are often correlations and dependencies 
between different channels. The MSCAB emphasizes both large objects with more global distribution 
and small objects with more local distribution. In the scenario with fewer samples, MSCAB guides 
the model to learn valuable and diversified features more accurately and enhance the representation of 
semantic features. For the detailed structure, please refer to the structure (Dai et al., 2021) in Figure 3. 
As another part of MSCAB, the SE module automatically determines the importance of each feature 
channel through learning, which in turn reinforces the features that are beneficial to the task at hand 
while suppressing those that are less important based on this importance. This mechanism helps to 
improve the performance of the model on specific tasks and ensures that resources are focused on 
the most valuable features.

Figure 3. The Detail of the MSCAM Module
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In the training phase, since normal images are used, the inputs to the MSCAB are features that 
have been convolved with the first layer of ResNet. After the pooling operation, activating the mask 
convolutional layer of ReLU will enhance the attention to the important features and subsequently 
further strengthen the attention to these key features through the channel attention block. This design 
helps the network to capture and utilize the key information in the image more accurately, thus 
enhancing the quality of the feature representation.

Fine Anomaly (FA) Stage for Fine-Grained Detection
Since data enhancement commonly occurs in the process of anomaly detection, data enhancement 
plays an important role in expanding the dataset, which generally includes translation, rotation, 
graying, and random combinations of these. As a result, the spatially transformed output image f

a
e
3,

 
and f

b
e
3,

 from the coarse anomaly detection has to undergo a series of stochastic image enhancement 
processes before it is fed into the Siamese network. In this network architecture, the top and bottom 
encoders are designed to be identical to ensure that they provide equivalent feature representations 
when processing the image. On one side, a predictor is applied, while on the other side, gradient 
stopping is applied, as shown in Figure 2. The goal is to assign a unique vector representation to each 
position in the feature map, with the vectors having a smaller distribution range in normal images. 
Instead of fully connected layers, 1x1 convolutions are used in the feature extractor. The vectors are 
passed through a shared parameter 3-layer 1x1 convolutional encoder P, and only E( f
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 passes 
through a 2-layer 1x1 predictor g. The output vectors are denoted as ma=E( f
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). 
Negative cosine similarity is used to represent similarity information for robustness enhancement, 
as it can perform a “low-budget version of per-pixel registration images” to show the relationship 
between features of the same dimension in different branches. This is expressed as a feature-level 
registration loss that is minimized by their negative cosine similarity. After minimizing their negative 
cosine similarity, it is represented in Equation 3:
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An important component of the method is the stop gradient operation, which changes the previous 
formula as shown in Equation 5:
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In Equation 5, m
b
 and m

a
 become two constants. The stop-gradient operation plays a crucial 

role in preventing the gradient vanishing problem, which is key to avoiding numerically unstable 
solutions. This technique effectively halts the gradient flow, thereby maintaining the robustness and 
reliability of the network’s learning process. It acts as a safeguard within the training regimen, ensuring 
that the evolution of the model’s parameters is controlled and predictable, ultimately leading to more 
stable and reliable outcomes.

Feature Distribution
At each pixel position of the feature map, we use the Gaussian distribution to model the representation 
of the normal distribution of the target category features. By modeling the feature distribution, a 
probability distribution can be provided for each pixel in the feature map. Since the two branches of 
the twin network are the same, only one branch feature is used to estimate the normal distribution, 
assuming the image feature distribution position after the divided grid location is set to i j,( ) . Firstly, 
the patch embedding vector at the position i j,( )  is calculated. Then, C

ij
 becomes from N random 

enhanced support image set extraction features, where Χ
ij ij

kf k N= ∈ 

{ }, ,1 . In order to summarize 

the information carried by the proposed model, we construct a multivariate Gaussian distribution 
 m

ij ij
,Σ( ) , where the m

ij
 is the mean sample of C

ij
 . C

ij
 is defined as the aggregated feature of 

the patch position, and the sample covariance is defined in Equation 6:
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The covariance matrix £
ij
 computation is rooted in the concept of sample covariance, a measure 

that captures the spread and inter-dependence of features. This process begins by determining the 
deviation of each eigenvector f

ij
k  from its mean vector m

ij
. These deviations are then subjected to a 

dot-product operation, which quantifies the similarity in direction between the vectors. The results 
of these dot-products are accumulated and normalized by the number of samples minus one, yielding 
an unbiased estimate of the covariance. The resulting covariance matrix £

ij
 provides a comprehensive 

depiction of the sample points’ distribution within the feature space, encapsulating both the variance 
along each dimension and the inter-dimensional correlations. This matrix is a pivotal descriptor in 
understanding the underlying structure of the data and is instrumental in various machine learning 
tasks, such as classification and clustering.

Inference
After intensive feature extraction, we model the normal image with Gaussian distribution for each 
image during the test process. For the test image, we extract the normal image representation of the 
position i j,( ) , and calculate the anomaly score using Mahalanobis distance for the patch, as shown 
in Equation 7:

A x x
ij ij ij ij ij ij
= −( ) −( )−m m

Τ
Σ 1  (7)
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Among Equation 7, assuming that the image is divided into grid positions i j,( ) , and the normal 
distribution feature resolution is W´H , we have established a special Gaussian distribution for each 
position i j

i W j H
,

,
( )

≤ ≤ ≤ ≤1 1
 to form an anomaly map in Equations 8 and 9:

m
ij ij
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expeRIMenTAL ReSuLTS AnD AnALySIS

Datasets
In this study, we employ the MVTec Anomaly Detection (MVTec AD) dataset (Bergmann et al., 2019) 
to validate the effectiveness of our proposed model, and then we assess the model’s generalization 
performance on the bearing test anomaly detection (BTAD) dataset (Mishra, Verk, et al., 2021).

MVTec AD is a publicly available dataset widely used for industrial anomaly detection research. 
This dataset provides high-quality images of various industrial products for training and testing 
anomaly detection algorithms. Anomalies in the dataset typically occur during the manufacturing 
process and are critical for the development of automated visual inspection systems. The diversity 
and complexity of the MVTec AD dataset make it an ideal choice for evaluating and comparing the 
performance of anomaly detection algorithms. The MVTec AD contains 15 categories of industrial 
products, including 10 types of physical objects and five types of textures. Each category comprises 
a varying number of images, totaling 5,354 images. There are 3,629 defect-free images for training 
and 1,725 images for testing, which include both defect-free samples and samples with various types 
of defects, such as scratches, dents, and stains. The image resolution in the MVTec AD dataset ranges 
from 700×700 to 1024×1024 pixels.

The BTAD dataset is a real-world industrial anomaly detection dataset, comprising 2,830 authentic 
images of three different industrial products. The images have resolutions of 1600×1600, 600×600, 
and 800×600 pixels, respectively. It provides a comprehensive set of features extracted from vibration 
signals, which are used for training and evaluating anomaly detection models. The diverse range of 
fault conditions within the BTAD dataset makes it an ideal choice for assessing the generalization 
capability of such models in detecting unseen anomalies in bearing systems.

Implementation Details
We implement the model in Pytorch. The model trains 50 epochs on a single Nvidia 3090 with a 
batch size of 16. We update the parameters using momentum SGD with a learning rate of 0.001. 
Meanwhile we set the training weight attenuation to 5 2e- , and the training time of a class takes about 
eight hours.

In this study, we employ the area under the receiver operating characteristic curve (AUCROC) as 
the benchmark for evaluating the performance of image anomaly detection and pixel-level anomaly 
localization (Xie et al., 2024). The AUROC metric ranges from 0 to 1.

In the preprocessing stage, we resize the images of all categories to 224×224. The training 
set is composed of n normal images of known categories, that is, T M

train i
n

i
U i n= = …( )=1

1, ; 
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its subset   is composed of normal images in the category 
i
i n= …( )1 2, , . During testing, a 

few normal samples of the target category 
t
t i n∉ = …( )( )1 2, ,  are available and supported by 

a few normal images.

Comparisons With other Methods
In this experiment, one target category is used for testing, and the other remaining categories are 
used for training. Table 1 shows the comparison of our method with other methods on the MVTec 
AD dataset at k=2, k=4, and k-8, respectively. In terms of image-level anomalies, we compare our 
method with TDG (Sheynin et al., 2021), DiffNet (Rudolph et al., 2021), and RegAD (Huang et al., 
2022) methods, all of which use the same ImageNet pretraining architecture. The advantage of our 
proposed method is that it improves the adaptability of the model to various transformations by using 
feature alignment in the image registration module and shows superior performance in most categories.

Moreover, it is easy to find that our method achieves the best average AUROC in all three 
scenarios. In k=2 and k=8, our method outperforms other methods in six out of 15 categories. 
At the same time, in terms of image-level, average results, our method improves accuracy by 1% 
compared to the state-of-the-art (SOTA) method. At k=4, our method outperforms other methods in 
eight categories, and the average results at the image level improve by 2% compared to SOTA. This 
is enough to prove the effectiveness of our method.

Compared with the SOTA model, our method improves the average area under the curve (AUC) 
in the MVTec dataset by about 1%, 2.5%, and 1.2% in the cases of k=2, k=4, and k=8, respectively. It 
shows good performance in bottles, hazelnuts, leather, wood, etc. Specifically, for texture-rich classes 
such as wood and leather, color enhancement is deemed inappropriate for these images; hence, we 
abstain from applying such enhancements, which leads to commendably robust, image-level outcomes. 
Meanwhile, it has sub-optimal accuracy in cables, capsules, and metal nuts. Furthermore, certain 

Table 1. Comparison With Other Methods at the Image-Level in AUCROC (%)

Category TDG
k=2

ours TDG
k=4

ours TDG
k=8

ours
DiffNet+ RegAD DiffNet+ RegAD DiffNet+ RegAD

Bottle 69.3 99.3 99.4 99.5 69.6 99.3 99.4 99.4 70.3 99.4 99.8 99.9

Cable 68.3 85.3 65.1 72.2 70.3 85.2 76.1 80.7 74.7 87.9 80.6 85.2

Capsule 55.1 73.0 67.5 70.7 47.6 80.3 72.4 75.9 44.7 78.6 76.3 77.9

Carpet 66.2 78.4 96.5 93.0 68.7 78.6 97.9 95.0 78.2 78.5 98.5 96.6

Grid 83.8 62.1 84.0 84.3 86.2 60.5 91.2 91.5 87.6 78.5 91.5 91.6

Hazelnut 67.2 94.9 96.0 98.4 71.2 95.8 95.8 98.2 82.8 97.9 96.5 98.4

Leather 93.6 90.7 99.4 99.5 93.2 91.2 100.0 100.0 93.5 92.2 100.0 100.0

Metal Nut 67.1 61.9 91.4 82.9 69.2 67.3 94.6 92.5 68.7 67.6 98.3 94.2

Pill 69.2 83.2 81.3 77.8 64.7 84.0 80.8 81.7 67.9 82.1 80.6 82.5

Screw 98.8 73.4 52.5 79.0 98.8 72.5 56.6 77.6 99.0 75.0 63.4 78.4

Tile 86.3 97.0 94.3 97.4 87.2 98.0 95.5 96.6 87.4 99.6 97.4 98.6

Toothbrush 54.4 60.8 86.6 83.2 57.8 62.5 90.9 96.1 57.6 60.8 98.5 99.1

Transistor 55.9 61.8 86.0 80.5 67.7 62.2 85.2 88.4 71.5 63.3 93.4 89.2

Wood 98.4 98.1 99.2 99.7 98.3 96.4 98.6 98.8 98.4 99.4 99.4 99.7

Zipper 64.4 89.2 86.3 81.7 65.3 84.8 88.5 88.6 66.3 87.3 94.0 92.8

Average 73.2 80.6 85.7 86.7 74.4 81.3 88.2 90.7 76.6 83.2 91.2 92.3

Note: k denotes the number of shots in our few-shot settings.
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categories are not amenable to specific feature-level spatial manipulations, as seen with transistors 
where operations like flips or rotations do not yield favorable results. The data in the table clearly 
indicate that the performance of transistor images following affine transformations is suboptimal 
compared to other established methods. Due to the model’s use of two-stage, image-feature-level and 
pixel-level features for learning and alignment, the concept of feature alignment can be generalized 
to different categories for general feature learning, improving the model’s generalization ability. 
It can be easily observed from Figure 4 that, from 1-shot to 8-shot, our method outperforms the 
registration based few-shot anomaly detection (RegAD) method, as well as the PaDIM (Defard et 
al., 2021) and student-teacher feature pyramid matching (STPM) (Wang et al., 2021) methods in 
image-level results. Among them, k represents using several corresponding category images as the 
training set, rather than a few images. On this dataset, the gap between us and the baseline is also the 
largest, indicating that our model utilizes the additional variability of the samples. As the number of 
class images increases, the performance of the model also improves. Therefore, when we use a small 
sample setting for anomaly detection, our method outperforms other methods in image-level results.

Considering that other methods use a few images as training sets rather than several categories, 
our approach adapts the model to unseen categories after training on multiple categories. We use a 
few samples as the support set. Considering fairness, we reimplement the SOTA method with the 
number of k, such as semantic pyramid anomaly detection (SPADE) (Cohen & Hoshen, 2020), STPM 
(Wang et al., 2021), RD4AD (Deng & Li, 2022), and coupled-hypersphere-based feature adaptation 
(CFA) (Lee et al., 2022), using the official source code for the experiments. Meanwhile, the sampling 
rates are all set at 0.001. The comparison results of the MVTec AD dataset in terms of image level 
and pixel level are also shown in Table 2.

In the experiment, we compare our approach with some classical anomaly detection methods. 
Researchers typically use pixel-level metrics to evaluate the performance of anomaly detection 
methods. Fundamentally, pixel-level metrics focus on the ability to identify anomalies within an 
image, while image-level metrics focus on determining whether a product, as a whole, is anomalous. 
In practice, the lower the defect level, the higher the price of the product. In addition, as shown in 
Table 2, some few-shot anomaly detection methods, like CFA, perform well on pixel-level metrics but 
poorly on image-level AUROC results. In our opinion, both metrics demonstrate different capabilities 
for anomaly detection that can greatly benefit industrial manufacturing production.

Therefore, it is important to develop an unsupervised anomaly detection method that excels in 
both pixel-level and image-level results without the need for labeled samples.

Compared to the other methods in Table2, our method outperforms the other baseline methods 
in the MVTec AD dataset in both image-level and pixel-level average AUROC. At the image level at 
k = 2, our method outperforms the other methods in 10 out of 15 categories, and again at the pixel 

Figure 4. Comparison With Other Methods at the Image-Level in AUCROC (%)
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continued on following page

Table 2. Performance Comparison With SOTA Methods for Anomaly Detection and Localization

Category CFA SPADE STPM RD4AD Ours

k=2

Bottle 96.7/93.2 95.2/85.2 93.2/84.3 91.2/81.7 99.5/95.5

Cable 65.4/88.2 60.1/78.2 59.8/50.9 58.3/64.8 72.2/93.6

Capsule 50.2/85.6 45.6/79.2 43.2/49.2 44.7/77.9 70.7/70.6

Carpet 97.1/97.5 93.2/95.2 90.5/60.5 92.5/72.5 93.0/97.6

Grid 79.2/81.3 75.1/75.6 71.2/61.2 74.3/74.3 84.3/51.8

Hazelnut 98.1/98.1 95.0/88.2 90.3/73.3 93.2/63.2 98.4/98.0

Leather 100/99.2 97.2/88.3 95.1/75.1 96.5/86.5 99.5/99.0

Metal_nut 66.1/89.5 60.2/58.5 58.2/51.1 63.4/68.7 82.9/96.9

Pill 66.3/91.2 59.7/54.2 57.3/49.3 62.4/65.6 77.8/96.3

Screw 55.9/96.5 49.6/69.6 51.2/51.2 53.5/59.7 79.0/95.8

Tile 99.8/81.5 89.5/81.5 90.2/57.2 88.7/88.7 97.4/89.4

Toothbrush 86.7/93.8 78.5/75.5 75.2/65.2 77.8/77.8 83.2/94.7

Transistor 71.5/79.5 50.5/73.5 83.2/43.2 77.5/77.5 80.5/94.3

Wood 98.1/91.8 49.5/89.5 95.4/45.4 93.5/93.5 99.7/93.4

Zipper 50.3/93.2 48.5/93.5 45.2/55.2 48.6/48.6 81.7/91.8

Average 78.8/90.6 69.8/79.1 69.7/58.2 74.4/69.0 86.7/90.6

k=4

Bottle 94.2/93.6 95.8/86.9 93.9/84.9 92.1/81.8 99.4/97.9

Cable 91.2/89.1 61.3/78.7 61.3/52.2 68.4/66.2 80.7/95.9

Capsule 56.2/86.2 48.7/80.1 47.4/59.3 51.7/78.4 75.9/98.1

Carpet 97.6/98.2 92.5/95.0 91.5/60.6 93.2/74.8 95.0/97.9

Grid 81.5/82.5 76.2/76.1 75.3/61.8 76.4/76.9 91.5/66.3

Hazelnut 99.4/98.5 95.6/89.1 91.4/74.9 93.8/65.2 98.2/98.8

Leather 100.0/99.3 98.2/89.3 96.9/75.3 96.8/86.7 100.0/99.2

Metal_nut 91.3/89.9 62.5/60.2 60.8/51.8 65.3/69.2 92.5/97.9

Pill 85.6/91.6 61.8/58.2 61.3/50.6 62.8/70.4 81.7/97.2

Screw 49.2/96.8 52.9/71.3 52.8/51.9 55.7/60.9 77.6/95.3

Tile 99.8/82.3 91.3/82.4 90.4/58.5 90.8/59.5 96.6/94.1

Toothbrush 87.2/94.2 81.7/76.9 80.4/66.9 76.7/78.9 96.1/97.2

Transistor 95.8/80.5 52.5/74.2 82.4/57.5 79.3/67.9 88.4/93.2

Wood 98.6/92.6 51.4/90.4 95.8/48.9 94.2/94.2 98.8/94.2

Zipper 94.3/94.8 52.2/93.8 47.6/56.4 56.7/52.3 88.6/97.0

Average 85.0/91.3 71.6/80.2 74.77/60.8 76.9/72.2 90.7/94.7
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level, our method performs better in nine categories. The method in this study is trained and tested 
without involving parameter fine-tuning, a situation that may not guarantee optimal performance for 
each category. Other baseline methods can adjust parameters based on the training situation of each 
category, thus other baseline methods may have the advantage of allowing the best performance 
for each category after parameter fine-tuning. In the cases of k=4 and k=8, compared to the four 
methods in Table 2, our method performs best or is suboptimal at the image and pixel levels. At k=8, 
our method achieves an image-level AUC of 92.3 during training, which is approximately 2% higher 
than the CFA method that adapts to dataset features for complex anomaly detection and localization 
in a small sample setting. Pixel-level metrics are comparative results of anomalous localization. 
The first number in Table 2 indicates the image-level AUROC, the latter, the pixel-level AUROC. 
It shows from both tables that our method achieves the best level in the few-sample setting in the 
average image-level and pixel-level AUROC, for all categories, which is sufficient to demonstrate 
the effectiveness of our method.

The statistical results from Table 2 and Table 3 imply that our proposed few-shot anomaly 
detection method from coarse to fine stages has achieved good results in the current work. It has made 
significant improvements in the defects of objects. Moreover, it can be found that Table 3 clearly lists 
the comparison between our method and other methods in terms of training data selection, whether it 
is pre-trained or not, and the selection of the backbone network. Figure 5 illustrates the distribution 
of anomaly scores for the test sample. The first column represents the original image in the dataset; 
the second column represents the ground truth map; the third column is the predicted heat map; the 
fourth column is the predicted mask map; and the last column represents the final segmented result 
of the image, after processing. Meanwhile, it can also be found that in Figure 5 the anomaly heat map 
not only highlights the location and shape of the defects, but also observes that the map pays attention 
to the fine granularity of the image, which shows how our method pays attention to the anomalies.

Category CFA SPADE STPM RD4AD Ours

k=8

Bottle 95.1/93.6 95.9/87.1 94.1/85.2 92.8/82.1 99.9/98.4

Cable 91.8/89.2 63.5/78.9 62.6/53.3 69.2/68.2 85.2/96.6

Capsule 69.5/86.5 58.9/80.2 57.8/59.3 58.5/78.5 77.9/98.2

Carpet 97.6/98.4 92.7/95.1 91.6/60.7 93.8/79.2 96.6/98.3

Grid 85.6/82.8 77.3/77.2 76.9/61.8 77.9/76.9 91.6/67.6

Hazelnut 99.4/98.6 96.5/89.5 91.8/74.9 94.2/65.5 98.4/98.8

Leather 100.0/99.4 98.7/90.2 97.2/75.3 97.2/86.9 100.0/99.9

Metal_nut 92.3/89.9 68.9/60.5 61.3/54.6 65.6/69.5 94.2/98.2

Pill 88.9/91.7 63.9/58.2 64.2/55.7 63.6/70.5 82.5/98.1

Screw 65.4/96.9 56.4/71.4 55.9/52.3 59.3/61.9 78.4/95.5

Tile 99.8/83.4 91.8/82.5 91.2/58.9 91.2/60.8 98.6/91.8

Toothbrush 88.9/94.5 82.9/77.2 82.3/66.9 77.9/79.1 99.1/97.9

Transistor 96.2/81.5 58.9/74.5 84.6/58.2 81.2/67.9 89.2/97.0

Wood 98.9/92.7 61.3/90.4 95.8/49.2 95.6/94.5 99.7/95.4

Zipper 94.5/94.9 62.5/94.2 57.2/57.8 58.9/52.8 92.8/97.7

Average 90.9/91.6 75.3/80.5 77.6/61.6 78.5/73.0 92.3/95.3

Table 2. Continued
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To validate the generalization capability of our proposed model, we conducted experiments on 
industrial dataset BTAD. In terms of image-level anomalies, we compared our method with PatchCore 
(Roth et al., 2022), discriminatively trained reconstruction anomaly embedding model (DRAEM) 
(Zavrtanik et al., 2021), patch-level support vector data description (PatchSVDD) (Yi & Yoon, 2021), 

Table 3. Comparison With Existing Methods in Different Aspects

Methods Data ImageNet Pretrain Backbone
MVTec AD

image pixel

Ours(k=2) 2 images √ ResNet-18 86.7 90.6

Ours(k=4) 4 images √ ResNet-18 90.7 94.7

Ours(k=8) 8 images √ ResNet-18 92.3 95.3

GANomaly Full images × UNet 80.5 -

ARNet Full images × UNet 83.9 -

MKD Full images √ ResNet-18 87.7 90.7

CutPaste Full images √ ResNet-18 95.2 96

PaDiM Full images √ WRN50 97.9 97.5

PatchCore Full images √ WRN50 99.1 98.1

CflowAD Full images √ WRN50 98.3 98.6

SPADE Full images √ WRN50 78.9 90.5

Figure 5. The Distribution of Anomaly Scores When the Test Sample is Plotted
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and multiresolution knowledge distillation (MKD) (Salehi et al., 2021) methods, and experimental 
results show the effectiveness of the proposed method. As shown in Table 4, the accuracy of the 
model at the image level and pixel level reaches 94.3% and 97.2%, respectively. Figure 6 illustrates the 
test results, highlighting the model’s performance in distinguishing between normal and anomalous 
instances within the dataset.

Ablation Study
The ablation experiments described below are all performed on the MVTec AD dataset, and some 
other parameters were consistent. We explore the role of important parts of our approach. “Baseline” 
refers to the use of only the ImageNet, pre-trained ResNet-18, and Augmentation (AUS) stands for the 
augmentation of the support set samples. The CA stage is the first stage of our proposed two-stage 
anomaly detection method, which is regularizing the initial image-level features in the sample images; 
the fine anomaly (FA) stage maximizes the feature similarity of the corresponding position on each 
image. MSCAB enhances the difference between normal images and samples by adding global and 
local channel attention. We verified the influence of STN and MSCAB on our experiment in Table 
5. From Table 5, it is evident that incorporating enhancement processing into the samples using the 

Figure 6. The Anomaly Localization Results on BTAD Dataset

Table 4. Comparison of Our Method With Other Methods on the BTAD Dataset

Method PatchCore DRAEM PatchSVDD MKD Our

Image-level 0.93 0.92 0.92 0.94 0.94

Pixel-level 0.98 0.94 0.96 0.97 0.97



International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

17

baseline method significantly improves the image-level results and pixel-level results at the three 
k-values by approximately 8% to 9% and 5% to 6%, respectively. In order to compare the effects of 
the two stages of STN and MSCAB for feature mapping, this study includes experiments on the 
baseline plus the enhancement processing method for each stage. The results show both stages have 
enhancement effects on anomaly detection and localization. The performance of anomaly detection 
improves when the feature mapping of both stages is increased simultaneously, resulting in an average 
enhancement of 11%-12% compared to the baseline method. This underscores the significance of 
enhanced detail region detection for anomaly detection results and localization.

Adding one module separately has an impact on both baseline methods. According to Table 5, 
compared to the baseline method, adding the STN module alone increases the average image-level 
AUROC by 10.6% and the average pixel-level AUROC by 5.1%. Meanwhile, compared to the baseline 
method, adding the MSCAB module alone results in an average increase of 9.5% in image-level results 
and 4.9% in pixel-level results. The enhancement of model detection and localization capabilities can 
be intuitively observed in the data.

The results show that both of them have a positive effect on improving the performance of anomaly 
detection and improving the image-level AUROC. The proposed STN module improves the feature 
registration capability. The combination of the two can produce better positive feedback results on the 
image-level results. Figure 7 clearly demonstrates that the baseline approach considers both normal 
and abnormal features, while our method prioritizes abnormal features. The illustration highlights the 
contrast in the dataset’s four categories when employing the baseline with the enhancement method 
versus the approach adopted in our study. The bolded box lines in the segmentation result shown in 
the figure represent the baseline plus enhancement method’s attention to the non-anomalous features. 

Table 5. Results of Ablation Experiments on the MVTec AD Dataset

Baseline AUS (Augmentation) STN MSCAB
image pixel

k=2 k=4 k=8 k= 2 k=4 k=8

✓ 74.7 78.0 80.5 88.6 90.5 92.1

✓ ✓ 83.0 86.4 89.3 94.7 95.9 96.6

✓ ✓ ✓ 84.3 87.1 90.5 94.0 95.6 95.9

✓ ✓ ✓ 85.7 88.2 91.2 94.6 95.8 96.1

✓ ✓ ✓ ✓ 86.7 90.7 92.3 90.6 94.7 95.3

Figure 7. Qualitative Results of Anomaly Localization on the MVTec Dataset
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In contrast, our method more accurately locates the abnormal features, and the abnormal areas in 
the heat maps are more concentrated at the abnormal points. Meanwhile, our approach does not care 
about the size and number of exception regions; this fully demonstrates the superiority of our method.

ConCLuSIon

This article proposes a new two-stage, few-shot anomaly detection network, meticulously designed 
to enhance the accuracy and robustness of anomaly detection. This method employs a coarse-grained 
anomaly detection module for feature extraction, a MSCAM for feature transformation, and a fine-
grained detection module to intensify the focus on fine-grained features. It addresses the previous 
challenges faced by CNNs, such as a high sensitivity to noise and a lack of sensitivity to fine-grained 
features. Experimental results demonstrate this approach achieves an image-level AUROC of 92.3% 
and a pixel-level AUROC of 95.3% on the MVTec AD dataset. Future research will focus on further 
optimizing the model structure and algorithms. For example, considering diffusion models to 
effectively improve the accuracy of low-parameter feature extraction.

In our future research, we will prioritize methods that aim to simplify model structures, thus 
reducing computational complexity and training costs, while also enhancing interpretability and 
deployability for industrial anomaly detection applications. Additionally, we plan to incorporate 
diffusion models into our future research efforts to enhance anomaly detection methods. These 
models are proficient at capturing spatiotemporal semantic correlations in data, thereby improving 
the accuracy and robustness of anomaly detection. This initiative will provide more reliable anomaly 
detection solutions for industrial intelligence and automation, ultimately reinforcing the reliability 
and efficiency of industrial production processes.
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