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ABSTRACT

Artificial intelligence (AI) integration, notably in healthcare, has been significant, yet effective 
implementation in critical areas requires expertise. KoopaML, a previously developed visual platform, 
aims at bridging this gap, enabling users with limited AI knowledge to build ML pipelines. Its core is 
a heuristic-based ML task recommender, offering guidance and contextual explanations. The authors 
compared the use of KoopaML with two non-expert groups: one with the recommender system enabled 
and the other without. Results showed KoopaML’s intuitiveness benefits all but emphasized that 
textual guidance doesn’t substitute for fundamental ML understanding. This underscores the need for 
educational components in such tools, especially in critical fields like healthcare. The paper suggests 
future KoopaML enhancements include educational modules, making ML accessible, and ensuring 
users develop a solid AI foundation. This is crucial for quality outcomes in sectors like healthcare, 
leveraging AI’s potential through enhanced non-expert user capability.

Keywords
Artificial Intelligence, HCI, Health Platform, Information System, Medical Data Management, Think Aloud 
Protocol, Usability

https://orcid.org/0000-0003-0573-4321
https://orcid.org/0000-0002-7284-5593
https://orcid.org/0000-0001-9987-5584
https://orcid.org/0000-0003-1895-7436
https://orcid.org/0000-0001-9663-1103
https://orcid.org/0000-0002-8344-6328


International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

2

When using AI to automate tasks in sensitive fields such as healthcare, if the users are unaware of 
these factors, they can reach wrong conclusions, originate discrimination, or even commit medical 
negligence (Weyerer & Langer, 2019; Ferrer et al., 2021; Hoffman, 2021; Wachter et al., 2020). For 
this reason, it is crucial to understand the algorithms’ inputs and outputs and the implications they have 
in the performance of AI, especially in the medical context where AI methods are being employed 
for complex tasks like diagnoses, disease detection, segmentation, assessment of organ functions, 
etc. (González Izard et al., 2020; González Izard et al., 2018; Litjens et al., 2017). In previous work, 
we tackled this problem through KoopaML (García-Holgado et al., 2022; García-Peñalvo et al., 
2023; Vázquez-Ingelmo et al., 2021), a platform developed to educate and support inexperienced 
users in developing machine learning (ML) flows. KoopaML has two goals: (1) providing a simple 
interface to allow the use of ML techniques visually, and (2) offering a learning experience to its 
users, helping them understand the rationale of these techniques. However, providing these features 
is not straightforward, and real-world feedback is required to look.

The novelty of our approach lies in the integration of a heuristic-based ML task recommender 
within KoopaML, a platform designed to demystify the complexities of machine learning for non-
experts. This innovative feature is specifically tailored to guide users through the selection and 
application of ML techniques, fostering an educational environment absent in existing platforms. 
By focusing on the unique needs of medical professionals, KoopaML stands out for its user-centric 
design that not only simplifies the ML workflow but also embeds learning within the process. This 
dual focus on usability and educational value represents a significant advancement in the field, as it 
directly addresses the gap between the growing demand for AI in healthcare and the current barriers 
to its practical application by frontline medical practitioners.

In the latest iteration of our research, we conducted a user evaluation of KoopaML with a 
group of physicians at the University Hospital of Salamanca. This assessment was geared toward 
three principal aims: firstly, to evaluate the platform’s heuristic-based ML task recommender—one 
of KoopaML’s cornerstone features; secondly, to delve into the perceptions and challenges faced 
by medical professionals, who are non-expert users, when interacting with AI technologies; and 
thirdly, to explore whether textual guidance within the platform can simplify ML concepts for users 
unfamiliar with the field. In this context, a critical research question emerged: Can KoopaML, with its 
recommender system and textual guidance, make the journey into machine learning an approachable 
and more user-friendly experience for medical professionals?

A key component of this evaluation was to scrutinize the practicality and effectiveness of the 
x system within KoopaML. Assessing its impact on the user experience is essential for refining the 
platform’s functionality and advancing our overarching vision: to create a tool that not only simplifies 
the design and operationalization of ML models but also imparts valuable knowledge to its users 
throughout the process. By undertaking this evaluation, our objective is to shed light on the specific 
hurdles physicians may face as they attempt to integrate ML algorithms into their clinical practice. 
Understanding these challenges is crucial for developing targeted improvements in KoopaML that 
will support medical practitioners in harnessing the power of AI, thereby enhancing patient care and 
advancing the healthcare industry’s technological frontiers.

The rest of this work is organized as follows: “Related Works” explores related works on tools 
for creating ML pipelines. “Background” provides the KoopaML platform’s background, outlining 
its features and detailing the recommendation process. “Methodology” describes the methodology 
followed for the platform’s assessment. “Results” presents the study results, while “Discussion” 
discusses them both in general and from the medical point of view, including the identified limitations. 
Finally, “Conclusions” outlines the conclusions reached through this study.



International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

3

RELATED WORKS

A variety of tools designed to assist in machine learning processes have emerged over time. For 
this research, we identified and focused on three distinct types of tools. The first category includes 
tools for developers and data scientists, providing comprehensive programming libraries to facilitate 
the development of machine learning applications. TensorFlow, for example, is a machine learning 
framework that runs at scale and in diverse contexts (Abadi et al., 2016), assisting academics in pushing 
state-of-the-art models in ML and developers in simply building and deploy (ml)ing ML-powered 
apps. Apache Mahout, a library for scalable machine learning on distributed dataflow systems, is 
another example (Anil et al., 2020). In this category, we may also add Python libraries like PyTorch, 
Scikit-learn, or Keras.io, as well as cloud services like Google Colab, which is a serverless Jupyter 
notebook environment (Bisong, 2019).

Second, there are systems aimed at specialists while still providing tools for non-specialist 
users. These applications provide visual environments that aid in the visual development of machine 
learning models. Weka, for example, is a library of machine-learning techniques for data mining 
jobs. It features four environments, the most notable of which is Knowledge Flow, a visual interface 
that allows users to describe a data stream by visually linking components representing data sources, 
preprocessing tools, learning algorithms, assessment techniques, and visualization tools (Frank et al., 
2009; Hall et al., 2020). RapidMiner Studio is a data science platform that includes tools for creating 
ML processes. It includes the Visual Workflow Designer tools for creating ML processes, and every 
step is documented for total transparency. This feature enables data source connection, automatic in-
database processing, data visualization, and model validation processes (Bjaoui et al., 2020). KNIME 
Analytics Platform is another example. It gives tools for constructing visual data analytics workflows 
with a graphical interface that does not require scripting. KNIME is a modular platform that allows 
for the simple visual building and interactive execution of data pipelines (Berthold et al., 2009).

ML has also begun to be introduced in elementary and high schools. This has led to the creation 
of tools to assist non-expert users, such as children, in performing simple ML tasks using a visual 
interface. Two instruments can be highlighted in this category. The first is LearningML (Rodríguez-
García et al., 2021), which is a platform for developing computational thinking abilities through 
hands-on AI projects, and second is Machine Learning for Kids (https://machinelearningforkids.
co.uk/). Both tools are built around a primary pipeline for training models and a Scratch integration 
for using the trained model.

There are several sophisticated apps aimed at simplifying the use of ML algorithms, as well as 
instructional resources for comprehending these complex procedures. However, these platforms are 
designed to cater to a wide audience but often lack the specialized features necessary to address the 
unique requirements and challenges of specific domains. Against this backdrop, KoopaML emerges 
as a specialized visual ML platform that not only simplifies the creation and use of ML models for 
medical practitioners but also places a strong emphasis on the educational aspect of its use. It stands 
apart by integrating health-related criteria into its functionality, thus providing a more relevant 
and context-aware experience for users in the health domain. Moreover, KoopaML is dedicated to 
imparting an educational experience. It is structured to guide users through the underlying principles 
of ML techniques as they apply them, thereby fostering a deeper understanding of the rationale behind 
their choices. This contrasts with many existing solutions that may facilitate mechanical application 
of ML algorithms but fall short in educating users about the intricacies of model selection, data 
preprocessing, and algorithmic decision-making.

https://machinelearningforkids.co.uk/
https://machinelearningforkids.co.uk/
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BACKGROUND

KoopaML Description
KoopaML is a web application that allows users to create machine learning pipelines through visual 
nodes and simple interactions with the interface (García-Peñalvo et al., 2023). Each visual node is 
associated with specific tasks like data uploading processes, data cleaning functions, machine learning 
models, and metrics for performance evaluation.

Figure 1 displays the workspace of KoopaML, in which users can drag and drop different 
nodes and configure them to create the ML pipeline. On the left side of this figure, there is a menu 
containing the different types of nodes that can be included in the pipeline. Each node is detailed in 
the results section. On the right side of Figure 1, there is an ML pipeline that uploads a dataset, fills 
its null values, splits it into a train and a test dataset, trains a random forest classifier, and calculates 
the recall and precision of the model. Once users have finished their pipeline, they can execute it by 
clicking the “Run” button, triggering the backend to build the pipeline by connecting tasks using the 
algorithm presented by García-Peñalvo et al. (2023) and the SciLuigi (https://github.com/pharmbio/
sciluigi) library. SciLuigi is a wrapper for Spotify’s Luigi Python library (https://github.com/spotify/
luigi), and it supports dynamic workflows, avoiding hard-coded dependencies (Lampa et al., 2016; 
Lampa et al., 2019) and increasing flexibility and scalability of the system. Moreover, by using the 
SciLuigi library, users can also consult the intermediate results of each task to debug, improve, or 
check any issue related to the pipeline.

KoopaML has been developed through paradigms and technologies with a focus on flexibility. The 
emphasis on designing a flexible architecture aims at enabling expert users to expand the platform’s 
capabilities by adding custom algorithms, components, or novel heuristics to assist in defining ML 
pipelines without significant development efforts. For a complete and detailed description of the 
system architecture, please refer to the work by García-Peñalvo et al. (2023).

Figure 1. Example of a Workflow Developed in KoopaML

https://github.com/pharmbio/sciluigi
https://github.com/pharmbio/sciluigi
https://github.com/spotify/luigi
https://github.com/spotify/luigi
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Recommendations and Heuristics Management
One of the most interesting features of KoopaML is the heuristics management module. As explained 
in the introduction, KoopaML is focused on providing a learning experience while developing ML 
workflows. The heuristics management module has been designed and introduced in the platform to 
address this learning experience. This module offers an interface to define flexible and modifiable 
heuristics used in the workspace to yield recommendations regarding which elements are necessary in 
the pipeline. The heuristics are represented through the Domain-Specific Language (DSL) provided 
by the flowchart.js (https://github.com/adrai/flowchart.js) library. The flowcharts.js library allows 
textual and graphical representation of flow charts, which is extremely useful in this context, as it 
provides a visual and direct manipulation of rule-based recommendations (see Figure 2).

The heuristics module is only accessible to the system’s administrators and AI experts. This 
module yields recommendations previously defined by using the DSL. For this reason, only users 
with permissions can edit the heuristics using the interface presented in Figure 3. Once the heuristics 
have been saved, the interface will start yielding recommendations based on the state of the pipeline 
and the current tasks and connections in the workspace. Whenever the user performs an action on the 
workspace and changes its state, the heuristics are checked to update the system’s recommendation.

To sum up, the recommendations in our system are derived from the predefined heuristics, which 
are essentially rule-based. This approach eliminates the need for intensive computational processes 
like real-time data analysis or complex machine learning computations. As a result, it enables the 
system to provide prompt and efficient responses without the burden of heavy computational demands.

Figure 2. Excerpt of the Definition of Heuristics and Recommendations

https://github.com/adrai/flowchart.js
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MATERIALS AND METHODS

Methodology
The think-aloud method (Gambier & Doorslaer, 2010; Someren et al., 1994) has been followed to 
carry out the usability test of KoopaML. The think-aloud method, employed in our usability test of 
KoopaML, offers several distinct advantages. Primarily, it provides real-time insights into users’ 
thought processes, which is invaluable in identifying not only the difficulties they face but also their 
problem-solving strategies while interacting with the system. This method enables us to gather nuanced 
data on user experience, which goes beyond mere functionality and delves into user satisfaction and 
engagement with KoopaML. Importantly, the flexibility of the think-aloud method, which can be 
carried out online through video conferencing tools, aligns with the constraints faced by our target 
users—physicians. Their tight schedules often preclude the possibility of in-person testing, and 
the adaptability of this method to remote settings via video conferencing tools is a crucial factor in 
ensuring their participation. Finally, by using this approach, it is also possible to capture the users’ 
interaction during the execution of the demanded tasks and map them with the users’ thoughts and 
performance, thus obtaining a complete landscape of usability. In this sense, we have also integrated a 
digital data analysis tool that captures the behavior of users within websites, namely Hotjar.js (https://
www.hotjar.com/), to track every interaction performed by the users.

A total of eight physicians (four female and four male) participated in the study. Although small, 
the sample is appropriate for the selected method. As Nielsen (1994) suggests, planning think-aloud 

Figure 3. Recommendation of the Platform After Uploading a New Dataset (See Grey Modal at the Bottom)

https://www.hotjar.com/
https://www.hotjar.com/
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protocols with 4 ± 1 subjects yields sufficient information to analyze the participants’ problem-
solving issues. Table 1 outlines the specialization and background in ML of each participant. A 
high background in ML means the participant has worked and used algorithms programmatically, 
while a moderate level means the participant has used ML superficially (use of graphical platforms, 
for example). On the other hand, participants deemed low have limited ML knowledge are without 
having used ML and without having a background in ML, and none indicates they do not know 
anything about ML.

Considering their background with ML, each participant was assigned, in a balanced way, to use 
one of the two variants of the platform: the baseline version, without the recommender feature, and 
the new version, with the recommender feature. This assignment will support comparisons between 
the two versions and an analysis to determine if the recommender feature is helpful for users.

Study Protocol
This section details the study protocol followed during the interviews. An online meeting through a 
videoconferencing platform was arranged for each participant once they confirmed their participation. 
In each meeting, the following steps were carried out:

1. 	 The participant was introduced to the study and was asked to share their screen.
2. 	 An introductory video1 to ML and the KoopaML platform was played. The video contained the 

basic notions of ML and a quick tutorial on the platform’s main features. Specifically, the video 
outlined basic concepts of ML including the structure of the input data, the notion of train and 
test sets, the difference between classification and regression, and the steps needed in an ML 
pipeline (e.g., data preparation, model training, and model validation).

3. 	 Question-and-answer (Q&A) about the video and study protocol was conducted. The purpose 
of this Q&A is twofold: firstly, to resolve any ambiguities or confusion regarding the 
platform’s functionality and features, and secondly, to clarify the objectives and procedures 
of the study itself.

4. 	 The participant was given access to KoopaML. Each participant in the study was provided 
with their own set of credentials to access KoopaML. This approach was deliberately chosen to 
prevent any overlap or interference with the projects and results of other users. By ensuring each 
participant had a unique login, we maintained the integrity of the data collected and allowed for 
a more accurate analysis of user interactions and outcomes.

5. 	 The study’s database, formatted as a CSV file, was made available in the chat for participants 
to download and use on their computers. The dataset structure and its variables are explained in 
Figure 4.

Table 1. Participants of the Study and Their Backgrounds

ID Area ML Background KoopaML Setting

P1 Medical resident High No recommender

P2 Medical staff Moderate Recommender

P3 Research nurse Low Recommender

P4 Medical resident Low No recommender

P5 Medical resident Low No recommender

P6 Medical staff None Recommender

P7 Medical resident None No recommender

P8 Medical resident None Recommender
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6. 	 Finally, the tasks to be carried out during the session were also shared via chat. To ensure 
participants had constant access to their instructions and could easily reference them throughout 
the study, we pinned the task list in the chat. This strategic placement aimed to prevent any 
confusion or forgetfulness regarding the tasks at hand, thereby facilitating a smoother user 
experience and minimizing the need for participants to seek clarification or assistance.

The chosen database is a well-known open repository (Dua & Graff, 2019). This database has 
been used in multiple studies to create ML models (Detrano et al., 1989; Gennari et al., 1989). It 
includes 303 patients with suspected ischemic heart disease. Up to 14 features, including baseline 
characteristics like demographic or cardiovascular risk factors, were included. Indeed, results from 
the non-invasive tests were collected. Finally, results from the coronary angiography were used to 
confirm the presence or absence of coronary artery disease.

Regarding the activities to be carried out by the participants, two main tasks were indicated 
(participants could switch to second task (T2) if they got stuck with the first one): The first task (T1) 
included the following sub-tasks:

•	 T1.1. Load the data.
•	 T1.2. Visualize the data.
•	 T1.3. Split the dataset to use 80% of the observations as a training set and 20% as a test set (train 

80%/test 20%).
•	 T1.4. Train a logistic regression model.
•	 T1.5. Obtain ROC AUC results of the trained model.

On the other hand, the second task (T2) was composed of the following sub-tasks:

•	 T2.1. Load the data.
•	 T2.2. Visualize the data.
•	 T2.3. Connect an input to a “Missing Values” node.
•	 T2.4. Split the dataset to use 80% of the observations as a training set and 20% as a test set (train 

80%/test 20%).
•	 T2.5. Train a random forest model.
•	 T2.6. Obtain recall and precision results of the trained model.

Figure 4. Input Data Description
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Firstly, all the physicians tested were working at that time in the Cardiology Department of the 
University Hospital of Salamanca, Spain. As most of the participants had barely any knowledge about 
AI or ML, the selected database permitted them to use at least familiar features that would facilitate 
the tasks scheduled.

The study aims to analyze the effect of KoopaML’s recommendations on the understandability of 
ML concepts. For this purpose, the protocol explained above was carried out. The use of the database 
in the study was conditioned by the study participants. The participants were working at the time in 
the cardiology department. Therefore, the chosen database presents a prediction problem in the field 
of cardiology. Thus, the familiarity of the variables to be studied with the participants did not pose 
any extra problems for the understanding of the database. On the other hand, different ML models 
for prediction or regression were integrated into the KoopaML platform. In the explanatory video 
before the study, all participants were told they had to use prediction models. Given the participants’ 
bare knowledge of ML models, the algorithm to be used was explicitly indicated in each task, so 
participants did not have to analyze the problem to choose the best algorithm (out of the scope of this 
evaluation). Logistic regression and random forest models were chosen, as they are widely used in 
classification tasks. To calculate the predictive power of the algorithms in each exercise, participants 
were also asked for common metrics in the health domain. Metrics such as ROC AUC, recall, or 
precision are used in medicine for other techniques such as survival analysis, so the participants were 
familiar with these concepts.

The study aims to validate the use of the recommendations in the KoopaML platform. For this 
purpose, the protocol explained above was carried out. At the time of the study, all participants were 
part of a cardiology department in a Spanish public hospital. To facilitate familiarization with the task, 
a simple database was chosen, by the clinical knowledge of the group studied. The familiarity with 
the variables to be studied with the participants did not pose any extra problems for the understanding 
of the database. On the other hand, the KoopaML platform integrates different ML prediction and 
regression models. Before the study, participants were informed they should use a prediction model 
to develop the tasks. The choice of two specific algorithms was aimed at observing how user-friendly 
it was for participants to locate the algorithms on the platform. The choice of specific metrics for 
the evaluation of the models was chosen because of their use in medicine for other techniques such 
as survival analysis.

Finally, the screen and voice were recorded for each participant during the whole study to analyze 
their actions and comments subsequently.

RESULTS

The results are structured according to the tasks outlined in the previous section. The sub-tasks covered 
are data uploading and visualization, train/test partitioning, algorithm, and validation. These sub-tasks 
correspond with the available visual nodes in the KoopaML workspace interface and are outlined in 
each sub-section. Finally, other aspects of the tasks, such as the connections between nodes or the 
filling in of missing data, among others, are analyzed.

Data Uploading and Visualization
The data uploading node (see Figure 5) allows users to upload and visualize data. The node contains 
an input to explore the file system and upload CSV files. Once the dataset is uploaded, users can 
configure certain aspects, like the separator of the CSV file, and determine if all the variables should 
be considered in the dataset (they can be ignored by unchecking them). The columns of the CSV file 
are displayed in the rightmost part of the node, and they can be connected to other nodes individually 
(through the circular sockets or through the square socket on top). In addition, the dataset can be 
inspected through an information dashboard by clicking on the icon in the top-left corner.
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All participants were able to upload the training data properly, completing T1.1 successfully. 
Although this sub-task was executed correctly, some participants had problems finding and adding 
the “data upload” node, spending significant time during this sub-task. On the contrary, most of 
the participants did not complete T1.2. Some participants (3 out of 8) managed to visualize data 
through the dashboard provided by the platform, but even visualizing the data, all participants had 
problems understanding the displayed information. T2 had similar results as task T1. All participants 
correctly performed the data upload (T2.1). In this task, T2.2 was only achieved by the participants 
who managed to accomplish it also in T1.

Train/Test Partitioning
The data partitioning node (see Figure 6) is focused on obtaining test and training datasets to prepare the 
data for the subsequent ML algorithms. This is done to evaluate the model’s performance objectively. 
The model learns from the training set and is then tested on the unseen data of the test set to gauge 
its accuracy and generalizability. This node has two inputs (on the left side): the original dataset (on 

Figure 5. Data Uploading Node
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top), and the target variable (at the bottom). The percentage of rows employed for the test dataset can 
be configured through the input “% test.” A seed for this process can also be configured.

The “split dataset” node provides four outputs (on the right side of the node) that can be connected 
to subsequent nodes: the training and test features (X_train and X_test, respectively) and the training 
and test labels (y_train and y_test, respectively) taking into account the dataset and target variable 
specified in the inputs.

During T1, data partitioning (T1.3) was successfully performed by 5 of the 8 participants. One 
of the participants skipped this section when performing the task, going directly to the algorithm 
task. The rest of the participants completed this task but with different difficulties:

•	 Two of the participants added the node correctly but were not able to link the variables properly. 
After several attempts, they managed to do it.

•	 One of the participants was not able to find the node. Eventually, they got it on the dashboard but 
could not locate it in the workspace. Once found, they were able to link the variables correctly.

•	 Two of the participants forgot to add this node and went directly to the classification model. Later, 
they realized they did not add the data division node and could then add it and connect it properly.

During T2 (T2.4), there was a considerable improvement compared to the first one:

•	 Seven of the participants succeeded in adding the node.
•	 Three of the participants performed this step correctly.
•	 Two of the participants made the connection successfully but removed the selection of the 

variables in the data uploading node.

Algorithm
The nodes related to ML algorithms have a common structure (see Figure 7). In this case, the inputs 
are the previously obtained training features (X_train) and labels (y_train). The result of executing 
this node is the trained ML model, which can be downloaded as a pickle object and subsequently 
connected to evaluation nodes. As with the data partitioning node, a seed can be configured.

In T1, participants are asked to fit a logistic regression (T1.4). However, although it had been 
indicated that a classification task would be performed in both tasks, most participants (6 out of 8) 

Figure 6. Data Partitioning Node
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had problems understanding how to tackle this activity. The initial intuition of most of the participants 
who failed on this point (5 out of 6) was to search for the node in the regression section. This was 
a misconception compounded by the repetition of a specific term, in this case, “regression.” In this 
sub-task, there was no difference between the group that received recommendations and the group 
that did not. In contrast, in T2 (T2.5), all participants managed to find the random forest node without 
much difficulty. However, while participants ended up finding the right node for the sub-tasks T1.4 
and T2.5, they were not able to train the models. During the think-aloud evaluation, we detected their 
confusion about what they needed to do to “use” the model, even from those participants who relied 
on the system’s recommendations.

Validation
Finally, validation nodes also have the same structure (see Figure 8); they only differ in the metric 
computed. These nodes receive the training features and labels (X_test and y_test) and the trained 
model obtained from a previous algorithm node (represented by the brain icon, at the bottom of the 
node) as input.

The validation task of both tasks involving validation (T1.5 and T2.6) was only performed 
correctly by one participant (1 out of 8). However, the reasons for this are different across participants. 
In most cases (5 out of 8), errors accumulated in previous steps led to the validation sub-tasks not 
being completed. The rest of the errors were caused by difficulties in finding the specific validation 
nodes (2 out of 8) or by problems in connecting the preceding nodes to the validation node (1 out of 
8). These errors were related to the misunderstanding of participants about the metrics and lack of 

Figure 7. ML Algorithm Node for a Random Forest Classifier

Figure 8. Validation Node to Compute the Recall of a Classification Model
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knowledge regarding the validation processes, as they explicitly verbalized during the execution of 
these validation sub-tasks.

Finally, like in T1.4 and T2.5, no notable differences were found between the groups that received 
recommendations and the groups that did not.

Final Comments and Summary
The results displayed in Table 2 and Figure 9 underscore the nuanced relationship between the 
presence of a recommender system and the proficiency of participants with differing levels of machine 
learning knowledge. A closer examination of task completion rates and issues encountered reveals 
some patterns and outliers. Firstly, participants without access to the textual recommender (NR) 
exhibited varied performance, with some completing all tasks successfully and others struggling 
significantly. Notably, participant P1, with no recommender, achieved a perfect task completion rate, 
which could be influenced by their high level of ML background. Conversely, participants P4, P5, and 
P7, also without a recommender, had lower completion rates, particularly for Task 1 (T1), indicating 
potential areas where the platform’s usability could be enhanced or where additional instructional 
support may be needed.

Among those with the recommender system (R), participant P2’s improvement from T1 to T2 
suggests the recommender may have a delayed benefit, possibly aiding in learning or adaptation over 
time. However, this pattern was not consistent across all participants with access to the recommender, 
as P6 and P8’s performances did not show the same level of improvement.

The issues column brings attention to specific sub-tasks where participants encountered 
difficulties. The recurring issue at T1.3, across both NR and R settings, indicates a common stumbling 
block in the pipeline creation process, which warrants further investigation. The additional challenges 
faced by participants P5, P6, P7, and P8 during T2.4 suggest this sub-task may be particularly complex 
or insufficiently supported by the current platform design or the recommender system. In light of 
these findings, it is apparent that the recommender system’s influence on task performance is not 
straightforward and may be affected by individual user differences, such as prior ML knowledge. 
Moreover, the overall platform design and user interface may play a significant role in the successful 
completion of tasks, irrespective of the presence of a recommender system.

Table 2. Summary of Task Completion Rates and Issues (Participants Are Ordered by Knowledge/Experience in Machine 
Learning)

ID Setting T1 Completion T2 completion Issue

P1 NR 5/5 6/6 -

P2 R 1/5 5/6 T1.3

P3 R 4/5 6/6 T1.3

P4 NR 2/5 6/6 T1.3

P5 NR 1/5 2/6 T1.3 – T2.4

P6 R 1/5 1/6 T1.3 – T2.4

P7 NR 1/5 1/6 T1.3 – T2.4

P8 R 1/5 5/6 T1.3 – T2.4

Note. The “Setting” column refers to the recommender setting: NR = No recommender; R = Recommender. The completion of the tasks (“T1 and T2 
completion”) refers to the number of nodes correctly executed in the pipeline and not only to the number of nodes correctly added to the workspace. The 
“Issue” column refers to the sub-task in which participants were not able to continue.
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DISCUSSION

The results are structured according to the tasks outlined in the previous section. The sub-tasks 
covered are data uploading and visualization, train/test partitioning, algorithm, and validation. These 
sub-tasks correspond with the available visual nodes in the KoopaML workspace interface and will 
be outlined in each sub-section.

General Discussion
The goal of this study was focused on understanding the problems and difficulties users with different 
ML expertise present when introduced to ML and to test if textual recommendations could alleviate 
the complexity of ML concepts to non-expert users. Following the obtained results, as noted in Table 
2, where participants with higher expertise performed better, it is clear to conclude that facing ML 
without a strong background is highly complex. Although some sub-tasks were accomplished, most 
of the participants were not able to complete the two proposed tasks successfully. Although half 
of the participants had support from textual recommendations to guide the pipeline construction, 
there were no significant differences in performance between the two groups. Moreover, some 
participants asked how to close the “dialog box at the bottom of the screen.” While these textual 
recommendations provided all the necessary actions to carry out the two proposed tasks successfully, 
participants ended up ignoring them. This could mean that once read, the recommendation was not 
useful for them anymore, and they were not aware the dialog would update with every change in 
the workspace. Participants did read the errors shown in the dialog box displayed after running the 
pipeline in case of an unsuccessful execution because it drew more attention than the recommendations 
dialog box. In Figure 10, which shows the interaction heatmap of one of the participants with the 

Figure 9. Completion Rate of Participants in the Two Proposed Tasks (The Color Encodes the Recommender Setting: NR = No 
Recommender; R = Recommender)
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textual recommendations enabled, it is possible to identify interactions with the dialog box at the 
bottom (which holds the textual recommendations). In this case, the user clicked on this box, trying 
to close it unsuccessfully. One of the potential explanations for this phenomenon could be that the 
textual recommendations employed technical language out of the scope of the participants’ level of 
understanding, so they may have assumed these hints were not aimed at them, and thus ignored them.

From these interactions, we conclude, in this context, that textual recommendations are not as 
useful as they may seem to be. Participants verbalized they were overwhelmed by these “hints” and 
started ignoring them, which led to similar task completion rates as the participants who did not rely 
on the system’s assistance. In this sense, we pretend to modify the workspace to follow an onboarding 
approach with visual recommendations and automated assistance instead of textual recommendations.

Another interesting insight reached via the user evaluation is through the problems they 
experienced while finding the right nodes that were requested by the tasks. Figure 8 also shows the 
user spent most of the time clicking through the side menu, opening and closing the dropdowns 
that categorize the different ML nodes that can be included in the pipeline. In general, this pattern 
can be identified in every participant, which could indicate the menu should be redesigned (and 
even removed) to avoid users getting lost in it. From this behavior, it is concluded that showing too 
many options to non-expert users can overwhelm them, especially in such a complex context as AI-
powered applications. In this sense, the language needs to be simplified and guidance should be the 
responsibility of the system, which should not be relegated to occasional assistance, as is the case of 
textual recommendations (in which the final responsibility is put on the user).

Figure 11 displays the path (in red) of another participant’s mouse while they were searching for 
the “Split dataset” node. Although the participant hovered over the right node, they could not fully 
understand it was the node that was being requested by the task and went through the whole menu 
several times unsuccessfully. This is not only a usability problem but a deeper misunderstanding of 
the concepts involved in the ML context.

Finally, other minor usability issues were detected throughout the evaluation. For example, nodes 
take up a lot of space on the screen, and if several nodes are added, it is very difficult to manage them 

Figure 10. Heatmap Indicating Interactions of One Participant in Regard to Text Recommendation Support (Warmer Colors Indicate 
Areas in Which the Interaction Activity Was High). Obtained From Hotjar.
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properly. Moreover, on several occasions, users dragged the mouse to connect two nodes by their 
respective sockets, which caused usability issues because two nodes’ sockets are meant to be connected 
by clicking first on one of them and then on the other. However, although most participants were 
not able to finish the tasks properly, they commented at the end of the study they were not experts in 
ML, which caused confusion regarding the goal of the tasks to be achieved. Most of the participants 
pointed out the system seemed very intuitive to them, and their difficulties in using KoopaML were 
mostly related to their lack of expertise in ML. The participant who had some expertise and experience 
in ML was able to achieve both tasks efficiently through our system.

As seen in Table 2, previous knowledge was a more influential factor in completing the proposed 
tasks. This observation leads to several important considerations regarding the role of textual 
recommendations in building ML pipelines using a visual platform. Firstly, the data suggests prior 
knowledge of ML plays a more critical role in completing tasks than the assistance provided by 
textual recommendations. This could be attributed to the nature of the recommendations themselves, 
as perhaps they were too generic or not sufficiently tailored to the varying expertise levels of the 
users. It is also possible the visual platform’s design may have overshadowed the utility of the textual 
recommendations, especially for more experienced users who might rely more on their expertise 
than on external guidance. Furthermore, the lack of significant impact from the recommendations 
on participants’ performances indicates a need to reassess how these recommendations are integrated 
into the visual platform. As the interaction data suggest, they weren’t noticeable by the users, nor did 
they provide actionable, context-specific advice that users found valuable.

On the other hand, the obtained results prompt a deeper exploration into how KoopaML can be 
optimized for users with varying expertise levels. For instance, it may be beneficial to consider adaptive 
recommender systems that tailor suggestions based on user proficiency or to enhance the platform’s 
interface to alleviate common issues experienced by participants. Further, the integration of more 
interactive and responsive error messaging could assist users in overcoming obstacles more effectively. 
In conclusion, while the recommender system did not uniformly enhance performance across the 
participant group, there is evidence to suggest small hints, whether through textual recommendations 
or execution error messages, have the potential to improve user engagement and task completion 
in KoopaML but not in their current form. This insight lays the groundwork for iterative platform 

Figure 11. Path of One Participant’s Mouse While Searching the Next Node Requested in T1 (The Red Path Indicates the Real 
Trajectory of the Cursor Made by the User During the Study). Obtained From Hotjar.



International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

17

enhancements and future studies could focus on personalized user support mechanisms. Addressing 
and validating the identified issues from the user evaluation will be imperative in the development of 
the next version of KoopaML. This will involve either avoiding or redesigning the interface elements 
that presented challenges for the participants.

Finally, some limitations of this study include the small sample size employed. Although the 
think-aloud protocol provides reliable results for small samples, we were not able to perform an in-
depth quantitative analysis. This study primarily employs a qualitative approach to capture users’ 
thoughts and experiences while using the platform. We believe this approach provides valuable insights 
into user behavior and interaction with the recommender system, which may not be fully apparent 
through quantitative metrics alone. However, we acknowledge the importance of performance metrics 
in understanding the efficiency and accuracy of ML pipelines. To address this, future research would 
also focus on expanding the sample size to enable a more robust quantitative analysis.

Furthermore, another potential concern of using the think-aloud protocol is that verbalizing 
thoughts might alter the way users interact with the system, potentially leading to atypical behavior 
or decision-making processes. To mitigate this, participants were briefed thoroughly on the purpose 
of the think-aloud protocol and were encouraged to behave as naturally as possible.

Discussion From the Medical Point of View
In this study, we evaluated how machine learning platforms such as KoopaML could help physicians. 
Artificial intelligence (AI) has emerged as an important tool in medical research. However, although 
there are many publications in the literature, AI in medicine is not yet well established. Furthermore, the 
potential applications of machine learning models can improve clinical diagnoses, risk stratification, 
and patient-specific management. This will promote more personalized medicine and can prompt 
better exploitation of medical resources (MacEachern & Forkert, 2021). In this regard, KoopaML 
was created to facilitate the work of physicians in building predictive models with machine learning 
and to promote AI education among healthcare professionals. Building machine learning prediction 
models requires a minimum of AI knowledge (Rajkomar et al., 2019). Not only are the fundamentals 
of machine learning important, but also a minimum knowledge of calculus, statistics, or computer 
programming must be present. Likewise, preprocessing data is crucial in machine learning. For these 
reasons, the participants experienced the various difficulties mentioned above during the exercises. 
Furthermore, although no notable differences were found between the groups, the participants who 
received recommendations during the exercises completed the proposed tasks easier and faster than 
the others. This probably highlights the need for further training in machine learning among physician 
participants. The participants also emphasized the exercises could not have been completed without 
these recommendations.

One of the most remarkable disadvantages of applying AI in the medical context is the lack of 
AI training in physicians (Kolachalama, 2022), and this study proves it. This is also corroborated 
by other studies (Kolachalama & Garg, 2018). Therefore, efforts should be made to help medical 
professionals acquire AI knowledge (Handelman et al., 2018). One of the possible reasons for this 
lacuna is the lack of mentoring in this field during medical school (Kolachalama, 2022). When 
training physicians in AI, different aspects should be assessed; not only should the technical aspects 
of the ML methods be explored, but also the potential applications this technology offers to solve 
different medical problems should be incorporated into research. In this study, we found the basic 
knowledge of physicians related to AI is scarce, and better education on AI and ML should probably 
be included in medical school curriculum.

Identifying those areas where ML could be useful is crucial to expanding its use in medical 
practitioners. For example, teaching how predictive models can be helpful in the diagnosis, treatment, 
or evaluation of a patient´s prognosis could be an important goal to engage physicians with ML 
methodologies. Moreover, knowledge of basic ML model concepts is required to use and apply them. 
Physicians must understand the process of defining endpoints and selecting inputs and outputs. Also, 
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data literacy is a cornerstone in this context. This study shows most of the mistakes encountered during 
the proposed tasks were specifically related to a lack of understanding. In general, we believe educating 
physicians in ML would not only benefit them by allowing them to carry out complex analyses with 
these techniques but also to create quality databases that can be used to train better models.

One of the highlights of this study is that most of the participants emphasized the simplicity of the 
platform. In addition, it was observed, as they progressed through the exercises, the time spent on each 
task was shorter than the time spent on previous tasks. This might imply that just a short training with 
the application will able physicians to create self-made machine learning models. Recommendations 
also facilitated the development of the tasks; therefore, KoopaML appears to have a relevant role in 
future medical studies. In conclusion, this study highlights the necessity of increasing the AI literacy 
of physicians to promote the applicability of these models in daily medical practice.

CONCLUSION

This work details a user evaluation of KoopaML, a platform to support non-expert users in the 
creation and execution of ML pipelines. The main goal of the user evaluation was to determine the 
usefulness of textual recommendations aimed at non-expert users during the process of designing 
an ML pipeline graphically. The results show textual recommendations did not make a significant 
difference in performance compared to the group of participants who did not have any support from 
textual recommendations. These results seem to be related to the fact that the participants were mostly 
non-expert users of ML. However, some interesting insights about the interface elements have been 
reached after analyzing the interaction patterns of the participants during the study. Most of the issues 
related to the use of technical language in the recommendations and menus and to the arrangement of 
the interface elements on the screen. In this sense, we suggest incorporating an onboarding approach 
to guide users during their first steps on the platform. In conclusion, this study’s motivation was to 
unravel the complexities faced by non-expert users when engaging with ML concepts and to assess 
whether textual recommendations could simplify their learning curve.

The challenges identified, such as the limited impact of recommendations due to technical 
language and the overshadowing of visual elements, highlight a gap between user expertise and 
the platform’s usability. To overcome these challenges, the prescribed approach involves refining 
KoopaML to better cater to users’ varying levels of expertise. This could include simplifying the 
language of the recommendations, making them more context-specific, and enhancing the platform’s 
interactivity. By addressing these issues, KoopaML aims to not only make ML more accessible to 
a broader audience but also to ensure users can more effectively engage with and understand ML 
concepts, leading to better outcomes in their respective fields.

Future research lines will involve the redesign of the KoopaML workspace to address the 
issues found during the presented case study, as well as to validate the changes with additional user 
evaluations. This redesign aims to enhance user experience and interface intuitiveness, particularly 
for those with limited ML expertise. Efforts will be made to simplify the technical language of the 
recommendations, improve the visibility and relevance of guidance cues, and streamline the overall 
workflow to reduce cognitive overload for users. Additionally, the research will incorporate the 
development of more adaptive and user-friendly features, potentially including a more responsive 
error feedback system and interactive tutorials tailored to varying levels of user proficiency. We also 
plan to conduct more qualitative studies to gain deeper insights into properly training physicians in AI 
techniques, as well as explore how different attributes, such as the specialty of physicians, influence 
their understanding of ML. We also intend to conduct long-term studies to evaluate the acceptance 
and proficiency of the enhanced version of KoopaML once it is deployed in a production environment.
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1 	 https://www.youtube.com/watch?v=JeQrz2I20TY (contents in Spanish)
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