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ABSTRACT

In recent years, smart contracts have risen rapidly in the blockchain field, but security issues have also 
become increasingly prominent. Due to the lack of unified evaluation standards, the security analysis of 
smart contracts mainly relies on complex and not easily scalable expert rules. To address these issues, 
we employ slicing techniques to reduce the interference of extraneous code on the detection process, 
apply normalisation techniques to eliminate the differences between different compiler versions and use 
particle swarm optimisation algorithms to determine the similarity between contracts, thus improving 
the accuracy and efficiency of detection. In addition, we combine a variety of features such as static 
analysis, dynamic analysis and symbolic execution to gain a more comprehensive understanding of 
contract characteristics and behaviours for more accurate vulnerability identification. Experimental 
results show that the scheme significantly improves the detection capability and provides a new 
solution for the security detection of smart contracts.
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InTRoDuCTIon

With the rapid development of blockchain technology, smart contracts, as its core component, have 
been widely used in the fields of finance, supply chain management, and digital asset trading (Metz, 
2021). However, the security of smart contracts has been an issue of great concern because smart 
contracts cannot be changed once they are deployed on the blockchain, and they may involve large 
amounts of money and essential business logic. Therefore, smart contract vulnerability detection has 
become an important topic in current research.

Although there have been some studies on smart contract vulnerabilities, the existing vulnerability 
detection methods still have some limitations due to the complexity of smart contracts and the 
specificity of blockchain. Traditional software vulnerability detection techniques are usually not 
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directly applicable to smart contracts because the execution environment of smart contracts is very 
different from ordinary software (Lu et al., 2021). Therefore, new vulnerability detection methods 
and tools need to be developed for the characteristics of smart contracts.

In recent years, researchers have proposed a number of smart contract vulnerability detection 
methods based on techniques such as static analysis, dynamic analysis, and symbolic execution 
(Nguyen et al., 2021). These methods can help developers discover potential vulnerabilities and provide 
remediation suggestions before deploying smart contracts. In addition, some research has been devoted 
to developing smart contract vulnerability detection tools to improve the efficiency and accuracy 
of vulnerability detection (Alweshah et al., 2020; Nedjah et al., 2023). However, smart contract 
vulnerability detection still faces challenges. The complexity of smart contracts and the decentralized 
nature of blockchain increase the difficulty of vulnerability detection and make it challenging to ensure 
the completeness and accuracy of detection. Therefore, improving the efficiency and reliability of 
smart contract vulnerability detection is still one of the pressing issues in current research. Although 
the match-based approach has been proven to be effective for vulnerability detection, applying the 
technique to smart contracts is a challenging task (Fatemidokht et al., 2021). Two significant issues 
need to be addressed: First, research has shown that the match-based detection technique should 
be applied more to bytecode since few smart contracts are open source. However, due to the rapid 
development of the Solidity compiler (Kumar & Sivakumar, 2022), the same bytecode fragment can 
produce different bytecodes depending on the compiler version, and this diversity interferes with 
bytecode matching. Another problem is that different versions of compilers can compile many different 
instructions, resulting in missing instructions. Even if the instructions have the same semantics, 
different compiler versions can cause significant differences.

To address these problems, this paper first sliced and normalized the program. Specifically, 
this paper employed slicing techniques to effectively reduce the interference of extraneous code on 
the analysis results. At the same time, they also adopted normalization techniques to eliminate the 
differences that different compiler versions may cause. On this basis, they designed unsupervised graph 
embedding algorithms to capture the structural information of functions. Through these methods, it 
is possible to significantly reduce the diversity of bytecode generation and the interference of noisy 
codes due to the rapid development of compilers, which in turn significantly improves the accuracy 
and effectiveness of detection. The normalized slices are mapped into vectors by an embedding graph 
network and then matched using a particle swarm optimization algorithm. The authors also introduced 
a multimodal feature fusion technique to improve detection accuracy. This enables the matching of 
contracts with different implementations and similar code logic (Raj & Pani, 2022). The authors’ 
approach reduces the false alarm rate by more than 90% compared to direct matching via program 
slicing techniques. In addition, the number of detected vulnerabilities is significantly increased by 
applying standardization techniques. This approach effectively reduces the number of false positives 
and misses, while significantly improving the accuracy of code matching and successfully identifying 
undetected vulnerability contracts (Madan & Bhatia, 2021). By employing a multimodal feature 
fusion technique, the authors’ approach significantly improves the accuracy of vulnerability detection.

Related Work
Because of the nature of blockchain, smart contracts are complex to fix once deployed. However, 
there has yet to be a complete library of innovative contract vulnerability features. Collecting all 
vulnerability logic and summarizing the corresponding features is difficult (Hu et al., 2022). In this 
regard, there is an intuitive and feasible solution: Treat known vulnerabilities as special features 
directly, turn the code to be detected into vectors and other easily comparable forms together, and match 
and eventually compare the similarity between the detection contract and the known vulnerability 
contract based on this and through particle swarm optimization (PSO) algorithm. If the similarities 
exceed the established threshold, the code that needs testing is suspect and should be reviewed further. 
It is worth mentioning that only a few smart contracts are currently open source. According to the 
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authors’ statistics, as many as 1.5 million smart contracts have been deployed on the blockchain; 
however, only about 2% (Nhi & Le, 2022) of the source code, that is, 32,499, is publicly viewable 
on the Etherscan browser. In addition, Etherscan has recently adapted its Web site functionality to 
no longer extend support direct retrieval of the source code of all published contracts, but only the 
500 most recently published contracts, a change that further increases the difficulty of accessing the 
source code of contracts (Chawra & Gupta, 2022). Since most of the contracts are closed source 
code, it is possible to only analyze their bytecode. Therefore, the authors propose a smart contract 
vulnerability detection method based on byte matching to effectively detect potentially vulnerable 
contracts by calculating the similarity between the contracts to be detected and the known vulnerable 
contracts (Singh et al., 2022).

First, smart contracts will appear more homogeneous than traditional programs, which makes 
the matching effort more vulnerable to attacks by code segments unrelated to the vulnerability logic, 
the so-called “noise” (Madhumala & Tiwari, 2022). In the vulnerability contract shown in Figure 1, 
only lines 3 and 4 of the code are relevant to the vulnerability logic. At the same time, the rest of the 
code is noisy and irrelevant to the vulnerability logic.

When used as a “seed” for a match, it can mistakenly capture many contracts that bear only a 
high similarity to noisy code, leading to many false positive results.

Secondly, the source code for the smart contract, compiled into bytecode by the Solidity compiler, 
is now available in dozens of versions (Sissodia et al., 2022).

In different compiler versions, bytecode is generated in very different ways. Even if the source 
code is the same, the bytecode generated by different compiler versions varies widely. The diversity 
of compilers hinders matching efforts in many ways. Even if a potential vulnerability contract is 
almost identical to a known vulnerability contract, different compiler versions will likely result 
in differences in bytecode, reducing the similarity between them and ultimately leading to missed 
reports (He et al., 2020).

Third, in code matching, codes are converted into quantifiable, measurable, and comparable 
forms to facilitate similarity metrics. For example, Yamaguchi et al. (2011), utilizing a bag of features 
(Nguyen et al., 2020), encoded the feature information of each function as a vector. While this work 
has yielded satisfactory results, we need to consider functional structure information in greater depth to 
ensure that reporting in the area of smart contracts can be more complete. The current lack of attention 
to functional structure information may make the content of reports in this area appear to be lacking.

To solve the above problem, the authors first use a program slicing technique to reduce the effects 
of noise. Before matching, the contract’s bytecode is sliced into thin slices, with each slice describing 
the instructions that the data went through. The slices most likely to reflect the core logic of the 
vulnerability are left for better results. Next, the authors normalize the values, adjust the order of the 
parameters, and remove unimportant instructions, so that contracts that are similar at the source level 
remain as similar as possible at the bytecode level, improving the accuracy of the matching. Then, 
they train an embedding graph network to obtain a vector representation of all normalized slices.

Figure 1. BeerCoin Contract
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Finally, a PSO algorithm calculates the similarity between the slice to be tested and the 
vulnerability slice (Parizi et al., 2018).

Contributions
The main contributions of this paper are as follows:

1.  The authors innovated the slicing and normalization process of smart contracts, by which the 
interference of noisy code is reduced and the accuracy of code matching is improved. In addition, 
the number of detected vulnerabilities increases substantially after applying the normalization 
technique.

2.  The authors applied the PSO algorithm to smart contract vulnerability detection, which effectively 
reduces the number of false alarms and missed alarms by using known vulnerable contracts to 
find similar vulnerable contracts.

3.  The authors introduced a multimodal feature fusion technique for smart contract vulnerability 
detection, which combines multiple features, such as static analysis, dynamic analysis and symbolic 
execution, to provide a more comprehensive understanding of the contract’s characteristics and 
behaviors in order to improve the accuracy of vulnerability detection. According to the authors’ 
observation, the detection effect on most smart contracts is very significant.

MATeRIAlS AnD MeThoDS

Materials
In this section, the authors will give a brief overview of the background of their research, which 
includes several types of significant vulnerabilities in smart contracts, the data processing mechanism 
of the Ethernet virtual machine (EVM), and the PSO algorithm and multimodal feature fusion 
techniques we use.

In this paper, the authors mainly use these two techniques to detect vulnerabilities. They will 
focus on the following five categories of vulnerabilities: Reentrant vulnerabilities, integer overflow 
vulnerabilities, nasty random source vulnerabilities, access control vulnerabilities, and undetected 
return value vulnerabilities. All of these vulnerabilities are invariably related to improper manipulation 
of insecure data. A brief description of each vulnerability and detection methodology will follow.

Reentry Vulnerability
In Ethernet, smart contracts can call each other externally. Ethernet users can execute smart contracts 
and send Ethernet coins to the receiving account address, either an external account or a contract 
account, as both types of accounts can be transferred and otherwise manipulated. There is a special 
fallback() function in contract accounts, which has the main form of no function name and no 
parameters. When the user sends the etheric to the contract account in the etheric, the fallback() 
function in the contract account is automatically activated. Once transferred to the contract address 
set by the attacker, the fallback() function of the attack contract is forced to execute.

An attacker can add malicious code to the fallback() function and call the transport code of the 
attacker’s contract again, causing damage to the user.

For example, the “TheDAOincident” (Wu et al., 2021) that previously shocked Ethernet is a 
typical example of hackers using a reentryable vulnerability to attack a contract.

Integer Overflow Vulnerability
An attacker can damage a user by adding malicious code to the flllback0 function and repeatedly 
calling the transport code of the attacker’s contract.
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For example, unsigned integer uint8 is stored in the range of 0~255, (uint8)255+1 appears. The 
upper overflow is incorrectly stored as 0, and the lower overflow of (uint8)0-1 is incorrectly stored 
as 255. Also, signed integers can have overflow or underflow (Wang et al., 2019).

EVM specifies a fixed size for the data type. When the data exceed the specified range, an 
overflow will occur, leading to unpredictable losses if exploited by an attacker.

Bad Random Source Vulnerability
As Figure 2 shows, there is a nasty random source vulnerability in the betting contract.

The contract authors use timestamps as a random source in the third exercise to determine the 
outcome of the betting game by generating random numbers. However, finding a suitable source of 
randomness in Ether takes work (Zhou et al., 2014). Although it is impossible to predict the timestamp 
at the time of execution accurately, an attacker could test whether the condition in line 3 would hold 
by deploying another contract that performs the same calculation and immediately engaging in a bet 
when the test is actual, thus becoming invincible. Thus, data on blocks (including timestamps) are 
undesirable sources of randomness and using them to generate random numbers poses a security risk.

Access Control Vulnerabilities
Typically, the functions used to set the owner of a contract should be privileged functions or 
constructors that ordinary users cannot call. However, in some contracts, everyone has access to these 
functions, resulting in everyone being able to be the owner of the contract and thus able to perform 
certain privileged operations (Zhou et al., 2020).

Undetected Return Value Vulnerability
Ethernet smart contracts provide interfaces such as delegate call, call, send, all code, and other 
underlying functions that can be checked for successful execution by the function’s return value.

If the return value is not determined, the program will continue to execute, which may lead to 
serious consequences. The features are summarized as follows:

1.  Smart contracts use delegtecall(), call(), send(), callcode(), and other underlying functions.
2.  The return value is not checked and processed, and the subsequent operation is continued.

Adaptation Value Function
The fitness function evaluates the performance of each particle to ensure the timely elimination of 
particles with poor performance. Previous studies have determined whether a suspicious smart contract 
has contractual defects by studying the node information in the embedding vectors and transforming 
the contract slices into embedding vectors to determine whether the suspicious smart contract is 
similar to a known vulnerable contract.

Figure 2. Bad Random Source Vulnerability
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TLSaaty (Hamp-Lyons, 1990) of the University of Pittsburgh proposed the analytical hierarchy 
process (AHP) in the 1970s, which requires decision-makers to determine the priority or weight of 
each attribute by comparing the relative importance of each attribute.

Particle Swarm Optimization Algorithm
The PSO algorithm is a stochastic search algorithm proposed by James Kennedy and Russell Eberhart 
(Yang et al., 1999) in 1995, inspired by the behavior of flocks of birds in nature. In the search space, 
each particle independently searches for the optimal solution and records it as an individual extreme 
value. Then, all particles share the individual extremes and use the found individual extremes as the 
global optimal solution. According to the global optimal solution, all particles will adjust their speed 
and position. The algorithm mainly includes the steps of initializing the particle swarm, evaluating 
the particles, finding the individual extreme values, finding the global optimal solution and adjusting 
the speed and position of the particles. Figure 3 shows the conceptual diagram of the model.

Multimodal Feature Fusion
Multimodal feature fusion technology is a method of fusing data from different modalities to obtain 
more comprehensive, accurate, and reliable information. In the multimodal feature fusion process, 
data from different modalities are extracted with their respective features, and then these features are 
combined to achieve a comprehensive integration of information.

The multimodal feature fusion technique can be applied in several domains, for example, in smart 
contract vulnerability detection, by integrating multiple features such as static analysis, dynamic 
analysis, and symbolic execution, which enhance the accuracy of vulnerability detection. Static 
analysis can precisely extract syntactic and structural information from the code, dynamic analysis can 
capture the running behavior and interactions of the program, and symbolic execution can simulate 
the execution process of the program and capture possible errors.

In addition to smart contract vulnerability detection, multimodal feature fusion techniques can 
be applied to other areas, such as natural language processing, computer vision, and multimedia 
processing.

MeThoDS AnD SoluTIon MoDel

The general idea of the method is to extract patterns from the contracts to be tested and match them 
with those in the contracts with known vulnerabilities using a PSO algorithm. However, due to the 

Figure 3. Conceptual Diagram of the Particle Swarm
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small size of the smart contract, any modification can hinder the matching process. Figure 4 shows 
the flowchart of this approach.

1.  Preprocessing: The processing contract and the known vulnerability contract are preprocessed 
to convert the contract bytecode into instruction set form and construct the control graph.

2.  Control Flow Graph (CFG) Traversal: Traverse the CFG of the smart contract, find and mark 
all the specific instructions as slicing conditions, and complete the slicing operation by simulating 
the execution of the contract to confirm the relationship between data and instructions.

3.  Normalisation: Normalise the obtained slices to reduce bytecode differences caused by compiling 
with different versions of compilers.

4.  PSO Algorithm Matching: A vector representation of all normalized slices is obtained by 
training the graph embedding network. Finally, the similarity between the slices to be tested and 
the vulnerability slices is calculated using a PSO algorithm.

5.  Multimodal Feature Fusion: Based on the above work, the authors further introduce a 
multimodal feature fusion technique to improve the detection accuracy of vulnerability contracts. 
Specifically, the authors fuse three features, namely, static analysis, dynamic analysis, and 
symbolic execution, to form multimodal feature vectors. These multimodal feature vectors 
describe the characteristics and behaviors of the contract more comprehensively, thus improving 
the accuracy of vulnerability detection. These feature vectors are selected based on their ability 
to effectively describe the characteristics and behaviors of the contract and their high sensitivity 
and specificity for discovering potential vulnerabilities.

6.  Comparison Results: Using the fused modal eigenvectors, the PSO algorithm or other 
vulnerability detection techniques are again applied for vulnerability detection.

This can reveal more potential vulnerabilities or further confirm previously detected vulnerabilities.

Algorithm Configuration

Particle Swarm Optimization Algorithm Configuration. The PSO algorithm is a group intelligence-
based optimization tool that finds the optimal solution to a problem by simulating the behavior of 
a flock of birds foraging for food. In smart contract vulnerability detection, the PSO algorithm is 
used to search for the most similar contract to a known vulnerable contract in the feature space.
 ◦ Particle Encoding: Each particle represents a potential solution, that is, a feature vector of 

a smart contract. Graph embedding algorithms and multimodal feature fusion techniques 
generate these feature vectors.

Figure 4. Flowchart of Contract Detection
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 ◦ Fitness Function: The fitness function is used to evaluate the strengths and weaknesses of 
each particle, that is, its similarity to a contract with known vulnerabilities. Metrics such as 
cosine similarity and Euclidean distance can be used here.

 ◦ Velocity and Position Update: The particle updates its velocity and position based on its 
historical optimal position and global optimal position to search for better solutions in the 
feature space.

Multimodal Feature Fusion Configuration. The multimodal feature fusion technique is used to 
combine features from different sources and types to provide a more comprehensive and accurate 
description of the contract.
 ◦ Feature Extraction: Extract multiple types of features from smart contracts, including 

static code features (e.g., function call graphs, and control flow graphs), dynamic execution 
features (e.g., transaction behaviors and resource consumption), and symbolic execution 
features (e.g., path conditions and reachability states).

 ◦ Feature Fusion: Use appropriate fusion strategies (e.g., weighted sum, concatenation, and 
deep learning models) to fuse these features into a unified feature vector for subsequent 
analysis and comparison.

Parameter Selection
When configuring the algorithm, the selection of parameters has a significant impact on its 
performance and results. The following are some key parameters and their selection considerations:

• Particle Swarm Size: The size of the particle swarm determines the degree of coverage of the 
search space. A too small particle swarm may lead to inadequate search, while a too large particle 
swarm may increase the computational overhead. It needs to be chosen reasonably according to 
the actual problem and computational resources.

• Learning Factor: The learning factor is used to control the speed of the particles to learn from 
their own historical and global optimization. A more prominent learning factor may accelerate 
the convergence but may also lead to a premature fall into the local optimum; a smaller learning 
factor may make the search process more robust, but the convergence speed is slower.

• Inertia Weights: Inertia weights determine how well the particle velocity is maintained. Larger 
inertia weights favor global search, while smaller inertia weights favor local search. Inertia weights 
can be adjusted to balance the ability of global and local search.

• Feature Weights: In multimodal feature fusion, different features may have different degrees of 
influence on the results. Appropriate weights need to be assigned to each feature according to the 
actual situation to ensure that the fused feature vectors can accurately reflect the characteristics 
of the contract.

Contract Slicing
Slicing Conditions. Any data from outside the contract may be directly or indirectly controlled by 

an attacker or easily known by an attacker, who can use it to attack the smart contract. With this 
in mind, we use all instructions to import data from outside as slicing conditions. Specifically, 
the slicing condition may introduce the following four types of data:
1.  Transaction Data: The transaction data are provided directly by the caller and are introduced 

for execution by the CALLDATALOAD and CALLVALUE instructions.
2.  Data on the Block: In EVM, everyone can easily access the data on the blocks. An attacker 

can break the randomness by simulating the same random number calculation process 
if they are used as a random source. Instructions to introduce data on the block include 
BLOCKHASH and TIMESTAMP.
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3.  External Data: The data stored in external memory usually play a vital role in the contract 
and can be accessed by anyone (e.g., the user’s balance data). The command SLOAD 
(SafeMath, 2022) retrieves data from external storage.

4.  The Return Value of an External Call: The caller contract should explicitly verify the 
return value of the external call. Instructions to execute external calls include CALL and 
SEND. The authors will first traverse the smart contract once, marking all the instructions 
in the above range as a basis for subsequent slicing.

Model Execution and Slicing. In the bytecode of a smart contract, the vast majority of instructions 
interact with data through the stack, memory, and external memory, and the association between 
instructions and data is not directly reflected in the bytecode except for push instructions. However, 
slicing requires analysis of the dependencies between instructions and data, and to confirm such 
dependencies, the authors choose to slice the smart contract based on simulated execution.

normalization
In this section, the authors further normalize the generated slices to reduce bytecode differences 
caused by compiling different compiler versions. Figure 5 shows the general flowchart of slicing 
and normalization.

Numerical Normalization. First, the specific values of the data are replaced with labels representing 
data attributes. The purpose of this step is to characterize the data better. Constants are widely 
used in intelligent contract bytecode, such as the target address of jump instructions and offsets 
to memory addresses. Using different compiler versions may change these data, introducing 
unwanted differences in our slices. Furthermore, it is challenging to characterize data by specific 
values alone. By using information such as where the data came from and which instructions 
it went through, it is possible to make the data more distinctive and, therefore, the instructions 
more easily distinguishable. The authors characterize values by labelling the data and allowing 
the labels to propagate through the execution. The label of the data depends on the instruction 
it obey, and Table 1 shows the labels that some instructions will assign to the resulting data.

Parameter Data Adjustment. When versions of the Solidity compiler are upgraded, there may 
be differences between the old and new versions, which may cause them to generate different 
bytecodes for the same source code. For example, in Solidity v0.4.22 (Xu et al., 2019), if a 
SWAP1 directive precedes a comparison operator (e.g., LT and GT), the compiler replaces the 
comparison operator with its opposite operator. It removes the SWAP1 directive (Ni et al., 2020).

To reduce this unnecessary discrepancy, the authors first sort all labels of data in dictionary 
order; then, the arguments of some multiparameter instructions are also sorted in the dictionary 
order of their attributes. In this process, if the order of the arguments of the comparison 
operators changes, they are replaced by the opposite operators accordingly. Table 1 shows the 
descriptions involved.

Table 1. De Novo Ordering of Parameter Order

Instruction Adjustment method

lt,gt,slt,sgt Instruction (attrB,attrA) → opposite instruction (attrA,attrB)

ADD,MUL,EQ,
Instruction (attrB,attrA) → Instruction (attrA,attrB)

O R , A N D , X O R
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Removing Irrelevant Commands. In EVM, there are two classes of instructions that operate 
directly on data in the stack: The DOP class and the SWAP class. Due to the different versions, 
these instructions can be converted to each other. This variation is not conducive to matching. 
Moreover, although DOP, SWAP, and POP instructions operate on data in the stack, they may 
be more relevant to source code behavior. The authors consider their role in code matching to 
be negligible, so instructions related to DOP, SWAP, and POP will be removed from the slice.

The authors briefly demonstrate the effect of slicing and normalization with the example in Figure 
5. In this example, they choose the first instruction, CALLD ATALOAD, as the slicing condition and 
slice it by analyzing which instructions have data dependencies on them.

Figure Embedding. After slicing and normalization, the authors get relatively pure and homogeneous 
slices. At this point, they need to embed the slices into the vector space to measure their similarity. 
Yamaguchi et al. (2012) used a bag-of-features encoding method to map functions into vectors 
based on the extracted features. This encoding method assumes that all features are of an 
independent dimension, which leads to the relationship between features, that is, the structural 
information of the function, being ignored. In smart contracts, many instructions are strongly 
correlated, and these correlations can provide richer semantic information (e.g., instructions that 
execute external calls are correlated with instructions that read or write external data). Conditional 
judgment instructions usually control instructions that terminate execution.

Suppose two functions use different methods to compute the total amount of transfers, resulting 
in the instructions in their slices being very different. In that case, the direct use of the bag-of-features 
approach cannot accurately reflect their similarity. In order to better capture the structural information 
in the slices, the authors convert the slices into the form of program dependency graphs. By using a 
graph embedding network, the researchers can compute the embedding vectors of the slices, which 
better prepares for subsequent tests of the PSO algorithm and multimodal feature fusion techniques. 
In this way, it is possible to compare the similarity of the two functions more accurately and improve 
the accuracy of smart contract vulnerability detection.

Algorithm Overview. IGraph2Vec is an algorithm for unsupervised graph filtering based on root 
subgraph extraction, which can effectively preserve the structural information of the graph. 

Figure 5. Example of Slicing and Normalization
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In this paper, the authors refer to the algorithm of Graph2Vec (Sayeed et al., 2020) to embed 
vectors. They map the operators in the instructions directly to vectors with data labels and use 
these vectors as attributes of the nodes that participate in generating the root subgraph vectors. 
The graph embedding network aims to map all slices in a smart contract into vectors. Thus, 
the input to the graph embedding network is the smart contract C containing the slices to be 
embedded and the dimension S (Xing et al., 2020) of the embedded vectors. At the same time, 
the output is the S-dimensional vector obtained after embedding each slice. The process of the 
graph embedding network is as follows: First, the embedding vectors of all slices appearing in 
the contract C are randomly initialized, and the embedding vectors of all root subgraphs in these 
slices are computed; then, two stages of training are performed, that is, in the first stage, the 
parameters affecting the embedding of the root subgraphs are trained, and in the second stage, 
these parameters are fixed, and the embedding vectors of the slices are trained and output.

For a smart contract C = {G
1
, G

2
, ..., G

n
}, G

i
 is the program dependency graph of the slices 

extracted from that contract, defined as G
i
 = {N

i
, E

i
, λ}, where N

i
 is the set of instructions 

contained in the slice, E
i
 is the dependency between instructions, and λ represents a mapping that 

maps the instructions n to an S-dimensional vector based on the properties of the operators and data 
of the instructions in the slice v

n
. Algorithm 1 shows the flow of the graph embedding network.

First, the embedding vectors of all slices are initialized randomly. Lines 2 to 3 of Algorithm 1 
represent the computation of the embedding vector of the root subgraph of each instruction node in 

Algorithm 1. Graph embedding network
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all slices of the contract C. The root subgraph embedding vector in line 3 of Algorithm 1 is computed 
as shown in Equation 1 (Momeni et al., 2019):

SubGraph n G v P v
i n mm Neib n Gi

( , ) tanh
( , )

= +( )∈∑  (1)

where P is the parameter matrix, Neib(n,) is the neighbor node of node n in graph Gi. Next, the authors 
will obtain the embedding vectors of the slices in two stages, which are reflected in lines 5 to 10 of 
Algorithm 1. Equation 2 shows the probability function used for this process.

Pr( | )
exp( )

exp( )
SG v

v SG

v SGn G

G n

G ww N
i

i

ic

=
⋅

⋅
∈∑

 (2)

where N
C

 denotes the concatenated set of nodes of all slices in contract C. Equation 2 calculates the 
root subgraph Sappears in G

i
 in a slice, and the goal of training is to maximize it. As mentioned 

before, the authors will perform two stages of training: In the first stage, they focus on λ and P and 
train only on these two parameters; in the second stage, they keep the parameters λ and P unchanged 
and train on the embedding vector of slices. In this way, they provide a data source for comparison 
detection using the PSO algorithm in the following.

Particle Swarm Optimization Algorithm to Detect Vulnerable Contracts

Optimizing Particle Algorithm Configuration and Parameter Selection.
a.  Algorithm Configuration.
b.  Particle Swarm Initialization:
c.  Number of Particles: Select the number of particles as 50; this number can provide enough 

search space while maintaining computational efficiency.
d.  Particle Dimension: Set the particle dimension according to the number of parameters to be 

optimized. For example, to optimize three parameters, namely, Learning rate, regularization 
factor, and iteration number, the particle dimension is 3.

e.  Initial Position and Velocity: Randomly initialize the position and velocity of the particles 
within the allowed range of the parameters.

f.  Adaptation Function: As to evaluation metrics, the combination of accuracy rate (ACC) and 
false positive rate (FPR) is used as the fitness function.

g.  Particle Update Strategy: Use the standard PSO velocity and position update formula to update 
the velocity and position of particles. Each particle records its historical optimal position 
(individual optimal) and the optimal position in the whole population (global optimal).

h.  Parameter Selection.

1.  Inertia Weights: It includes the following features:
a.  Initial Inertia Weights: A sizeable initial value (e.g., 0.9) is chosen to maintain an extensive 

exploration capability at the beginning of the search.
b.  Decay of Inertia Weights: Gradually reduce the inertia weights as the number of iterations 

increases to facilitate the convergence of the algorithm. Linear decay or nonlinear decay can 
be used.
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2.  Acceleration Coefficients: Both the individual acceleration coefficients and the overall 
acceleration coefficients were set to common values. This helps to balance the effects of individual 
experience and group experience on particle motion.

3.  Maximum Velocity and Position Limits: Appropriate maximum velocity limits are set according 
to the definition domain of the parameter to prevent the excessive spreading of particles in the 
search space. The position limit can be set according to the value range of the parameter to ensure 
that the particles will not go beyond the legal range of the parameter.

4.  Termination Conditions: It includes the following features:
a.  Maximum Number of Iterations: Set an appropriate maximum number of iterations (e.g., 

100 or adjust according to the complexity of the problem).
b.  Adaptation Threshold: Set a higher adaptation threshold; when the adaptation of the particle 

reaches or exceeds this threshold, the algorithm can be terminated early.

Adaptation Value Function
The fitness function is a function used in evolutionary algorithms to measure the degree of merit of 
an individual in the solution space. It is usually designed as a mathematical function that accepts a 
candidate solution (also known as an individual) as input and returns a numerical value indicating 
the degree of fitness of that solution. In the optimization process of an evolutionary algorithm, the 
goal of the fitness function is to maximize or minimize this value in order to find the optimal or 
suboptimal solution.

The design of the fitness function usually depends on the nature and objective of the particular 
problem. In the scenario of smart contract security vulnerability detection, the fitness function may 
be defined based on the characteristics of the contract and the security criteria.

Building the AHP Model. the first layer of decision-making should be determined; the first layer is 
the general objective of the decision, the second layer is the layer of different evaluation indicators, 
that is, attributes, and the third layer is the layer of alternatives of the decision. This paragraph 
studies the similarity problem of the embedded vectors of slices, so the general objective of the 
first layer of decision-making should be the similarity of the nodes of the embedded vectors 
(Liu et al., 2018). There are many evaluation indexes in the second layer to judge whether the 
nodes are similar or not, and after comparing and synthesizing, the authors divide the evaluation 
indexes of similarity into the following three categories:
1.  Error Size: There may be errors in the embedding vector analysis of the root subgraph; set 

this error value.
2.  Type Range: The degree of support for different node types.
3.  Stability: Whether the similarity can genuinely reflect the similarity of the nodes in case 

of significant differences in similarity.

The third layer is the alternative; the authors chose three: Node hash value, node information 
amount, and node type. Figure 6 shows the AHP three-layer model in summary.

Setting the Judgment Matrix. It includes the following steps:
1.  Determine the Objective Function: In smart contract vulnerability detection, the objective 

function can be detection accuracy, recall rate, and F1 score. The establishment of the 
objective function will directly affect the direction and focus of the PSO algorithm.

2.  Determine the Influencing Factors: The results of smart contract vulnerability detection 
are affected by several factors, including the static features, dynamic features, and control 
flow features of the contract. The static features include the bytecode of the contract, as 
well as the control flow features. The static features include the byte code and function 



International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

14

call relationship of the contract; the dynamic features include the data flow and control 
flow information during the execution of the contract; the control flow features include the 
program flow and branch structure of the contract.

3.  Construct the Feature Library: According to the determined influencing factors, extract 
the corresponding static features, dynamic features and control flow features from the smart 
contract to be tested. For example, specific opcodes can be extracted from bytecode, the 
reading and writing of variables can be analyzed from data flow, and critical jump points 
can be identified from control flow. These features will form a feature library, which will 
provide the basis for subsequent vulnerability detection.

4.  Constructing a Judgment Matrix: For each feature, it is necessary to compare it with 
other features to get the judgment matrix. The judgment matrix is a square matrix in which 
each element represents the relative importance of one feature compared to another. When 
constructing the judgment matrix, the interrelationship and importance of different features 
need to be considered to ensure the consistency and accuracy of the judgment matrix. 
The relative importance of information between features can be obtained through expert 
assessment and historical data analysis.

5.  Determine Feature Weights: By calculating the feature vector of the judgment matrix, the 
weight vector of each feature can be obtained. Each element of the feature weight vector 
indicates the degree of importance of the corresponding feature in the objective function.

6.  PSO Algorithm: This method determines the optimal solution by using a PSO algorithm 
to optimize the weight vector corresponding to each feature as an objective function. In 
the specific implementation, it is necessary to first randomly initialize each particle in 
the particle swarm, including their positions and velocities. Then, the adaptation value of 
each particle is computed according to the objective function. During each iteration, each 
particle compares its current adaptation value with the adaptation value of the best location 
in history. If the current adaptation value is better, it is taken as the current optimal solution. 
At the same time, the entire swarm updates its optimal solution to the best of the historical 
optimal solutions of all the particles based on the optimal solution of the current particle and 
the optimal solution of the entire swarm, as well as the velocity and position information of 
the particles to renew the speed and position of the particles. This process repeats until the 

Figure 6. AHP Three-Tier Model



International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

15

end conditions are met, such as reaching the predefined maximum number of iterations or 
finding a sufficiently good solution.

7.  Detecting Vulnerabilities: Using the obtained optimal solution (i.e., feature weight vector), 
the smart contract to be tested is detected for vulnerabilities. Precisely, the smart contract can 
be executed to collect its feature data during execution and weight the feature data according 
to the optimal solution to obtain a comprehensive score. Based on this score, whether the 
smart contract to be tested has vulnerabilities or potential risks is judged.

Consistency Test. Since the judgment matrix obtained by manual two-by-two comparison is highly 
subjective, we need to conduct consistency tests on it to ensure the accuracy of the results. The 
consistency test can increase the subjectivity of the judgment matrix and the credibility of the 
results.

First, find the maximum characteristic root of each judgment matrix. l
max

 is the largest 
characteristic root:

l
max
=

( )
=
∑
Aw

nw
i

ii

n

1

 (3)

Second, calculate the consistency index CI by maximum characteristic root:

CI
n

=
−

l
max

1
 (4)

where W is the matrix normalized, the matrix after linear transformation, n denotes the order of the 
comparison judgment matrix and is the maximum characteristic root of the judgment matrix.

Third, determine the corresponding evaluation random consistency index RI.
According to the order of the judgment matrix, the corresponding average random consistency 

index value can be obtained by looking up the table. The judgment matrix of this paper is of the third 
order, so the corresponding RI=0.52

Finally, calculate the consistency ratio CR:

CR
CI

RI
=  (5)

In the ideal case, CR is 0. However, in the actual evaluation, subjective factors lead to errors 
purely in, so, when CR < 0.1, the difference is small enough to pass the test although the ideal case 
is not satisfied.

The final consistency test was satisfied by the above matrices: 0.0922, 0.0176, 0.0089, and 
0.0176, respectively.

Determination of Attribute Weights. After getting the judgment matrix, it is possible to determine 
the weights of the attributes based on the judgment matrix. The steps are as follows.

First, the vector is normalized. Assume that the judgment matrix A aij
nn

= . After normalization, 
the matrix is R r

ij nn
= ( ) :
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After the vectors are normalized to one, the r
ij
Î [ , ]0 1  and for each attribute index, the column 

vector is modulo 1.
Secondly, the normalized R matrix is summed by rows:
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After calculating, the hierarchical single ranking weights are obtained (Table 2).
The single ranking weight of the second layer elements with respect to the total objective of the 

first layer is obtained in the table 0 62 0 24 0 14. , . , .




T
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1

1 3 1 2 3− = =( , , , ) . The single 
ranking weight of the third layer relative to the second layer is a 3*3 matrix, denoted as P

ij
k  

(k=3,i=1,2,3,j=1,2,3) .Then, the total ranking of the elements of the third layer with respect to the 
total objective is:
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1 2 3( , , )  (9)

Table 3 shows the calculated total ranking weights.

Table 2. Judgment Matrix of G1, G2, and G3 on the Acquaintance A

G1 Single sort weights G2 Single sort weights G3 Single sort weights A Single sort weights

P1 0.04 P1 0.14 P1 0.34 G1 0.62

P2 0.21 P2 0.62 P2 0.16 G2 0.24

P3 0.75 P3 0.24 P3 0.34 G3 0.14

Table 3. Total Judgment Matrix of G1, G2, and G3 on the Acquaintance A

A P1 P2 P3

Total ranking weights 0.106 0.301 0.570
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Thus, the expressions of node hash-based, node-information-based, node-type evaluation-based, 
and node-similarity-based adaptation value functions are:

F X sim x sim x sim x
i

n

( ) = ( )+ ( )+ ( )( )
=
∑ 0 106 0 301 0 570

1 1 2 2 3 3
0

. . .  (10)

Among them sim
1
, sim

2
 , sim

3
 denotes the similarity value obtained from three evaluation 

methods based on hash value based on node information amount based on node type, and denotes 
the node serial number.

Algorithm Steps
Once the adaptive value function is derived from the AHP analysis, the algorithmic process can begin. 
The algorithmic process of PSO is shown in Algorithm 2.

Multimodal Feature Fusion Technology Continues to Detect Vulnerable Contracts
Based on the previous stage, the authors further use multimodal feature fusion to continue detecting 
vulnerabilities in smart contracts. Specifically, they first perform unimodal feature extraction to extract 
features from multiple aspects such as static analysis, dynamic analysis, and symbolic execution; 
then, they perform cross-modal alignment, and finally use multimodal feature fusion to generate a 
set of comprehensive feature vectors. The researchers then feed this set of feature vectors into the 
PSO algorithm to discover more potential vulnerabilities or further confirm previously detected 
vulnerabilities.

Unimodal Feature Extraction

Static Analysis Features. In static analysis feature extraction, for each vulnerability I, the authors 
obtain features such as vulnerability-related metrics and parameters that describe the intrinsic 
attributes and behaviors of the I. To perform feature extraction for each object, they use an 
average pooling operation to convert each object into a 4096-dimensional feature vector Oi, 
where i denotes a different object with a value ranging from 1 to m.

Algorithm 2. Process of PSO

Input: The embedding vector of the two slices 
Step 1: Initializing a swarm of particles initializes a set of particles (i.e., solutions) and their velocities based on the 
number and nature of feature vectors. Each particle represents a possible vulnerability detection result. 
Step 2: A fitness value is computed for each particle, which indicates the quality of its corresponding solution. The 
fitness value may be defined according to practical needs; for example, it may be a vulnerability detection accuracy, a 
recall rate, or other evaluation metrics. 
Step 3: Iterative evolution. 
During each iteration, the particle updates itself according to two “poles:” The best solution currently found by the 
particle, called the particle pole best value, and the best solution currently found by the whole population, called the 
global pole best value. During the update process, the fitness function of the particle is first compared with its best 
value. If fitness is less than pbest, then the current position of the particle is pbest, and then the pbest_ value and gbest_ 
value of each particle are compared. If the pbest_ value of a particle is less than the gbest_ value, then that particle is the 
particle corresponding to the gbest. 
Step4: Updating the particle swarm. 
Update the position and velocity of the particles based on the fitness value. Updating the position of a particle by 
comparing its fitness value gives a higher probability that a good solution will be retained. 
Step 5: Iteration termination condition. 
Output: Similarity of the embedding vectors of the two slices.
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To further adjust the spatial weights in the feature map, the authors introduce an attention mechanism. 
By means of a linear projection layer, they transform each feature map fi into a 3D region feature Oi. 
The generation of these region features is based on the analysis of the smart contract source code or 
bytecode. Among the features that may be included are variable types, function calls, and control 
flow analysis:

O W f b i m
i o i o
= + ∈, [ , ]1  (11)

where Wo  and b
o

 are learnable parameters and C
i
 is the ith vulnerability-related features.

Dynamic Analysis of Features. In dynamic analysis feature extraction, the authors are given a dataset 
S and extract features such as frequency, duration, byte length, and data type from the input data. 
The extraction of these features is dynamically generated by the smart contract at runtime and 
thus has high temporal and spatial complexity.

To better capture these features, the authors use an average pooling operation to extract a 
4096-dimensional feature vector, denoted as Si, for each input data. This feature vector is derived by 
averaging the various features of the input data, which effectively describes the global characteristics 
of the data.

However, these feature vectors do not take into account the behavior of the smart contract at 
runtime. Therefore, the authors further transform each feature map gi through a linear projection 
layer into 3D region features Si. These region features are generated at runtime of the smart contract 
and are able to capture the behavioral characteristics of the contract.

S W g b i p
i s i s
= + ∈, [ , ]1  (12)

where W
s
 and b

s
 are learnable parameters and S

i
 is the ith data features.

Symbolic Execution Characteristics. In symbolic execution feature extraction, the authors first give 
a model M, which can be any model that describes the behavior of a smart contract. Then, they 
extract a variety of features from the model, including model structure, parameters, and training 
dataset. The extraction of these features can provide insight into the behavior of smart contracts 
and help us perform better vulnerability detection.

To better capture these features, the authors extract a 4096-dimensional feature vector, denoted Mi, 
for each model using a mean pooling operation. This feature vector is derived by averaging the various 
features of the model, which can effectively describe specific global or essential characteristics of the model.

However, these feature vectors do not take into account the execution behavior of the smart contract 
under various input conditions. Therefore, the authors further transform each feature map li into a 
3D region feature Mi by means of a linear projection layer. These region features are generated by 
symbolic execution techniques, including reachability analysis and data flow analysis. This captures 
the behavioral characteristics of smart contracts under different input conditions:

M W l b i n
i m i m
= + ∈, [ , ]1  (13)

where W
m

 and b
m

 are learnable parameters and M
i
 is the ith model features.
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Cross-Modal Alignment
After the above unimodal feature extraction, a feature dictionary is created to map the features of 
each modality into a shared feature dictionary. This feature dictionary can be based on bag-of-words 
models or embedding techniques. Cross-modal alignment is achieved by mapping features of different 
modalities into the same feature space. The authors perform an alignment operation on the features 
of different modalities. This operation can be either timeline-based alignment or semantic-based 
alignment. For example, aligning the features of dynamic analysis and symbolic execution on the 
timeline can make them consistent on the timeline. In the course of their research, the authors found 
a complementary relationship between the features of dynamic analysis and symbolic execution, and, 
in order to strengthen the correlation relationship between the data and the model, they propose a 
cross-modal attention mechanism to align the modules, with the aim of aligning the vulnerabilities, 
the data, and the model in the smart contract in the embedding space. Given a set of vulnerability 
features R = {r1, ..., rm}, a set of data-level features T = {t1, ..., tp}, and model-level feature set 
W = {w1, ..., wn}. Inspired by Wang et al. (Datar et al., 2020), the region-word affinity matrix can 
be applied to the input image of a smart contract to assist vulnerability detection and analysis by 
matching regions in the image with variables or operators in the code to improve the accuracy and 
effectiveness of vulnerability detection:

A W R WWo t1
= ( )( )   (14)

A W T WWs t2
= ( )( )   (15)

where W W and Wo s t
  , ,   and denote the projection matrices to obtain k-dimensional loopholes, data, 

and model features. For vulnerability-coding, data-coding affinity matrices A Rm n
1
∈ × , A Rp n

2
∈ × , 

Aij denote the affinity between the ith vulnerability and the jth coding and the affinity between the 
ith data and the jth coding, respectively.

In order to infer potential alignment between local segments from different schemas, this paper 
focuses on each segment of code in each region by further normalizing the affinity matrix A:

A soft
A
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max 1  (16)

A soft
A

k
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max 2  (17)

Then, all code features for each region are aggregated according to the normalization matrix 
A
1

, A
2

:

U A W
1 1
= ⋅  (18)
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U A W
2 2
= ⋅  (19)

Row i of U
1

 and U
2
 characterizes the interactive model features corresponding to the ith region.

Multimodal Feature Fusion
Inspired by Tikhomirov et al (Tikhomirov et al., 2018), in this study the authors used a mid-term 
integration approach to fuse multimodal features by stacking pool modules. Figure 8 shows the 
essential process.

A static analysis feature U
1

, a dynamic analysis feature U
2
, and a symbolic execution feature 

U
3
 are connected to get an integration characteristics as shown below:

Q f U U Ui
concat

i i i= ( , , )
1 2 3

 (20)

Figure 7. Cross-Modal Alignment Module
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Finally, Qi  is fed into a four-layer perceptron network for learning. To better understand and 
capture the interactions between modal features, the authors use multiple fully-connected layers, 
including FC

2
, FC

3
, and FC

4
, stack them, and then perform deep fusion by convolutional operations 

and maximum pooling operations. The stacked layer is a 512 × 3 matrix that is convolved by several 
1 × 1 × 3 convolution kernels and then fused to get the deeply merged characteristics. In the network, 
three stacking layers share weights. The convolution operation and maximum pooling operation can 
be represented in the following form:

F f f F F Fi
pooling conv

i I i conv

= ( )( , , )
2 3 4

q  (21)

Finally, the fused features will be fed as input to the Softmax classifier for classification to get 
the final labels:

L f F L Ri
soft

i soft i C= ∈
max

max( ; ),q  (22)

where qconv  and qsoft max  represent the parameters of the convolutional and soft layers. Considering 
that the authors used the cross-entropy loss function in this paper, it is possible to represent the model 
loss function in the following form:

Figure 8. The process of integrating different characteristics
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where f
multi layer-  each is a multilayer perceptron manipulation and “|” denotes a connection 

manipulation.

Detection of Fused Feature Vectors Using Particle Swarm Optimization Algorithm
In their previous work, the authors extracted features from smart contracts from multiple 
perspectives, including static analysis, dynamic analysis, and symbolic execution, respectively, and 
obtained multifaceted feature vectors. These features cover the structural, behavioral, and execution 
characteristics of the contract. Next, they fuseed these features to form a new set of comprehensive 
feature vectors.

The resulting set of comprehensive feature vectors can comprehensively describe the 
characteristics of smart contracts, including their structural, behavioral, and execution characteristics. 
This enables the authors to more accurately understand the potential vulnerabilities of a contract or 
further confirm previously detected vulnerabilities.

In order to discover more potential vulnerabilities or further confirm previous vulnerabilities, 
the researchers feed this comprehensive set of feature vectors into a PSO algorithm. This algorithm 
efficiently searches and identifies the feature vectors that best describe the potential vulnerabilities.

Through this processing flow, it is possible to improve the vulnerability detection accuracy and 
coverage of smart contracts, thus better guaranteeing the security and reliability of the contracts. The 
particular implementation process is shown in Algorithm 3.

ReSulTS AnD DISCuSSIon

In the above work, the authors use multimodal feature fusion techniques to continue detecting 
vulnerabilities in smart contracts. Precisely, they fused features extracted from multiple aspects, 
such as static analysis, dynamic analysis and symbolic execution, to generate a comprehensive set of 

Algorithm 3. Implementation process

Input: The fused feature vectors are fed into the PSO algorithm. 
Step 1: Initializing the particle swarm. 
A set of particles is initialized based on the dimensionality of the fused feature vectors and the problem size. Each 
particle represents a potential solution, and the position and velocity of the particle are randomly generated. 
Step 2: Compute the fitness function. 
Define a fitness function to evaluate the strengths and weaknesses of each particle. This fitness function can be a 
statistical or machine learning model based on known vulnerability samples or some heuristic rules. 
Step 3: Update particle velocity and position. 
Based on the results of the evaluation of the fitting function, each particle adjusts its velocity and position according to 
its optimal solution and global optimal solution. The specific update steps can be implemented according to the basic 
principles of the algorithm. 
Step4: Update individual optimal solution and global optimal solution. 
After each update, we need to refresh the individual optimal solution and the global optimal solution of each particle. 
The optimal solution of each particle is the best in its history, while the global optimal solution is the best in the history 
of the whole particle swarm. 
Step 5: Judge the end condition. 
Iteratively update the particle swarm until the preset end condition is satisfied, such as reaching Maximum Iterations or 
the value of the fitness function converges to a certain threshold. 
Output: Output the feature vector corresponding to the global optimal solution, which may represent a potential 
vulnerability or a further confirmation of a previously detected vulnerability.
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feature vectors. The authors then feed this set of feature vectors into the PSO algorithm to discover 
more potential vulnerabilities and further confirm the vulnerabilities previously detected using the 
PSO algorithm.

To validate the effectiveness of this approach, the authors chose to analyze smart contract code 
that is susceptible to common smart contract vulnerabilities, including integer overflows, reentrant 
attacks, incorrect random number generation, and denial of service attacks. These code snippets are 
intended to test whether our approach can correctly detect the specifics of these known vulnerabilities, 
including the vulnerability’s risk level, the language used, and the location in the code where it already 
appears explicitly (Table 4).

Regarding scalability, the proposed algorithm adopts a PSO algorithm and multimodal feature 
fusion technique, both of which have good scalability. The PSO algorithm can efficiently handle 
large-scale optimization problems by simulating the search behavior of particles in the solution 
space. The multimodal feature fusion technique, on the other hand, can fuse the feature information 
of different modalities to improve the generalization ability of the algorithm. Therefore, when facing 
a large number of smart contract datasets, the proposed algorithm can adapt to different sizes of 
datasets by adjusting the number of particles and the search strategy to achieve efficient processing.

Regarding efficiency, the proposed algorithm is designed to reduce computational complexity 
and increase processing speed. By processing the byte code of smart contracts through a graph 
embedding network, the complex contract information can be transformed into a low-dimensional 
vector representation, thus simplifying the subsequent processing. Meanwhile, the fast convergence 
property of the PSO algorithm also helps to improve the efficiency of the algorithm. In practical 
applications, the processing speed of the algorithm can be further improved by optimizing the algorithm 
parameters and adopting parallel computing.

experimental evaluation
The authors implemented contract preprocessing and slicing in the Java environment, graph 
embedding network, and hazardous contract detection in Python. The experimental setup has 8 
GB RAM, four 3.20 GHz cores, and a 2 TB hard disk. Table 5 shows the detailed configuration 
of the experimental environment.

The authors’ experiments are based on the following three datasets:

Dataset I: No Source Code Contracts. This dataset contains more than 2 million bytecode-only 
smart contracts. The authors use Mist to retrieve blockchain data and get all the bytecodes of 
the contracts deployed on the blockchain.

Dataset II: Open Source Contracts. Although the authors only considered the bytecode of the 
contract during our testing, having access to the source code of an open-source contract can 

Table 4. Contract Vulnerability Detection Results

IntegerOverflow OutOfGas Tx.Origin Reentrancy

Detection 
mode SIO003 sog001 sto002 ree001

Risk level 3 1 3 3

Language Solidity JAVA Solidity Solidity

Number 
of rows 
of error 
codes

7 rows 
10 columns

6 rows 
8 columns

21 rows 
8 columns

6 rows 
31 columns

Error code 
content balances[msg.sender]-amount>0 for(uint256i=0;i<b;i++)

{a=b/c*2;} require(tx.origin==owner) call.value(amount)(“test”)
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significantly improve the credibility of the audit results. Since some contract authors have validated 
and made the source code of their contracts publicly available on Etherscan and the Etherscan 
browser, the contracts in this dataset have been validated and made public. The contracts in this 
dataset were collected before the Etherscan policy was adjusted. Since some contracts were 
validated and made public multiple times, we removed duplicate contracts from the dataset. In 
the end, the dataset contains 32,499 open-source smart contracts.

Dataset III: Vulnerable Contracts. The contracts in this dataset are used as seeds for matching. The 
authors retrieved many vulnerable contracts by searching CVEs (Huang et al., 2021) and selected 
a representative set of contracts that could cause actual harm. Finally, the dataset contains 25 
contracts, of which 11 are related to integer overflow vulnerabilities, five are related to reentry 
vulnerabilities, four are related to nasty random source vulnerabilities, three are related to access 
control vulnerabilities, and two are related to missed exception handling vulnerabilities. To make 
the experimental results more valid, the authors removed all contracts that appear in Dataset III 
from the first two datasets.

Next, they evaluated the efficiency of the experiment. The process took about 57 hours. Figure 
9 shows the cumulative distribution of the slice lengths, and Figure 10 shows the distribution of the 
number of times some of the instructions.

They found that the length of most slices is less than 10, and many instructions appear more than 
once, indicating that simple cut instructions must be more representative.

The two phenomena indicate that the instructions alone in the slices are not representative 
enough; therefore, in normalization, this article distinguished the instructions by parameters with 

Table 5. Experimental Environment Information Sheet

Software Random access memory (RAM) 8 GB

Hardware

CPU Intel(R) Core(TM) i7-11800H @ 3.20GHz

Systems Window10

Java environment JDK1.82

Python Python3.9.6

Editor (software) IntelliJ IDEA

ANTLR Antlr4.9.6

Figure 9. Statistics About the Length of Slices
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attribute labels. Therefore, they distinguished the instructions by parameters with attribute labels in 
the normalization process. They also sliced and normalized the contracts’ bytecodes in Dataset II, 
which took about 36 minutes. The slices obtained have similar statistical distributions as in Dataset 
I. After that, the authors sliced and normalized the contracts in Dataset II using a graph embedding 
network. Then, they embedded the normalized slices into the vector space using a graph embedding 
network, which took about 200 minutes.

The authors further sliced Dataset III and selected the slices representing the vulnerabilities, 
which they chose as the seeds for matching to build the vulnerability vector library. The researchers 
then computed the similarity between the sliced vectors of Dataset I and Dataset II. The average 
detection time per known vulnerability contract is about 18 minutes.

Assessment of Indicators
The authors applied four standard evaluation criteria to assess the effectiveness of their methods and 
compare them to other methods. Accuracy (ACC) is the percentage of all samples correctly identified 
and is used as an overall measure of detection capability. Precision (P) is the percentage of identified 
vulnerable samples out of all identified attack samples and reflects the accuracy of the detection 
results. Recall (R), on the other hand, reveals the percentage of identified vulnerable samples to all 
actual attack samples, reflecting the comprehensiveness of the method. In addition, the F1 score (F1) 
is the average of precision and recall, providing us with a comprehensive evaluation perspective. Also, 
the authors utilized the AUC value, which is the area under the region of convergence (ROC) curve, 
to further compare the performance of different classifiers. The exact formula for the evaluation 
metrics is as follows:

ACC
TP TN

TP FP TN FN
=

+
+ + +

 (24)

R
TP

TP FN
=

+
 (25)

P
TP

TP FP
=

+
 (26)

Figure 10. The Usage Time of Instructions
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Analysis and Comparison of Experimental Results
Using this approach, the authors randomly selected 3000 contracts from Dataset II for vulnerability 
detection and calculated the false alarm rate and false judgment rate under different threshold 
conditions. By adjusting the balance between these two metrics, the similarity threshold was finally 
set to 90%. In addition, in order to balance the efficiency and effectiveness, the authors also adjusted 
the embedding size S in the graph embedding network, and the final value of S was 64. These 
parameters can be adjusted as needed for future use, and the settings here can be used as a valuable 
reference. The dataset employs a smart contract vulnerability detection method based on bytecode 
matching and PSO algorithm I (Ding et al., 2019). A total of 1,220 vulnerable contracts were reported, 
of which the number of integer overflow, reentrant, erroneous random source, access control, and 
missing exception handling vulnerabilities were 732, 129, 23, 182, and 154, respectively. To audit 
these reactive contracts, the authors deployed them on a private chain and attempted to exploit 
the vulnerabilities in them. In practice, manually inspecting the underlying bytecode is very time-
consuming and unreliable, as it requires to be able to infer the behavior in the source code from the 
bytecode, deduce the location of the vulnerabilities and the triggering method, and then test for the 
existence of the vulnerabilities. Therefore, the authors only manually inspected the top 10 contracts 
with the highest similarity to known vulnerable contracts and successfully triggered vulnerabilities in 
8 contracts. In Dataset II, they found 152 contracts with exploitable vulnerabilities, corresponding to 
4, 23, 10, 11, and 5 out of 104. The results also contained 19 false positives. As a result, the accuracy 
of the method on Dataset II is as high as 88.89%.

In order to evaluate the performance of the PSO algorithm and multimodal feature fusion technique 
for smart contract vulnerability detection, the authors used the same Dataset II and compared it with 
existing smart contract vulnerability detection tools, including Mythril (Mythril, 2023), Smartcheck 
(Zhuang et al., 2020), Slither (Zhou et al., 2021), as well as TMP (Huang et al., 2021), which the 
authors chose as a similar comparison method. Table 6 lists the detailed differences between these 
approaches and our proposed approach in various aspects.

The authors conducted comparative experiments using various smart contract vulnerability 
detection tools such as Mythril, Smartcheck, Slither, and TMP under different evaluation metrics 
(i.e., ACC, AUC, P, R, and F1). The experimental Dataset II is the same as the method the authors 
described in this paper, and Tables 7 and 8 show the experimental results. Among them, Mythril is 
a well-known security analysis tool provided by the Ethernet open source community, which can 
deeply analyze the security vulnerabilities in Solidity smart contracts; Smartcheck is an extensible 
static analysis tool for detecting vulnerabilities or code problems in smart contracts; Slither is an 
open-source static analysis framework for Solidity, which can quickly locate the vulnerabilities; TMP 

Table 6. Comparison of Existing Methods and the Authors’ Proposed Method

Method Year Technical category Vulnerability types

Mythril 2017 Symbolic execution 10%

Smartcheck 2018 Static analysis 30%

Slither 2019 Static analysis 35%

TMP 2020 Deep learning 80%

Our me thod _ Deep learning 95%
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(Chen et al., 2021) is a novel static analysis tool for detecting vulnerabilities in smart contracts. Also, 
it is also a novel temporal information dissemination network that uses graph convolution to learn 
vulnerability features in normalized contract graphs (Yang et al., 2024).

Experimental results show that the method proposed in this paper can support more types of 
vulnerability detection without relying on expert knowledge. Compared with existing smart contract 
vulnerability detection tools, the method performs better in terms of detection accuracy and AUC 
value for various types of vulnerabilities, and the overall detection performance is superior. Figure 
11 shows the specific performance.

Traditional smart contract vulnerability detection methods rely too much on experts’ experience 
and constantly need to update the feature library. TMP, as a vulnerability detection method based on 
the concept of contract graph, has a unique advantage in detecting security vulnerabilities caused by 
intercontract calls and cannot be applied to detect vulnerabilities in one line of code, such as ARTHM. 
Therefore, in this paper the authors propose a smart contract vulnerability detection method based 
on PSO algorithm and multimodal feature fusion technology, which makes use of as much contract 
feature information as possible and organically combines this information, thus outperforming existing 
methods in vulnerability detection.

The use of an approach based on PSO algorithm and multimodal feature fusion techniques has 
been shown to have significant advantages in the task of detecting four common smart contract 
vulnerabilities. Compared to traditional detection methods, this approach excels in improving both 
the accuracy of the model (ACC value) and the area under the curve (AUC value) of the detection 
performance (Yang et al., 2021). Using our proposed new approach, we are able to detect vulnerabilities 
in smart contracts more accurately and efficiently.

In-Depth Statistical Analysis
In order to verify the effectiveness of the smart contract vulnerability detection scheme proposed in 
this paper, the authors conducted an in-depth statistical analysis. First, they collected a large number 
of smart contract samples, including contracts with known vulnerabilities and standard contracts. 
Then, they utilized the proposed scheme to detect these contracts and count the metrics such as 
the accuracy rate, false alarm rate, and missed alarm rate of the detection results. In addition, they 
analyzed the impact of different parameter settings on the detection results to determine the optimal 
parameter configuration.

Comparison With Benchmark Methods
In order to evaluate the smart contract vulnerability detection scheme proposed in this paper more 
comprehensively, the authors also compared it with existing benchmark methods. These benchmark 
methods include traditional rule-based detection methods. The authors tested these methods using 
the same smart contract sample set and compared their detection performance. The experimental 
results show that the scheme proposed in this paper outperforms the benchmark methods in terms of 
accuracy, false positives and misses, especially in the detection of complex and hidden vulnerabilities.

ConCluSIon

In this paper, the authors propose an innovative smart contract vulnerability detection method that 
combines PSO algorithm and multimodal feature fusion technique. By applying graph embedding 
network to deeply analyze the byte code of smart contracts, it is possible to effectively capture the 
structural and behavioral information of the contracts. Meanwhile, the introduction of PSO algorithm 
makes the whole detection process more efficient and enables the optimized search of parameters. 
In addition, the authors also utilize the multimodal feature fusion technique to comprehensively 
consider various contract feature information, thus further improving the accuracy and efficiency of 
vulnerability detection. Experimental results show that the method proposed in this paper exhibits 
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higher detection accuracy and AUC value compared with existing detection tools. Further, the method 
does not completely rely on expert knowledge, and thus can support more types of vulnerability 
detection, greatly broadening its application scope.

However, it is crucial to also face up to the limitations and challenges of existing methods. 
On the one hand, these methods have a high dependence on the quality and quantity of data, 

Figure 11. Performance Evaluation of Different Types of Vulnerability Detection Methods Using Different Evaluation Metrics
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which limits their effectiveness in practical applications to some extent. On the other hand, 
the complexity of the algorithms and the resource consumption problem when dealing with 
large-scale datasets are also challenges that cannot be ignored. In addition, when facing new or 
unknown vulnerabilities, the existing models may seem overwhelming and need to be constantly 
updated and optimized.

Therefore, future research should focus on solving these problems. First, it is necessary 
to improve the quality and diversity of data to ensure that the model can identify various 
vulnerabilities more accurately. Second, it is also crucial to optimize the performance and 
efficiency of the algorithms, which will help improve the speed and accuracy of detection. In 
addition, realizing adaptive and online learning capabilities, as well as exploring vulnerability 
detection techniques under cross-chain security and privacy protection, are also important future 
research directions.

At the same time, it is also necessary to pay attention to the ethical considerations of vulnerability 
detection techniques. When applying these technologies, scholars must respect the privacy and 
copyright of contract developers and ensure the legality and compliance of the whole detection 
process. It is also crucial to minimize false positives and omissions to avoid unnecessary losses and 
crises of trust for developers and users. Finally, it is necessary to make it clear that these technologies 
are not all-purpose security measures, but should work together with other security measures to form 
a multilayered security protection system.

In summary, although smart contract vulnerability detection technology has a wide range of 
application prospects and research value, researchers still need to continuously optimize and improve 
it to give full play to its role in smart contract security.

Table 7. Experimental Comparison With Other Methods

Method
ARTHM RENT LE TimeO

ACC AUC ACC AUC ACC AUC ACC AUC

Mythril 0.675 0.679 0.724 0.834 _ _ 0.865 0.51

Smartcheck 0.542 0.531 _ _ 0.913 0.795 _ _

Slither _ _ 0.735 0.842 0.918 0.815 _ _

TMP 0.618 0.586 0.744 0.677 0.836 0.499 0.768 0.689

The authors’ method 0.934 0.815 0.923 0.863 0.901 0.835 0.951 0.892

Table 8. Experimental Comparison With Other Methods

Method
ARTHM RENT LE TimeO

P R F1 P R F1 P R F1 P R F1

Mythril 0.634 0.621 0.625 0.724 0.708 0.719 _ _ _ 0.798 0.713 0.756

Smartcheck 0.533 0.512 0.526 _ _ _ 0.875 0.854 0.864 _ _ _

Slither _ _ _ 0.711 0.685 0.698 0.863 0.834 0.855 _ _ _

TMP 0.698 0.655 0.688 0.821 0.815 0.820 0.811 0.798 0.809 0.724 0.705 0.713

The authors’ 
method 0.915 0.904 0.909 0.912 0.896 0.902 0.893 0.824 0.879 0.923 0.879 0.903
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