
DOI: 10.4018/IJSWIS.342850

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Particle Swarm Algorithm for Smart
Contract Vulnerability Detection
Based on Semantic Web
Tao Feng, School of Computer and Communication, Lanzhou University of Technology, China

Yuyang Cui, School of Computer and Communication, Lanzhou University of Technology, China*

ABSTRACT

In recent years, smart contracts have risen rapidly in the blockchain field, but security issues have also
become increasingly prominent. Due to the lack of unified evaluation standards, the security analysis of
smart contracts mainly relies on complex and not easily scalable expert rules. To address these issues,
we employ slicing techniques to reduce the interference of extraneous code on the detection process,
apply normalisation techniques to eliminate the differences between different compiler versions and use
particle swarm optimisation algorithms to determine the similarity between contracts, thus improving
the accuracy and efficiency of detection. In addition, we combine a variety of features such as static
analysis, dynamic analysis and symbolic execution to gain a more comprehensive understanding of
contract characteristics and behaviours for more accurate vulnerability identification. Experimental
results show that the scheme significantly improves the detection capability and provides a new
solution for the security detection of smart contracts.

KeyWoRDS
Graph Embedding Algorithm, Multimodal Feature Fusion, Particle Swarm Optimisation Algorithm, Smart
Contracts, Vulnerability Detection

InTRoDuCTIon

With the rapid development of blockchain technology, smart contracts, as its core component, have
been widely used in the fields of finance, supply chain management, and digital asset trading (Metz,
2021). However, the security of smart contracts has been an issue of great concern because smart
contracts cannot be changed once they are deployed on the blockchain, and they may involve large
amounts of money and essential business logic. Therefore, smart contract vulnerability detection has
become an important topic in current research.

Although there have been some studies on smart contract vulnerabilities, the existing vulnerability
detection methods still have some limitations due to the complexity of smart contracts and the
specificity of blockchain. Traditional software vulnerability detection techniques are usually not

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

2

directly applicable to smart contracts because the execution environment of smart contracts is very
different from ordinary software (Lu et al., 2021). Therefore, new vulnerability detection methods
and tools need to be developed for the characteristics of smart contracts.

In recent years, researchers have proposed a number of smart contract vulnerability detection
methods based on techniques such as static analysis, dynamic analysis, and symbolic execution
(Nguyen et al., 2021). These methods can help developers discover potential vulnerabilities and provide
remediation suggestions before deploying smart contracts. In addition, some research has been devoted
to developing smart contract vulnerability detection tools to improve the efficiency and accuracy
of vulnerability detection (Alweshah et al., 2020; Nedjah et al., 2023). However, smart contract
vulnerability detection still faces challenges. The complexity of smart contracts and the decentralized
nature of blockchain increase the difficulty of vulnerability detection and make it challenging to ensure
the completeness and accuracy of detection. Therefore, improving the efficiency and reliability of
smart contract vulnerability detection is still one of the pressing issues in current research. Although
the match-based approach has been proven to be effective for vulnerability detection, applying the
technique to smart contracts is a challenging task (Fatemidokht et al., 2021). Two significant issues
need to be addressed: First, research has shown that the match-based detection technique should
be applied more to bytecode since few smart contracts are open source. However, due to the rapid
development of the Solidity compiler (Kumar & Sivakumar, 2022), the same bytecode fragment can
produce different bytecodes depending on the compiler version, and this diversity interferes with
bytecode matching. Another problem is that different versions of compilers can compile many different
instructions, resulting in missing instructions. Even if the instructions have the same semantics,
different compiler versions can cause significant differences.

To address these problems, this paper first sliced and normalized the program. Specifically,
this paper employed slicing techniques to effectively reduce the interference of extraneous code on
the analysis results. At the same time, they also adopted normalization techniques to eliminate the
differences that different compiler versions may cause. On this basis, they designed unsupervised graph
embedding algorithms to capture the structural information of functions. Through these methods, it
is possible to significantly reduce the diversity of bytecode generation and the interference of noisy
codes due to the rapid development of compilers, which in turn significantly improves the accuracy
and effectiveness of detection. The normalized slices are mapped into vectors by an embedding graph
network and then matched using a particle swarm optimization algorithm. The authors also introduced
a multimodal feature fusion technique to improve detection accuracy. This enables the matching of
contracts with different implementations and similar code logic (Raj & Pani, 2022). The authors’
approach reduces the false alarm rate by more than 90% compared to direct matching via program
slicing techniques. In addition, the number of detected vulnerabilities is significantly increased by
applying standardization techniques. This approach effectively reduces the number of false positives
and misses, while significantly improving the accuracy of code matching and successfully identifying
undetected vulnerability contracts (Madan & Bhatia, 2021). By employing a multimodal feature
fusion technique, the authors’ approach significantly improves the accuracy of vulnerability detection.

Related Work
Because of the nature of blockchain, smart contracts are complex to fix once deployed. However,
there has yet to be a complete library of innovative contract vulnerability features. Collecting all
vulnerability logic and summarizing the corresponding features is difficult (Hu et al., 2022). In this
regard, there is an intuitive and feasible solution: Treat known vulnerabilities as special features
directly, turn the code to be detected into vectors and other easily comparable forms together, and match
and eventually compare the similarity between the detection contract and the known vulnerability
contract based on this and through particle swarm optimization (PSO) algorithm. If the similarities
exceed the established threshold, the code that needs testing is suspect and should be reviewed further.
It is worth mentioning that only a few smart contracts are currently open source. According to the

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

3

authors’ statistics, as many as 1.5 million smart contracts have been deployed on the blockchain;
however, only about 2% (Nhi & Le, 2022) of the source code, that is, 32,499, is publicly viewable
on the Etherscan browser. In addition, Etherscan has recently adapted its Web site functionality to
no longer extend support direct retrieval of the source code of all published contracts, but only the
500 most recently published contracts, a change that further increases the difficulty of accessing the
source code of contracts (Chawra & Gupta, 2022). Since most of the contracts are closed source
code, it is possible to only analyze their bytecode. Therefore, the authors propose a smart contract
vulnerability detection method based on byte matching to effectively detect potentially vulnerable
contracts by calculating the similarity between the contracts to be detected and the known vulnerable
contracts (Singh et al., 2022).

First, smart contracts will appear more homogeneous than traditional programs, which makes
the matching effort more vulnerable to attacks by code segments unrelated to the vulnerability logic,
the so-called “noise” (Madhumala & Tiwari, 2022). In the vulnerability contract shown in Figure 1,
only lines 3 and 4 of the code are relevant to the vulnerability logic. At the same time, the rest of the
code is noisy and irrelevant to the vulnerability logic.

When used as a “seed” for a match, it can mistakenly capture many contracts that bear only a
high similarity to noisy code, leading to many false positive results.

Secondly, the source code for the smart contract, compiled into bytecode by the Solidity compiler,
is now available in dozens of versions (Sissodia et al., 2022).

In different compiler versions, bytecode is generated in very different ways. Even if the source
code is the same, the bytecode generated by different compiler versions varies widely. The diversity
of compilers hinders matching efforts in many ways. Even if a potential vulnerability contract is
almost identical to a known vulnerability contract, different compiler versions will likely result
in differences in bytecode, reducing the similarity between them and ultimately leading to missed
reports (He et al., 2020).

Third, in code matching, codes are converted into quantifiable, measurable, and comparable
forms to facilitate similarity metrics. For example, Yamaguchi et al. (2011), utilizing a bag of features
(Nguyen et al., 2020), encoded the feature information of each function as a vector. While this work
has yielded satisfactory results, we need to consider functional structure information in greater depth to
ensure that reporting in the area of smart contracts can be more complete. The current lack of attention
to functional structure information may make the content of reports in this area appear to be lacking.

To solve the above problem, the authors first use a program slicing technique to reduce the effects
of noise. Before matching, the contract’s bytecode is sliced into thin slices, with each slice describing
the instructions that the data went through. The slices most likely to reflect the core logic of the
vulnerability are left for better results. Next, the authors normalize the values, adjust the order of the
parameters, and remove unimportant instructions, so that contracts that are similar at the source level
remain as similar as possible at the bytecode level, improving the accuracy of the matching. Then,
they train an embedding graph network to obtain a vector representation of all normalized slices.

Figure 1. BeerCoin Contract

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

4

Finally, a PSO algorithm calculates the similarity between the slice to be tested and the
vulnerability slice (Parizi et al., 2018).

Contributions
The main contributions of this paper are as follows:

1. The authors innovated the slicing and normalization process of smart contracts, by which the
interference of noisy code is reduced and the accuracy of code matching is improved. In addition,
the number of detected vulnerabilities increases substantially after applying the normalization
technique.

2. The authors applied the PSO algorithm to smart contract vulnerability detection, which effectively
reduces the number of false alarms and missed alarms by using known vulnerable contracts to
find similar vulnerable contracts.

3. The authors introduced a multimodal feature fusion technique for smart contract vulnerability
detection, which combines multiple features, such as static analysis, dynamic analysis and symbolic
execution, to provide a more comprehensive understanding of the contract’s characteristics and
behaviors in order to improve the accuracy of vulnerability detection. According to the authors’
observation, the detection effect on most smart contracts is very significant.

MATeRIAlS AnD MeThoDS

Materials
In this section, the authors will give a brief overview of the background of their research, which
includes several types of significant vulnerabilities in smart contracts, the data processing mechanism
of the Ethernet virtual machine (EVM), and the PSO algorithm and multimodal feature fusion
techniques we use.

In this paper, the authors mainly use these two techniques to detect vulnerabilities. They will
focus on the following five categories of vulnerabilities: Reentrant vulnerabilities, integer overflow
vulnerabilities, nasty random source vulnerabilities, access control vulnerabilities, and undetected
return value vulnerabilities. All of these vulnerabilities are invariably related to improper manipulation
of insecure data. A brief description of each vulnerability and detection methodology will follow.

Reentry Vulnerability
In Ethernet, smart contracts can call each other externally. Ethernet users can execute smart contracts
and send Ethernet coins to the receiving account address, either an external account or a contract
account, as both types of accounts can be transferred and otherwise manipulated. There is a special
fallback() function in contract accounts, which has the main form of no function name and no
parameters. When the user sends the etheric to the contract account in the etheric, the fallback()
function in the contract account is automatically activated. Once transferred to the contract address
set by the attacker, the fallback() function of the attack contract is forced to execute.

An attacker can add malicious code to the fallback() function and call the transport code of the
attacker’s contract again, causing damage to the user.

For example, the “TheDAOincident” (Wu et al., 2021) that previously shocked Ethernet is a
typical example of hackers using a reentryable vulnerability to attack a contract.

Integer Overflow Vulnerability
An attacker can damage a user by adding malicious code to the flllback0 function and repeatedly
calling the transport code of the attacker’s contract.

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

5

For example, unsigned integer uint8 is stored in the range of 0~255, (uint8)255+1 appears. The
upper overflow is incorrectly stored as 0, and the lower overflow of (uint8)0-1 is incorrectly stored
as 255. Also, signed integers can have overflow or underflow (Wang et al., 2019).

EVM specifies a fixed size for the data type. When the data exceed the specified range, an
overflow will occur, leading to unpredictable losses if exploited by an attacker.

Bad Random Source Vulnerability
As Figure 2 shows, there is a nasty random source vulnerability in the betting contract.

The contract authors use timestamps as a random source in the third exercise to determine the
outcome of the betting game by generating random numbers. However, finding a suitable source of
randomness in Ether takes work (Zhou et al., 2014). Although it is impossible to predict the timestamp
at the time of execution accurately, an attacker could test whether the condition in line 3 would hold
by deploying another contract that performs the same calculation and immediately engaging in a bet
when the test is actual, thus becoming invincible. Thus, data on blocks (including timestamps) are
undesirable sources of randomness and using them to generate random numbers poses a security risk.

Access Control Vulnerabilities
Typically, the functions used to set the owner of a contract should be privileged functions or
constructors that ordinary users cannot call. However, in some contracts, everyone has access to these
functions, resulting in everyone being able to be the owner of the contract and thus able to perform
certain privileged operations (Zhou et al., 2020).

Undetected Return Value Vulnerability
Ethernet smart contracts provide interfaces such as delegate call, call, send, all code, and other
underlying functions that can be checked for successful execution by the function’s return value.

If the return value is not determined, the program will continue to execute, which may lead to
serious consequences. The features are summarized as follows:

1. Smart contracts use delegtecall(), call(), send(), callcode(), and other underlying functions.
2. The return value is not checked and processed, and the subsequent operation is continued.

Adaptation Value Function
The fitness function evaluates the performance of each particle to ensure the timely elimination of
particles with poor performance. Previous studies have determined whether a suspicious smart contract
has contractual defects by studying the node information in the embedding vectors and transforming
the contract slices into embedding vectors to determine whether the suspicious smart contract is
similar to a known vulnerable contract.

Figure 2. Bad Random Source Vulnerability

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

6

TLSaaty (Hamp-Lyons, 1990) of the University of Pittsburgh proposed the analytical hierarchy
process (AHP) in the 1970s, which requires decision-makers to determine the priority or weight of
each attribute by comparing the relative importance of each attribute.

Particle Swarm Optimization Algorithm
The PSO algorithm is a stochastic search algorithm proposed by James Kennedy and Russell Eberhart
(Yang et al., 1999) in 1995, inspired by the behavior of flocks of birds in nature. In the search space,
each particle independently searches for the optimal solution and records it as an individual extreme
value. Then, all particles share the individual extremes and use the found individual extremes as the
global optimal solution. According to the global optimal solution, all particles will adjust their speed
and position. The algorithm mainly includes the steps of initializing the particle swarm, evaluating
the particles, finding the individual extreme values, finding the global optimal solution and adjusting
the speed and position of the particles. Figure 3 shows the conceptual diagram of the model.

Multimodal Feature Fusion
Multimodal feature fusion technology is a method of fusing data from different modalities to obtain
more comprehensive, accurate, and reliable information. In the multimodal feature fusion process,
data from different modalities are extracted with their respective features, and then these features are
combined to achieve a comprehensive integration of information.

The multimodal feature fusion technique can be applied in several domains, for example, in smart
contract vulnerability detection, by integrating multiple features such as static analysis, dynamic
analysis, and symbolic execution, which enhance the accuracy of vulnerability detection. Static
analysis can precisely extract syntactic and structural information from the code, dynamic analysis can
capture the running behavior and interactions of the program, and symbolic execution can simulate
the execution process of the program and capture possible errors.

In addition to smart contract vulnerability detection, multimodal feature fusion techniques can
be applied to other areas, such as natural language processing, computer vision, and multimedia
processing.

MeThoDS AnD SoluTIon MoDel

The general idea of the method is to extract patterns from the contracts to be tested and match them
with those in the contracts with known vulnerabilities using a PSO algorithm. However, due to the

Figure 3. Conceptual Diagram of the Particle Swarm

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

7

small size of the smart contract, any modification can hinder the matching process. Figure 4 shows
the flowchart of this approach.

1. Preprocessing: The processing contract and the known vulnerability contract are preprocessed
to convert the contract bytecode into instruction set form and construct the control graph.

2. Control Flow Graph (CFG) Traversal: Traverse the CFG of the smart contract, find and mark
all the specific instructions as slicing conditions, and complete the slicing operation by simulating
the execution of the contract to confirm the relationship between data and instructions.

3. Normalisation: Normalise the obtained slices to reduce bytecode differences caused by compiling
with different versions of compilers.

4. PSO Algorithm Matching: A vector representation of all normalized slices is obtained by
training the graph embedding network. Finally, the similarity between the slices to be tested and
the vulnerability slices is calculated using a PSO algorithm.

5. Multimodal Feature Fusion: Based on the above work, the authors further introduce a
multimodal feature fusion technique to improve the detection accuracy of vulnerability contracts.
Specifically, the authors fuse three features, namely, static analysis, dynamic analysis, and
symbolic execution, to form multimodal feature vectors. These multimodal feature vectors
describe the characteristics and behaviors of the contract more comprehensively, thus improving
the accuracy of vulnerability detection. These feature vectors are selected based on their ability
to effectively describe the characteristics and behaviors of the contract and their high sensitivity
and specificity for discovering potential vulnerabilities.

6. Comparison Results: Using the fused modal eigenvectors, the PSO algorithm or other
vulnerability detection techniques are again applied for vulnerability detection.

This can reveal more potential vulnerabilities or further confirm previously detected vulnerabilities.

Algorithm Configuration

Particle Swarm Optimization Algorithm Configuration. The PSO algorithm is a group intelligence-
based optimization tool that finds the optimal solution to a problem by simulating the behavior of
a flock of birds foraging for food. In smart contract vulnerability detection, the PSO algorithm is
used to search for the most similar contract to a known vulnerable contract in the feature space.
 ◦ Particle Encoding: Each particle represents a potential solution, that is, a feature vector of

a smart contract. Graph embedding algorithms and multimodal feature fusion techniques
generate these feature vectors.

Figure 4. Flowchart of Contract Detection

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

8

 ◦ Fitness Function: The fitness function is used to evaluate the strengths and weaknesses of
each particle, that is, its similarity to a contract with known vulnerabilities. Metrics such as
cosine similarity and Euclidean distance can be used here.

 ◦ Velocity and Position Update: The particle updates its velocity and position based on its
historical optimal position and global optimal position to search for better solutions in the
feature space.

Multimodal Feature Fusion Configuration. The multimodal feature fusion technique is used to
combine features from different sources and types to provide a more comprehensive and accurate
description of the contract.
 ◦ Feature Extraction: Extract multiple types of features from smart contracts, including

static code features (e.g., function call graphs, and control flow graphs), dynamic execution
features (e.g., transaction behaviors and resource consumption), and symbolic execution
features (e.g., path conditions and reachability states).

 ◦ Feature Fusion: Use appropriate fusion strategies (e.g., weighted sum, concatenation, and
deep learning models) to fuse these features into a unified feature vector for subsequent
analysis and comparison.

Parameter Selection
When configuring the algorithm, the selection of parameters has a significant impact on its
performance and results. The following are some key parameters and their selection considerations:

• Particle Swarm Size: The size of the particle swarm determines the degree of coverage of the
search space. A too small particle swarm may lead to inadequate search, while a too large particle
swarm may increase the computational overhead. It needs to be chosen reasonably according to
the actual problem and computational resources.

• Learning Factor: The learning factor is used to control the speed of the particles to learn from
their own historical and global optimization. A more prominent learning factor may accelerate
the convergence but may also lead to a premature fall into the local optimum; a smaller learning
factor may make the search process more robust, but the convergence speed is slower.

• Inertia Weights: Inertia weights determine how well the particle velocity is maintained. Larger
inertia weights favor global search, while smaller inertia weights favor local search. Inertia weights
can be adjusted to balance the ability of global and local search.

• Feature Weights: In multimodal feature fusion, different features may have different degrees of
influence on the results. Appropriate weights need to be assigned to each feature according to the
actual situation to ensure that the fused feature vectors can accurately reflect the characteristics
of the contract.

Contract Slicing
Slicing Conditions. Any data from outside the contract may be directly or indirectly controlled by

an attacker or easily known by an attacker, who can use it to attack the smart contract. With this
in mind, we use all instructions to import data from outside as slicing conditions. Specifically,
the slicing condition may introduce the following four types of data:
1. Transaction Data: The transaction data are provided directly by the caller and are introduced

for execution by the CALLDATALOAD and CALLVALUE instructions.
2. Data on the Block: In EVM, everyone can easily access the data on the blocks. An attacker

can break the randomness by simulating the same random number calculation process
if they are used as a random source. Instructions to introduce data on the block include
BLOCKHASH and TIMESTAMP.

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

9

3. External Data: The data stored in external memory usually play a vital role in the contract
and can be accessed by anyone (e.g., the user’s balance data). The command SLOAD
(SafeMath, 2022) retrieves data from external storage.

4. The Return Value of an External Call: The caller contract should explicitly verify the
return value of the external call. Instructions to execute external calls include CALL and
SEND. The authors will first traverse the smart contract once, marking all the instructions
in the above range as a basis for subsequent slicing.

Model Execution and Slicing. In the bytecode of a smart contract, the vast majority of instructions
interact with data through the stack, memory, and external memory, and the association between
instructions and data is not directly reflected in the bytecode except for push instructions. However,
slicing requires analysis of the dependencies between instructions and data, and to confirm such
dependencies, the authors choose to slice the smart contract based on simulated execution.

normalization
In this section, the authors further normalize the generated slices to reduce bytecode differences
caused by compiling different compiler versions. Figure 5 shows the general flowchart of slicing
and normalization.

Numerical Normalization. First, the specific values of the data are replaced with labels representing
data attributes. The purpose of this step is to characterize the data better. Constants are widely
used in intelligent contract bytecode, such as the target address of jump instructions and offsets
to memory addresses. Using different compiler versions may change these data, introducing
unwanted differences in our slices. Furthermore, it is challenging to characterize data by specific
values alone. By using information such as where the data came from and which instructions
it went through, it is possible to make the data more distinctive and, therefore, the instructions
more easily distinguishable. The authors characterize values by labelling the data and allowing
the labels to propagate through the execution. The label of the data depends on the instruction
it obey, and Table 1 shows the labels that some instructions will assign to the resulting data.

Parameter Data Adjustment. When versions of the Solidity compiler are upgraded, there may
be differences between the old and new versions, which may cause them to generate different
bytecodes for the same source code. For example, in Solidity v0.4.22 (Xu et al., 2019), if a
SWAP1 directive precedes a comparison operator (e.g., LT and GT), the compiler replaces the
comparison operator with its opposite operator. It removes the SWAP1 directive (Ni et al., 2020).

To reduce this unnecessary discrepancy, the authors first sort all labels of data in dictionary
order; then, the arguments of some multiparameter instructions are also sorted in the dictionary
order of their attributes. In this process, if the order of the arguments of the comparison
operators changes, they are replaced by the opposite operators accordingly. Table 1 shows the
descriptions involved.

Table 1. De Novo Ordering of Parameter Order

Instruction Adjustment method

lt,gt,slt,sgt Instruction (attrB,attrA) → opposite instruction (attrA,attrB)

ADD,MUL,EQ,
Instruction (attrB,attrA) → Instruction (attrA,attrB)

O R , A N D , X O R

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

10

Removing Irrelevant Commands. In EVM, there are two classes of instructions that operate
directly on data in the stack: The DOP class and the SWAP class. Due to the different versions,
these instructions can be converted to each other. This variation is not conducive to matching.
Moreover, although DOP, SWAP, and POP instructions operate on data in the stack, they may
be more relevant to source code behavior. The authors consider their role in code matching to
be negligible, so instructions related to DOP, SWAP, and POP will be removed from the slice.

The authors briefly demonstrate the effect of slicing and normalization with the example in Figure
5. In this example, they choose the first instruction, CALLD ATALOAD, as the slicing condition and
slice it by analyzing which instructions have data dependencies on them.

Figure Embedding. After slicing and normalization, the authors get relatively pure and homogeneous
slices. At this point, they need to embed the slices into the vector space to measure their similarity.
Yamaguchi et al. (2012) used a bag-of-features encoding method to map functions into vectors
based on the extracted features. This encoding method assumes that all features are of an
independent dimension, which leads to the relationship between features, that is, the structural
information of the function, being ignored. In smart contracts, many instructions are strongly
correlated, and these correlations can provide richer semantic information (e.g., instructions that
execute external calls are correlated with instructions that read or write external data). Conditional
judgment instructions usually control instructions that terminate execution.

Suppose two functions use different methods to compute the total amount of transfers, resulting
in the instructions in their slices being very different. In that case, the direct use of the bag-of-features
approach cannot accurately reflect their similarity. In order to better capture the structural information
in the slices, the authors convert the slices into the form of program dependency graphs. By using a
graph embedding network, the researchers can compute the embedding vectors of the slices, which
better prepares for subsequent tests of the PSO algorithm and multimodal feature fusion techniques.
In this way, it is possible to compare the similarity of the two functions more accurately and improve
the accuracy of smart contract vulnerability detection.

Algorithm Overview. IGraph2Vec is an algorithm for unsupervised graph filtering based on root
subgraph extraction, which can effectively preserve the structural information of the graph.

Figure 5. Example of Slicing and Normalization

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

11

In this paper, the authors refer to the algorithm of Graph2Vec (Sayeed et al., 2020) to embed
vectors. They map the operators in the instructions directly to vectors with data labels and use
these vectors as attributes of the nodes that participate in generating the root subgraph vectors.
The graph embedding network aims to map all slices in a smart contract into vectors. Thus,
the input to the graph embedding network is the smart contract C containing the slices to be
embedded and the dimension S (Xing et al., 2020) of the embedded vectors. At the same time,
the output is the S-dimensional vector obtained after embedding each slice. The process of the
graph embedding network is as follows: First, the embedding vectors of all slices appearing in
the contract C are randomly initialized, and the embedding vectors of all root subgraphs in these
slices are computed; then, two stages of training are performed, that is, in the first stage, the
parameters affecting the embedding of the root subgraphs are trained, and in the second stage,
these parameters are fixed, and the embedding vectors of the slices are trained and output.

For a smart contract C = {G
1
, G

2
, ..., G

n
}, G

i
 is the program dependency graph of the slices

extracted from that contract, defined as G
i
 = {N

i
, E

i
, λ}, where N

i
 is the set of instructions

contained in the slice, E
i
 is the dependency between instructions, and λ represents a mapping that

maps the instructions n to an S-dimensional vector based on the properties of the operators and data
of the instructions in the slice v

n
. Algorithm 1 shows the flow of the graph embedding network.

First, the embedding vectors of all slices are initialized randomly. Lines 2 to 3 of Algorithm 1
represent the computation of the embedding vector of the root subgraph of each instruction node in

Algorithm 1. Graph embedding network

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

12

all slices of the contract C. The root subgraph embedding vector in line 3 of Algorithm 1 is computed
as shown in Equation 1 (Momeni et al., 2019):

SubGraph n G v P v
i n mm Neib n Gi

(,) tanh
(,)

= +()∈∑ (1)

where P is the parameter matrix, Neib(n,) is the neighbor node of node n in graph Gi. Next, the authors
will obtain the embedding vectors of the slices in two stages, which are reflected in lines 5 to 10 of
Algorithm 1. Equation 2 shows the probability function used for this process.

Pr(|)
exp()

exp()
SG v

v SG

v SGn G

G n

G ww N
i

i

ic

=
⋅

⋅
∈∑

 (2)

where N
C

 denotes the concatenated set of nodes of all slices in contract C. Equation 2 calculates the
root subgraph Sappears in G

i
 in a slice, and the goal of training is to maximize it. As mentioned

before, the authors will perform two stages of training: In the first stage, they focus on λ and P and
train only on these two parameters; in the second stage, they keep the parameters λ and P unchanged
and train on the embedding vector of slices. In this way, they provide a data source for comparison
detection using the PSO algorithm in the following.

Particle Swarm Optimization Algorithm to Detect Vulnerable Contracts

Optimizing Particle Algorithm Configuration and Parameter Selection.
a. Algorithm Configuration.
b. Particle Swarm Initialization:
c. Number of Particles: Select the number of particles as 50; this number can provide enough

search space while maintaining computational efficiency.
d. Particle Dimension: Set the particle dimension according to the number of parameters to be

optimized. For example, to optimize three parameters, namely, Learning rate, regularization
factor, and iteration number, the particle dimension is 3.

e. Initial Position and Velocity: Randomly initialize the position and velocity of the particles
within the allowed range of the parameters.

f. Adaptation Function: As to evaluation metrics, the combination of accuracy rate (ACC) and
false positive rate (FPR) is used as the fitness function.

g. Particle Update Strategy: Use the standard PSO velocity and position update formula to update
the velocity and position of particles. Each particle records its historical optimal position
(individual optimal) and the optimal position in the whole population (global optimal).

h. Parameter Selection.

1. Inertia Weights: It includes the following features:
a. Initial Inertia Weights: A sizeable initial value (e.g., 0.9) is chosen to maintain an extensive

exploration capability at the beginning of the search.
b. Decay of Inertia Weights: Gradually reduce the inertia weights as the number of iterations

increases to facilitate the convergence of the algorithm. Linear decay or nonlinear decay can
be used.

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

13

2. Acceleration Coefficients: Both the individual acceleration coefficients and the overall
acceleration coefficients were set to common values. This helps to balance the effects of individual
experience and group experience on particle motion.

3. Maximum Velocity and Position Limits: Appropriate maximum velocity limits are set according
to the definition domain of the parameter to prevent the excessive spreading of particles in the
search space. The position limit can be set according to the value range of the parameter to ensure
that the particles will not go beyond the legal range of the parameter.

4. Termination Conditions: It includes the following features:
a. Maximum Number of Iterations: Set an appropriate maximum number of iterations (e.g.,

100 or adjust according to the complexity of the problem).
b. Adaptation Threshold: Set a higher adaptation threshold; when the adaptation of the particle

reaches or exceeds this threshold, the algorithm can be terminated early.

Adaptation Value Function
The fitness function is a function used in evolutionary algorithms to measure the degree of merit of
an individual in the solution space. It is usually designed as a mathematical function that accepts a
candidate solution (also known as an individual) as input and returns a numerical value indicating
the degree of fitness of that solution. In the optimization process of an evolutionary algorithm, the
goal of the fitness function is to maximize or minimize this value in order to find the optimal or
suboptimal solution.

The design of the fitness function usually depends on the nature and objective of the particular
problem. In the scenario of smart contract security vulnerability detection, the fitness function may
be defined based on the characteristics of the contract and the security criteria.

Building the AHP Model. the first layer of decision-making should be determined; the first layer is
the general objective of the decision, the second layer is the layer of different evaluation indicators,
that is, attributes, and the third layer is the layer of alternatives of the decision. This paragraph
studies the similarity problem of the embedded vectors of slices, so the general objective of the
first layer of decision-making should be the similarity of the nodes of the embedded vectors
(Liu et al., 2018). There are many evaluation indexes in the second layer to judge whether the
nodes are similar or not, and after comparing and synthesizing, the authors divide the evaluation
indexes of similarity into the following three categories:
1. Error Size: There may be errors in the embedding vector analysis of the root subgraph; set

this error value.
2. Type Range: The degree of support for different node types.
3. Stability: Whether the similarity can genuinely reflect the similarity of the nodes in case

of significant differences in similarity.

The third layer is the alternative; the authors chose three: Node hash value, node information
amount, and node type. Figure 6 shows the AHP three-layer model in summary.

Setting the Judgment Matrix. It includes the following steps:
1. Determine the Objective Function: In smart contract vulnerability detection, the objective

function can be detection accuracy, recall rate, and F1 score. The establishment of the
objective function will directly affect the direction and focus of the PSO algorithm.

2. Determine the Influencing Factors: The results of smart contract vulnerability detection
are affected by several factors, including the static features, dynamic features, and control
flow features of the contract. The static features include the bytecode of the contract, as
well as the control flow features. The static features include the byte code and function

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

14

call relationship of the contract; the dynamic features include the data flow and control
flow information during the execution of the contract; the control flow features include the
program flow and branch structure of the contract.

3. Construct the Feature Library: According to the determined influencing factors, extract
the corresponding static features, dynamic features and control flow features from the smart
contract to be tested. For example, specific opcodes can be extracted from bytecode, the
reading and writing of variables can be analyzed from data flow, and critical jump points
can be identified from control flow. These features will form a feature library, which will
provide the basis for subsequent vulnerability detection.

4. Constructing a Judgment Matrix: For each feature, it is necessary to compare it with
other features to get the judgment matrix. The judgment matrix is a square matrix in which
each element represents the relative importance of one feature compared to another. When
constructing the judgment matrix, the interrelationship and importance of different features
need to be considered to ensure the consistency and accuracy of the judgment matrix.
The relative importance of information between features can be obtained through expert
assessment and historical data analysis.

5. Determine Feature Weights: By calculating the feature vector of the judgment matrix, the
weight vector of each feature can be obtained. Each element of the feature weight vector
indicates the degree of importance of the corresponding feature in the objective function.

6. PSO Algorithm: This method determines the optimal solution by using a PSO algorithm
to optimize the weight vector corresponding to each feature as an objective function. In
the specific implementation, it is necessary to first randomly initialize each particle in
the particle swarm, including their positions and velocities. Then, the adaptation value of
each particle is computed according to the objective function. During each iteration, each
particle compares its current adaptation value with the adaptation value of the best location
in history. If the current adaptation value is better, it is taken as the current optimal solution.
At the same time, the entire swarm updates its optimal solution to the best of the historical
optimal solutions of all the particles based on the optimal solution of the current particle and
the optimal solution of the entire swarm, as well as the velocity and position information of
the particles to renew the speed and position of the particles. This process repeats until the

Figure 6. AHP Three-Tier Model

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

15

end conditions are met, such as reaching the predefined maximum number of iterations or
finding a sufficiently good solution.

7. Detecting Vulnerabilities: Using the obtained optimal solution (i.e., feature weight vector),
the smart contract to be tested is detected for vulnerabilities. Precisely, the smart contract can
be executed to collect its feature data during execution and weight the feature data according
to the optimal solution to obtain a comprehensive score. Based on this score, whether the
smart contract to be tested has vulnerabilities or potential risks is judged.

Consistency Test. Since the judgment matrix obtained by manual two-by-two comparison is highly
subjective, we need to conduct consistency tests on it to ensure the accuracy of the results. The
consistency test can increase the subjectivity of the judgment matrix and the credibility of the
results.

First, find the maximum characteristic root of each judgment matrix. l
max

 is the largest
characteristic root:

l
max
=

()
=
∑
Aw

nw
i

ii

n

1

 (3)

Second, calculate the consistency index CI by maximum characteristic root:

CI
n

=
−

l
max

1
 (4)

where W is the matrix normalized, the matrix after linear transformation, n denotes the order of the
comparison judgment matrix and is the maximum characteristic root of the judgment matrix.

Third, determine the corresponding evaluation random consistency index RI.
According to the order of the judgment matrix, the corresponding average random consistency

index value can be obtained by looking up the table. The judgment matrix of this paper is of the third
order, so the corresponding RI=0.52

Finally, calculate the consistency ratio CR:

CR
CI

RI
= (5)

In the ideal case, CR is 0. However, in the actual evaluation, subjective factors lead to errors
purely in, so, when CR < 0.1, the difference is small enough to pass the test although the ideal case
is not satisfied.

The final consistency test was satisfied by the above matrices: 0.0922, 0.0176, 0.0089, and
0.0176, respectively.

Determination of Attribute Weights. After getting the judgment matrix, it is possible to determine
the weights of the attributes based on the judgment matrix. The steps are as follows.

First, the vector is normalized. Assume that the judgment matrix A aij
nn

= . After normalization,
the matrix is R r

ij nn
= () :

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

16

r
a

aij
ij

ij

i

n
=

=∑ 2

1

 (6)

After the vectors are normalized to one, the r
ij
Î [,]0 1 and for each attribute index, the column

vector is modulo 1.
Secondly, the normalized R matrix is summed by rows:

w
w

w
i

i

ii

n

=

=∑ 1

2
 (7)

Third, the vector w w w w w
i n

T

=

1 2 3

, , ... is normalized:

w
w

w
i

i

ii

n

=

=∑
2

1

 (8)

After calculating, the hierarchical single ranking weights are obtained (Table 2).
The single ranking weight of the second layer elements with respect to the total objective of the

first layer is obtained in the table 0 62 0 24 0 14. , . , .

T

 denoted as w k ik
1

1 3 1 2 3− = =(, , ,) . The single
ranking weight of the third layer relative to the second layer is a 3*3 matrix, denoted as P

ij
k

(k=3,i=1,2,3,j=1,2,3) .Then, the total ranking of the elements of the third layer with respect to the
total objective is:

w P w i
i
k

ij
k
j
k

j

= =−

=
∑ 1

1

3

1 2 3(, ,) (9)

Table 3 shows the calculated total ranking weights.

Table 2. Judgment Matrix of G1, G2, and G3 on the Acquaintance A

G1 Single sort weights G2 Single sort weights G3 Single sort weights A Single sort weights

P1 0.04 P1 0.14 P1 0.34 G1 0.62

P2 0.21 P2 0.62 P2 0.16 G2 0.24

P3 0.75 P3 0.24 P3 0.34 G3 0.14

Table 3. Total Judgment Matrix of G1, G2, and G3 on the Acquaintance A

A P1 P2 P3

Total ranking weights 0.106 0.301 0.570

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

17

Thus, the expressions of node hash-based, node-information-based, node-type evaluation-based,
and node-similarity-based adaptation value functions are:

F X sim x sim x sim x
i

n

() = ()+ ()+ ()()
=
∑ 0 106 0 301 0 570

1 1 2 2 3 3
0

. . . (10)

Among them sim
1
, sim

2
 , sim

3
 denotes the similarity value obtained from three evaluation

methods based on hash value based on node information amount based on node type, and denotes
the node serial number.

Algorithm Steps
Once the adaptive value function is derived from the AHP analysis, the algorithmic process can begin.
The algorithmic process of PSO is shown in Algorithm 2.

Multimodal Feature Fusion Technology Continues to Detect Vulnerable Contracts
Based on the previous stage, the authors further use multimodal feature fusion to continue detecting
vulnerabilities in smart contracts. Specifically, they first perform unimodal feature extraction to extract
features from multiple aspects such as static analysis, dynamic analysis, and symbolic execution;
then, they perform cross-modal alignment, and finally use multimodal feature fusion to generate a
set of comprehensive feature vectors. The researchers then feed this set of feature vectors into the
PSO algorithm to discover more potential vulnerabilities or further confirm previously detected
vulnerabilities.

Unimodal Feature Extraction

Static Analysis Features. In static analysis feature extraction, for each vulnerability I, the authors
obtain features such as vulnerability-related metrics and parameters that describe the intrinsic
attributes and behaviors of the I. To perform feature extraction for each object, they use an
average pooling operation to convert each object into a 4096-dimensional feature vector Oi,
where i denotes a different object with a value ranging from 1 to m.

Algorithm 2. Process of PSO

Input: The embedding vector of the two slices
Step 1: Initializing a swarm of particles initializes a set of particles (i.e., solutions) and their velocities based on the
number and nature of feature vectors. Each particle represents a possible vulnerability detection result.
Step 2: A fitness value is computed for each particle, which indicates the quality of its corresponding solution. The
fitness value may be defined according to practical needs; for example, it may be a vulnerability detection accuracy, a
recall rate, or other evaluation metrics.
Step 3: Iterative evolution.
During each iteration, the particle updates itself according to two “poles:” The best solution currently found by the
particle, called the particle pole best value, and the best solution currently found by the whole population, called the
global pole best value. During the update process, the fitness function of the particle is first compared with its best
value. If fitness is less than pbest, then the current position of the particle is pbest, and then the pbest_ value and gbest_
value of each particle are compared. If the pbest_ value of a particle is less than the gbest_ value, then that particle is the
particle corresponding to the gbest.
Step4: Updating the particle swarm.
Update the position and velocity of the particles based on the fitness value. Updating the position of a particle by
comparing its fitness value gives a higher probability that a good solution will be retained.
Step 5: Iteration termination condition.
Output: Similarity of the embedding vectors of the two slices.

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

18

To further adjust the spatial weights in the feature map, the authors introduce an attention mechanism.
By means of a linear projection layer, they transform each feature map fi into a 3D region feature Oi.
The generation of these region features is based on the analysis of the smart contract source code or
bytecode. Among the features that may be included are variable types, function calls, and control
flow analysis:

O W f b i m
i o i o
= + ∈, [,]1 (11)

where Wo and b
o

 are learnable parameters and C
i
 is the ith vulnerability-related features.

Dynamic Analysis of Features. In dynamic analysis feature extraction, the authors are given a dataset
S and extract features such as frequency, duration, byte length, and data type from the input data.
The extraction of these features is dynamically generated by the smart contract at runtime and
thus has high temporal and spatial complexity.

To better capture these features, the authors use an average pooling operation to extract a
4096-dimensional feature vector, denoted as Si, for each input data. This feature vector is derived by
averaging the various features of the input data, which effectively describes the global characteristics
of the data.

However, these feature vectors do not take into account the behavior of the smart contract at
runtime. Therefore, the authors further transform each feature map gi through a linear projection
layer into 3D region features Si. These region features are generated at runtime of the smart contract
and are able to capture the behavioral characteristics of the contract.

S W g b i p
i s i s
= + ∈, [,]1 (12)

where W
s
 and b

s
 are learnable parameters and S

i
 is the ith data features.

Symbolic Execution Characteristics. In symbolic execution feature extraction, the authors first give
a model M, which can be any model that describes the behavior of a smart contract. Then, they
extract a variety of features from the model, including model structure, parameters, and training
dataset. The extraction of these features can provide insight into the behavior of smart contracts
and help us perform better vulnerability detection.

To better capture these features, the authors extract a 4096-dimensional feature vector, denoted Mi,
for each model using a mean pooling operation. This feature vector is derived by averaging the various
features of the model, which can effectively describe specific global or essential characteristics of the model.

However, these feature vectors do not take into account the execution behavior of the smart contract
under various input conditions. Therefore, the authors further transform each feature map li into a
3D region feature Mi by means of a linear projection layer. These region features are generated by
symbolic execution techniques, including reachability analysis and data flow analysis. This captures
the behavioral characteristics of smart contracts under different input conditions:

M W l b i n
i m i m
= + ∈, [,]1 (13)

where W
m

 and b
m

 are learnable parameters and M
i
 is the ith model features.

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

19

Cross-Modal Alignment
After the above unimodal feature extraction, a feature dictionary is created to map the features of
each modality into a shared feature dictionary. This feature dictionary can be based on bag-of-words
models or embedding techniques. Cross-modal alignment is achieved by mapping features of different
modalities into the same feature space. The authors perform an alignment operation on the features
of different modalities. This operation can be either timeline-based alignment or semantic-based
alignment. For example, aligning the features of dynamic analysis and symbolic execution on the
timeline can make them consistent on the timeline. In the course of their research, the authors found
a complementary relationship between the features of dynamic analysis and symbolic execution, and,
in order to strengthen the correlation relationship between the data and the model, they propose a
cross-modal attention mechanism to align the modules, with the aim of aligning the vulnerabilities,
the data, and the model in the smart contract in the embedding space. Given a set of vulnerability
features R = {r1, ..., rm}, a set of data-level features T = {t1, ..., tp}, and model-level feature set
W = {w1, ..., wn}. Inspired by Wang et al. (Datar et al., 2020), the region-word affinity matrix can
be applied to the input image of a smart contract to assist vulnerability detection and analysis by
matching regions in the image with variables or operators in the code to improve the accuracy and
effectiveness of vulnerability detection:

A W R WWo t1
= ()() (14)

A W T WWs t2
= ()() (15)

where W W and Wo s t
 , , and denote the projection matrices to obtain k-dimensional loopholes, data,

and model features. For vulnerability-coding, data-coding affinity matrices A Rm n
1
∈ × , A Rp n

2
∈ × ,

Aij denote the affinity between the ith vulnerability and the jth coding and the affinity between the
ith data and the jth coding, respectively.

In order to infer potential alignment between local segments from different schemas, this paper
focuses on each segment of code in each region by further normalizing the affinity matrix A:

A soft
A

k
1
=

max 1 (16)

A soft
A

k
2
=

max 2 (17)

Then, all code features for each region are aggregated according to the normalization matrix
A
1

, A
2

:

U A W
1 1
= ⋅ (18)

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

20

U A W
2 2
= ⋅ (19)

Row i of U
1

 and U
2
 characterizes the interactive model features corresponding to the ith region.

Multimodal Feature Fusion
Inspired by Tikhomirov et al (Tikhomirov et al., 2018), in this study the authors used a mid-term
integration approach to fuse multimodal features by stacking pool modules. Figure 8 shows the
essential process.

A static analysis feature U
1

, a dynamic analysis feature U
2
, and a symbolic execution feature

U
3
 are connected to get an integration characteristics as shown below:

Q f U U Ui
concat

i i i= (, ,)
1 2 3

 (20)

Figure 7. Cross-Modal Alignment Module

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

21

Finally, Qi is fed into a four-layer perceptron network for learning. To better understand and
capture the interactions between modal features, the authors use multiple fully-connected layers,
including FC

2
, FC

3
, and FC

4
, stack them, and then perform deep fusion by convolutional operations

and maximum pooling operations. The stacked layer is a 512 × 3 matrix that is convolved by several
1 × 1 × 3 convolution kernels and then fused to get the deeply merged characteristics. In the network,
three stacking layers share weights. The convolution operation and maximum pooling operation can
be represented in the following form:

F f f F F Fi
pooling conv

i I i conv

= ()(, ,)
2 3 4

q (21)

Finally, the fused features will be fed as input to the Softmax classifier for classification to get
the final labels:

L f F L Ri
soft

i soft i C= ∈
max

max(;),q (22)

where qconv and qsoft max represent the parameters of the convolutional and soft layers. Considering
that the authors used the cross-entropy loss function in this paper, it is possible to represent the model
loss function in the following form:

Figure 8. The process of integrating different characteristics

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

22

J L f f fconv soft i

i

u

soft pooling conv
q q, log() (((max

max() = − =
=

−

∑
0

1

ff U U
multi layer

conv soft
− (|));))max

1 2
q q (23)

where f
multi layer- each is a multilayer perceptron manipulation and “|” denotes a connection

manipulation.

Detection of Fused Feature Vectors Using Particle Swarm Optimization Algorithm
In their previous work, the authors extracted features from smart contracts from multiple
perspectives, including static analysis, dynamic analysis, and symbolic execution, respectively, and
obtained multifaceted feature vectors. These features cover the structural, behavioral, and execution
characteristics of the contract. Next, they fuseed these features to form a new set of comprehensive
feature vectors.

The resulting set of comprehensive feature vectors can comprehensively describe the
characteristics of smart contracts, including their structural, behavioral, and execution characteristics.
This enables the authors to more accurately understand the potential vulnerabilities of a contract or
further confirm previously detected vulnerabilities.

In order to discover more potential vulnerabilities or further confirm previous vulnerabilities,
the researchers feed this comprehensive set of feature vectors into a PSO algorithm. This algorithm
efficiently searches and identifies the feature vectors that best describe the potential vulnerabilities.

Through this processing flow, it is possible to improve the vulnerability detection accuracy and
coverage of smart contracts, thus better guaranteeing the security and reliability of the contracts. The
particular implementation process is shown in Algorithm 3.

ReSulTS AnD DISCuSSIon

In the above work, the authors use multimodal feature fusion techniques to continue detecting
vulnerabilities in smart contracts. Precisely, they fused features extracted from multiple aspects,
such as static analysis, dynamic analysis and symbolic execution, to generate a comprehensive set of

Algorithm 3. Implementation process

Input: The fused feature vectors are fed into the PSO algorithm.
Step 1: Initializing the particle swarm.
A set of particles is initialized based on the dimensionality of the fused feature vectors and the problem size. Each
particle represents a potential solution, and the position and velocity of the particle are randomly generated.
Step 2: Compute the fitness function.
Define a fitness function to evaluate the strengths and weaknesses of each particle. This fitness function can be a
statistical or machine learning model based on known vulnerability samples or some heuristic rules.
Step 3: Update particle velocity and position.
Based on the results of the evaluation of the fitting function, each particle adjusts its velocity and position according to
its optimal solution and global optimal solution. The specific update steps can be implemented according to the basic
principles of the algorithm.
Step4: Update individual optimal solution and global optimal solution.
After each update, we need to refresh the individual optimal solution and the global optimal solution of each particle.
The optimal solution of each particle is the best in its history, while the global optimal solution is the best in the history
of the whole particle swarm.
Step 5: Judge the end condition.
Iteratively update the particle swarm until the preset end condition is satisfied, such as reaching Maximum Iterations or
the value of the fitness function converges to a certain threshold.
Output: Output the feature vector corresponding to the global optimal solution, which may represent a potential
vulnerability or a further confirmation of a previously detected vulnerability.

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

23

feature vectors. The authors then feed this set of feature vectors into the PSO algorithm to discover
more potential vulnerabilities and further confirm the vulnerabilities previously detected using the
PSO algorithm.

To validate the effectiveness of this approach, the authors chose to analyze smart contract code
that is susceptible to common smart contract vulnerabilities, including integer overflows, reentrant
attacks, incorrect random number generation, and denial of service attacks. These code snippets are
intended to test whether our approach can correctly detect the specifics of these known vulnerabilities,
including the vulnerability’s risk level, the language used, and the location in the code where it already
appears explicitly (Table 4).

Regarding scalability, the proposed algorithm adopts a PSO algorithm and multimodal feature
fusion technique, both of which have good scalability. The PSO algorithm can efficiently handle
large-scale optimization problems by simulating the search behavior of particles in the solution
space. The multimodal feature fusion technique, on the other hand, can fuse the feature information
of different modalities to improve the generalization ability of the algorithm. Therefore, when facing
a large number of smart contract datasets, the proposed algorithm can adapt to different sizes of
datasets by adjusting the number of particles and the search strategy to achieve efficient processing.

Regarding efficiency, the proposed algorithm is designed to reduce computational complexity
and increase processing speed. By processing the byte code of smart contracts through a graph
embedding network, the complex contract information can be transformed into a low-dimensional
vector representation, thus simplifying the subsequent processing. Meanwhile, the fast convergence
property of the PSO algorithm also helps to improve the efficiency of the algorithm. In practical
applications, the processing speed of the algorithm can be further improved by optimizing the algorithm
parameters and adopting parallel computing.

experimental evaluation
The authors implemented contract preprocessing and slicing in the Java environment, graph
embedding network, and hazardous contract detection in Python. The experimental setup has 8
GB RAM, four 3.20 GHz cores, and a 2 TB hard disk. Table 5 shows the detailed configuration
of the experimental environment.

The authors’ experiments are based on the following three datasets:

Dataset I: No Source Code Contracts. This dataset contains more than 2 million bytecode-only
smart contracts. The authors use Mist to retrieve blockchain data and get all the bytecodes of
the contracts deployed on the blockchain.

Dataset II: Open Source Contracts. Although the authors only considered the bytecode of the
contract during our testing, having access to the source code of an open-source contract can

Table 4. Contract Vulnerability Detection Results

IntegerOverflow OutOfGas Tx.Origin Reentrancy

Detection
mode SIO003 sog001 sto002 ree001

Risk level 3 1 3 3

Language Solidity JAVA Solidity Solidity

Number
of rows
of error
codes

7 rows
10 columns

6 rows
8 columns

21 rows
8 columns

6 rows
31 columns

Error code
content balances[msg.sender]-amount>0 for(uint256i=0;i<b;i++)

{a=b/c*2;} require(tx.origin==owner) call.value(amount)(“test”)

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

24

significantly improve the credibility of the audit results. Since some contract authors have validated
and made the source code of their contracts publicly available on Etherscan and the Etherscan
browser, the contracts in this dataset have been validated and made public. The contracts in this
dataset were collected before the Etherscan policy was adjusted. Since some contracts were
validated and made public multiple times, we removed duplicate contracts from the dataset. In
the end, the dataset contains 32,499 open-source smart contracts.

Dataset III: Vulnerable Contracts. The contracts in this dataset are used as seeds for matching. The
authors retrieved many vulnerable contracts by searching CVEs (Huang et al., 2021) and selected
a representative set of contracts that could cause actual harm. Finally, the dataset contains 25
contracts, of which 11 are related to integer overflow vulnerabilities, five are related to reentry
vulnerabilities, four are related to nasty random source vulnerabilities, three are related to access
control vulnerabilities, and two are related to missed exception handling vulnerabilities. To make
the experimental results more valid, the authors removed all contracts that appear in Dataset III
from the first two datasets.

Next, they evaluated the efficiency of the experiment. The process took about 57 hours. Figure
9 shows the cumulative distribution of the slice lengths, and Figure 10 shows the distribution of the
number of times some of the instructions.

They found that the length of most slices is less than 10, and many instructions appear more than
once, indicating that simple cut instructions must be more representative.

The two phenomena indicate that the instructions alone in the slices are not representative
enough; therefore, in normalization, this article distinguished the instructions by parameters with

Table 5. Experimental Environment Information Sheet

Software Random access memory (RAM) 8 GB

Hardware

CPU Intel(R) Core(TM) i7-11800H @ 3.20GHz

Systems Window10

Java environment JDK1.82

Python Python3.9.6

Editor (software) IntelliJ IDEA

ANTLR Antlr4.9.6

Figure 9. Statistics About the Length of Slices

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

25

attribute labels. Therefore, they distinguished the instructions by parameters with attribute labels in
the normalization process. They also sliced and normalized the contracts’ bytecodes in Dataset II,
which took about 36 minutes. The slices obtained have similar statistical distributions as in Dataset
I. After that, the authors sliced and normalized the contracts in Dataset II using a graph embedding
network. Then, they embedded the normalized slices into the vector space using a graph embedding
network, which took about 200 minutes.

The authors further sliced Dataset III and selected the slices representing the vulnerabilities,
which they chose as the seeds for matching to build the vulnerability vector library. The researchers
then computed the similarity between the sliced vectors of Dataset I and Dataset II. The average
detection time per known vulnerability contract is about 18 minutes.

Assessment of Indicators
The authors applied four standard evaluation criteria to assess the effectiveness of their methods and
compare them to other methods. Accuracy (ACC) is the percentage of all samples correctly identified
and is used as an overall measure of detection capability. Precision (P) is the percentage of identified
vulnerable samples out of all identified attack samples and reflects the accuracy of the detection
results. Recall (R), on the other hand, reveals the percentage of identified vulnerable samples to all
actual attack samples, reflecting the comprehensiveness of the method. In addition, the F1 score (F1)
is the average of precision and recall, providing us with a comprehensive evaluation perspective. Also,
the authors utilized the AUC value, which is the area under the region of convergence (ROC) curve,
to further compare the performance of different classifiers. The exact formula for the evaluation
metrics is as follows:

ACC
TP TN

TP FP TN FN
=

+
+ + +

 (24)

R
TP

TP FN
=

+
 (25)

P
TP

TP FP
=

+
 (26)

Figure 10. The Usage Time of Instructions

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

26

F
P R

P R1
2= ×

×
+

 (27)

Analysis and Comparison of Experimental Results
Using this approach, the authors randomly selected 3000 contracts from Dataset II for vulnerability
detection and calculated the false alarm rate and false judgment rate under different threshold
conditions. By adjusting the balance between these two metrics, the similarity threshold was finally
set to 90%. In addition, in order to balance the efficiency and effectiveness, the authors also adjusted
the embedding size S in the graph embedding network, and the final value of S was 64. These
parameters can be adjusted as needed for future use, and the settings here can be used as a valuable
reference. The dataset employs a smart contract vulnerability detection method based on bytecode
matching and PSO algorithm I (Ding et al., 2019). A total of 1,220 vulnerable contracts were reported,
of which the number of integer overflow, reentrant, erroneous random source, access control, and
missing exception handling vulnerabilities were 732, 129, 23, 182, and 154, respectively. To audit
these reactive contracts, the authors deployed them on a private chain and attempted to exploit
the vulnerabilities in them. In practice, manually inspecting the underlying bytecode is very time-
consuming and unreliable, as it requires to be able to infer the behavior in the source code from the
bytecode, deduce the location of the vulnerabilities and the triggering method, and then test for the
existence of the vulnerabilities. Therefore, the authors only manually inspected the top 10 contracts
with the highest similarity to known vulnerable contracts and successfully triggered vulnerabilities in
8 contracts. In Dataset II, they found 152 contracts with exploitable vulnerabilities, corresponding to
4, 23, 10, 11, and 5 out of 104. The results also contained 19 false positives. As a result, the accuracy
of the method on Dataset II is as high as 88.89%.

In order to evaluate the performance of the PSO algorithm and multimodal feature fusion technique
for smart contract vulnerability detection, the authors used the same Dataset II and compared it with
existing smart contract vulnerability detection tools, including Mythril (Mythril, 2023), Smartcheck
(Zhuang et al., 2020), Slither (Zhou et al., 2021), as well as TMP (Huang et al., 2021), which the
authors chose as a similar comparison method. Table 6 lists the detailed differences between these
approaches and our proposed approach in various aspects.

The authors conducted comparative experiments using various smart contract vulnerability
detection tools such as Mythril, Smartcheck, Slither, and TMP under different evaluation metrics
(i.e., ACC, AUC, P, R, and F1). The experimental Dataset II is the same as the method the authors
described in this paper, and Tables 7 and 8 show the experimental results. Among them, Mythril is
a well-known security analysis tool provided by the Ethernet open source community, which can
deeply analyze the security vulnerabilities in Solidity smart contracts; Smartcheck is an extensible
static analysis tool for detecting vulnerabilities or code problems in smart contracts; Slither is an
open-source static analysis framework for Solidity, which can quickly locate the vulnerabilities; TMP

Table 6. Comparison of Existing Methods and the Authors’ Proposed Method

Method Year Technical category Vulnerability types

Mythril 2017 Symbolic execution 10%

Smartcheck 2018 Static analysis 30%

Slither 2019 Static analysis 35%

TMP 2020 Deep learning 80%

Our me thod _ Deep learning 95%

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

27

(Chen et al., 2021) is a novel static analysis tool for detecting vulnerabilities in smart contracts. Also,
it is also a novel temporal information dissemination network that uses graph convolution to learn
vulnerability features in normalized contract graphs (Yang et al., 2024).

Experimental results show that the method proposed in this paper can support more types of
vulnerability detection without relying on expert knowledge. Compared with existing smart contract
vulnerability detection tools, the method performs better in terms of detection accuracy and AUC
value for various types of vulnerabilities, and the overall detection performance is superior. Figure
11 shows the specific performance.

Traditional smart contract vulnerability detection methods rely too much on experts’ experience
and constantly need to update the feature library. TMP, as a vulnerability detection method based on
the concept of contract graph, has a unique advantage in detecting security vulnerabilities caused by
intercontract calls and cannot be applied to detect vulnerabilities in one line of code, such as ARTHM.
Therefore, in this paper the authors propose a smart contract vulnerability detection method based
on PSO algorithm and multimodal feature fusion technology, which makes use of as much contract
feature information as possible and organically combines this information, thus outperforming existing
methods in vulnerability detection.

The use of an approach based on PSO algorithm and multimodal feature fusion techniques has
been shown to have significant advantages in the task of detecting four common smart contract
vulnerabilities. Compared to traditional detection methods, this approach excels in improving both
the accuracy of the model (ACC value) and the area under the curve (AUC value) of the detection
performance (Yang et al., 2021). Using our proposed new approach, we are able to detect vulnerabilities
in smart contracts more accurately and efficiently.

In-Depth Statistical Analysis
In order to verify the effectiveness of the smart contract vulnerability detection scheme proposed in
this paper, the authors conducted an in-depth statistical analysis. First, they collected a large number
of smart contract samples, including contracts with known vulnerabilities and standard contracts.
Then, they utilized the proposed scheme to detect these contracts and count the metrics such as
the accuracy rate, false alarm rate, and missed alarm rate of the detection results. In addition, they
analyzed the impact of different parameter settings on the detection results to determine the optimal
parameter configuration.

Comparison With Benchmark Methods
In order to evaluate the smart contract vulnerability detection scheme proposed in this paper more
comprehensively, the authors also compared it with existing benchmark methods. These benchmark
methods include traditional rule-based detection methods. The authors tested these methods using
the same smart contract sample set and compared their detection performance. The experimental
results show that the scheme proposed in this paper outperforms the benchmark methods in terms of
accuracy, false positives and misses, especially in the detection of complex and hidden vulnerabilities.

ConCluSIon

In this paper, the authors propose an innovative smart contract vulnerability detection method that
combines PSO algorithm and multimodal feature fusion technique. By applying graph embedding
network to deeply analyze the byte code of smart contracts, it is possible to effectively capture the
structural and behavioral information of the contracts. Meanwhile, the introduction of PSO algorithm
makes the whole detection process more efficient and enables the optimized search of parameters.
In addition, the authors also utilize the multimodal feature fusion technique to comprehensively
consider various contract feature information, thus further improving the accuracy and efficiency of
vulnerability detection. Experimental results show that the method proposed in this paper exhibits

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

28

higher detection accuracy and AUC value compared with existing detection tools. Further, the method
does not completely rely on expert knowledge, and thus can support more types of vulnerability
detection, greatly broadening its application scope.

However, it is crucial to also face up to the limitations and challenges of existing methods.
On the one hand, these methods have a high dependence on the quality and quantity of data,

Figure 11. Performance Evaluation of Different Types of Vulnerability Detection Methods Using Different Evaluation Metrics

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

29

which limits their effectiveness in practical applications to some extent. On the other hand,
the complexity of the algorithms and the resource consumption problem when dealing with
large-scale datasets are also challenges that cannot be ignored. In addition, when facing new or
unknown vulnerabilities, the existing models may seem overwhelming and need to be constantly
updated and optimized.

Therefore, future research should focus on solving these problems. First, it is necessary
to improve the quality and diversity of data to ensure that the model can identify various
vulnerabilities more accurately. Second, it is also crucial to optimize the performance and
efficiency of the algorithms, which will help improve the speed and accuracy of detection. In
addition, realizing adaptive and online learning capabilities, as well as exploring vulnerability
detection techniques under cross-chain security and privacy protection, are also important future
research directions.

At the same time, it is also necessary to pay attention to the ethical considerations of vulnerability
detection techniques. When applying these technologies, scholars must respect the privacy and
copyright of contract developers and ensure the legality and compliance of the whole detection
process. It is also crucial to minimize false positives and omissions to avoid unnecessary losses and
crises of trust for developers and users. Finally, it is necessary to make it clear that these technologies
are not all-purpose security measures, but should work together with other security measures to form
a multilayered security protection system.

In summary, although smart contract vulnerability detection technology has a wide range of
application prospects and research value, researchers still need to continuously optimize and improve
it to give full play to its role in smart contract security.

Table 7. Experimental Comparison With Other Methods

Method
ARTHM RENT LE TimeO

ACC AUC ACC AUC ACC AUC ACC AUC

Mythril 0.675 0.679 0.724 0.834 _ _ 0.865 0.51

Smartcheck 0.542 0.531 _ _ 0.913 0.795 _ _

Slither _ _ 0.735 0.842 0.918 0.815 _ _

TMP 0.618 0.586 0.744 0.677 0.836 0.499 0.768 0.689

The authors’ method 0.934 0.815 0.923 0.863 0.901 0.835 0.951 0.892

Table 8. Experimental Comparison With Other Methods

Method
ARTHM RENT LE TimeO

P R F1 P R F1 P R F1 P R F1

Mythril 0.634 0.621 0.625 0.724 0.708 0.719 _ _ _ 0.798 0.713 0.756

Smartcheck 0.533 0.512 0.526 _ _ _ 0.875 0.854 0.864 _ _ _

Slither _ _ _ 0.711 0.685 0.698 0.863 0.834 0.855 _ _ _

TMP 0.698 0.655 0.688 0.821 0.815 0.820 0.811 0.798 0.809 0.724 0.705 0.713

The authors’
method 0.915 0.904 0.909 0.912 0.896 0.902 0.893 0.824 0.879 0.923 0.879 0.903

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

30

AuThoR ConTRIBuTIonS

T.F. participated in the feasibility discussion, analysis of the paper scheme, and the proofreading of
the paper; Y.C. was responsible for the overall design, performance analysis, and paper writing. All
the authors have read and agreed to the published version of the manuscript.

CoMPeTIng InTeReSTS

No competing interests exist.

FunDIng

This work is supported by the National Natural Science Foundation of China (Grant No. 62162039,
61762060).

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

31

ReFeRenCeS

Alweshah, M., Khalaileh, S. A., Gupta, B. B., Almomani, A., Hammouri, A. I., & Al-Betar, M. A. (2020).
The monarch butterfly optimization algorithm for solving feature selection problems. Neural Computing &
Applications, 34, 1–15.

Chawra, V. K., & Gupta, G. P. (2022). Optimization of the wake-up scheduling using a hybrid of memetic
and tabu search algorithms for 3D-wireless sensor networks. International Journal of Software Science and
Computational Intelligence, 14(1), 1–18. doi:10.4018/IJSSCI.300359

Chen, X., Liao, P., Zhang, Y., Huang, Y., & Zheng, Z. (2021). Understanding code reuse in smart contracts. In
Proceedings of the 28th IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER 2021) (pp. 470—479). IEEE. doi:10.1109/SANER50967.2021.00050

Datar, M., Altman, E., De Pellegrini, F., El Azouzi, R., & Touati, C. (2020). A mechanism for price differentiation
and slicing in wireless networks. In Proceedings of the 2020 18th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT) (pp. 1–8). IEEE.

Ding, S. H. H., Fung, B. C. M., & Charland, P. (2019). Asm2 Vec: Boosting static representation robustness for
binary clone search against code obfuscation and compiler optimization. In Proceedings for the IEEE Symposium
on Security and Privacy SP) (pp. 472–489).

Fatemidokht, H., Rafsanjani, M. K., Gupta, B. B., & Hsu, C. H. (2021). Efficient and secure routing protocol
based on artificial intelligence algorithms with UAV-assisted for vehicular ad hoc networks in intelligent
transportation systems. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4757–4769. doi:10.1109/
TITS.2020.3041746

Hamp-Lyons, L. (1990). Second Language Writing: Assessment Issues. In B. Kroll (Ed.), Second writing:
Research insights for classroom (pp. 69–87). Cambridge University Press. doi:10.1017/CBO9781139524551.009

Hu, B., Gaurav, A., Choi, C., & Almomani, A. (2022). Evaluation and comparative analysis of semantic web-
based strategies for enhancing educational system development. International Journal on Semantic Web and
Information Systems, 18(1), 1–14. doi:10.4018/IJSWIS.302895

Kumar, A., & Sivakumar, P. (2022). Cat-squirrel optimization algorithm for VM migration in a cloud computing
platform. International Journal on Semantic Web and Information Systems, 18(1), 1–23.

Liu, Y., Liu, L., Guo, Y., & Lew, M. S. (2018). Learning visual and textual representations for multimodal
matching and classification. Pattern Recognition, 84, 51–67. doi:10.1016/j.patcog.2018.07.001

Lu, J., Shen, J., Vijayakumar, P., & Gupta, B. B. (2021). Blockchain-based secure data storage protocol for
sensors in the industrial internet of things. IEEE Transactions on Industrial Informatics, 18(8), 5422–5431.
doi:10.1109/TII.2021.3112601

Madan, K., & Bhatia, R. K. (2021). Ranked deep web page detection using reinforcement learning and query
optimization. International Journal on Semantic Web and Information Systems, 17(4), 99–121. doi:10.4018/
IJSWIS.2021100106

Madhumala, R. B., & Tiwari, H. (2022). Resource optimization in cloud data centers using particle swarm
optimization. International Journal of Cloud Applications and Computing, 12(2), 1–12. doi:10.4018/
IJCAC.305856

Metz, C. (2021, January 22). The biggest crowdfunding project ever-the DAO-is kind of a mess. https://www.
wired.com/2016/06/biggest-crowdfunding-project-ever-dao-mess

Momeni, P., Wang, Y., & Samavi, R. (2019). Machine learning model for smart contracts security analysis. In
Proceedings of the 17th International Conference on Privacy, Security and Trust (pp. 1—6). IEEE. doi:10.1109/
PST47121.2019.8949045

Mythril. (2023). [Data set]. https://github.com/ConsenSys/mythril

Nedjah, N., Cardoso, A. V., Tavares, Y. M., Mourelle, L. D. M., Gupta, B. B., & Arya, V. (2023). Co-design
dedicated system for efficient object tracking using swarm intelligence-oriented search strategies. Sensors (Basel),
23(13), 5881. doi:10.3390/s23135881 PMID:37447729

http://dx.doi.org/10.4018/IJSSCI.300359
http://dx.doi.org/10.1109/SANER50967.2021.00050
http://dx.doi.org/10.1109/TITS.2020.3041746
http://dx.doi.org/10.1109/TITS.2020.3041746
http://dx.doi.org/10.1017/CBO9781139524551.009
http://dx.doi.org/10.4018/IJSWIS.302895
http://dx.doi.org/10.1016/j.patcog.2018.07.001
http://dx.doi.org/10.1109/TII.2021.3112601
http://dx.doi.org/10.4018/IJSWIS.2021100106
http://dx.doi.org/10.4018/IJSWIS.2021100106
http://dx.doi.org/10.4018/IJCAC.305856
http://dx.doi.org/10.4018/IJCAC.305856
https://www.wired.com/2016/06/biggest-crowdfunding-project-ever-dao-mess
https://www.wired.com/2016/06/biggest-crowdfunding-project-ever-dao-mess
http://dx.doi.org/10.1109/PST47121.2019.8949045
http://dx.doi.org/10.1109/PST47121.2019.8949045
https://github.com/ConsenSys/mythril
http://dx.doi.org/10.3390/s23135881
http://www.ncbi.nlm.nih.gov/pubmed/37447729

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

32

Nguyen, D. T., Pham, L. H., Sun, J., Lin, Y., & Tran, M. Q. (2020). sFuzz: An efficient adaptive fuzzer for
solidity smart contracts. In Proceedings of the 42nd International Conference on Software Engineering (pp.
778-788). IEEE Computer Society. doi:10.1145/3377811.3380334

Nguyen, G. N., Le Viet, N. H., Elhoseny, M., Shankar, K., Gupta, B. B., & Abd El-Latif, A. A. (2021). Secure
blockchain enabled Cyber–physical systems in healthcare using deep belief network with ResNet model. Journal
of Parallel and Distributed Computing, 153, 150–160. doi:10.1016/j.jpdc.2021.03.011

Nhi, N. T. U., & Le, T. M.Thanh The Van. (2022). A model of semantic-based image retrieval using C-tree and
neighbor graph. International Journal on Semantic Web and Information Systems, 18(1), 1–23. doi:10.4018/
IJSWIS.295551

Ni, Y. D., Zhang, C., & Yin, T. T. (2020). A survey of smart contract vulnerability research. Journal of
Cybersecurity, 5(3), 78–99.

Parizi, R. M., Dehghantanha, A., Choo, K. K. R., & Singh, A. (2018). Empirical vulnerability analysis of
automated smart contracts security testing on blockchains. In Proceedings of the 28th Annual International
Conference on Computer Science and Software Engineering (pp. 103—113). IBM Corp.

Raj, M. G., & Pani, S. K. (2022). Chaotic whale crow optimization algorithm for secure routing in the IoT
environment. International Journal on Semantic Web and Information Systems, 18(1), 1–25. doi:10.4018/
IJSWIS.300824

SafeMath. (2022). https://docs.statechannels.org/contractapi/natspec/SafeMath

Sayeed, S., Marco-Gisbert, H., & Caira, T. (2020). Smart contract: Attacks and protections. IEEE Access :
Practical Innovations, Open Solutions, 8, 24416–24427. doi:10.1109/ACCESS.2020.2970495

Singh, S., Kumar, R., & Rao, U. P. (2022). Multi-objective adaptive manta-ray foraging optimization for workflow
scheduling with selected virtual machines using time-series-based prediction. International Journal of Software
Science and Computational Intelligence, 14(1), 1–25. doi:10.4018/IJSSCI.312559

Sissodia, R., Rauthan, M. S., & Barthwal, V. (2022). A multi-objective optimization scheduling method based
on the genetic algorithm in cloud computing. International Journal of Cloud Applications and Computing,
12(1), 1–21. doi:10.4018/IJCAC.305217

Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E., & Alexandrov, Y. (2018).
SmartCheck: Static Analysis of Ethereum Smart Contracts. In Proceedings of the 1st IEEE/ACM International
Workshop on Emerging Trends in Software Engineering for Blockchain, WETSEB@ICSE 2018 (pp. 9–16).
ACM. doi:10.1145/3194113.3194115

Wang, H., Li, Y., Lin, S., Ma, L., & Liu, Y. (2019). VULTRON: Catching vulnerable smart contracts once and
for all. In Proceedings of IEEE/ACM 41st International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER) (pp. 1—4). IEEE/ACM. doi:10.1109/ICSE-NIER.2019.00009

Wu, H., Zhang, Z., Wang, S., Lei, Y., Lin, B., Qin, Y., Zhang, H., & Mao, X. (2021). Peculiar: Smart contract
vulnerability detection based on crucial data flow graph and pre-training techniques. In Proceedings of the 32nd
International Symposium on Software Reliability Engineering (ISSRE 2021) (pp. 378–389). IEEE. doi:10.1109/
ISSRE52982.2021.00047

Xing, C., Chen, Z., Chen, L., Guo, X., Zheng, Z., & Li, J. (2020). A new scheme of vulnerability analysis in
smart contract with machine learning. Wireless Networks, 2, 1–10. doi:10.1007/s11276-020-02379-z

Xu, M. X., Yuan, C., Wang, Y. J., Fu, J. H., & Li, B. (2019). Mimic blockchain—Solution to the security of
blockchain. Journal of Software, 30(6), 1681–1691.

Yamaguchi, F., Lindner, F., & Rieck, K. (2011). Vulnerability extrapolation: Assisted discovery of vulnerabilities
using machine learning. In Proceedings of the 5th USENIX Conference on Offensive Technologies (pp. 456—462).
USENIX Association.

Yamaguchi, F., Lottmann, M., & Rieck, K. (2012). Generalized vulnerability extrapolation using abstract
syntax trees. In Proceedings of the 28th Annual Computer Security Applications Conference(pp. 3–7). ACM.
doi:10.1145/2420950.2421003

http://dx.doi.org/10.1145/3377811.3380334
http://dx.doi.org/10.1016/j.jpdc.2021.03.011
http://dx.doi.org/10.4018/IJSWIS.295551
http://dx.doi.org/10.4018/IJSWIS.295551
http://dx.doi.org/10.4018/IJSWIS.300824
http://dx.doi.org/10.4018/IJSWIS.300824
https://docs.statechannels.org/contractapi/natspec/SafeMath
http://dx.doi.org/10.1109/ACCESS.2020.2970495
http://dx.doi.org/10.4018/IJSSCI.312559
http://dx.doi.org/10.4018/IJCAC.305217
http://dx.doi.org/10.1145/3194113.3194115
http://dx.doi.org/10.1109/ICSE-NIER.2019.00009
http://dx.doi.org/10.1109/ISSRE52982.2021.00047
http://dx.doi.org/10.1109/ISSRE52982.2021.00047
http://dx.doi.org/10.1007/s11276-020-02379-z
http://dx.doi.org/10.1145/2420950.2421003

International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

33

Feng Tao (1970), Male (Han), Lanzhou, Gansu Province, professor, Ph.D., Research Area: Network and Information
Security, Blockchain Security, Smart Contract Security.

Cui Yuyang (1998), Male (Han), Yingkou, Liaoning Province, China, Position: Master’s Degree, Education: Master’s
Degree, Research Field: Smart Contract Security.

Yang, H., Gu, X., Chen, X., Zheng, L., & Cui, Z. (2024). CrossFuzz: Cross-contract fuzzing for smart contract
vulnerability detection. Science of Computer Programming, 234, 103076. doi:10.1016/j.scico.2023.103076

Yang, Y. (1999). An evaluation of statistical approaches retrieval to text categorization. Information (Basel),
1(1), 76–88.

Yang, Z., Keung, J., Yu, X., Gu, X., Wei, Z., Ma, X., & Zhang, M. (2021). A multi-modal transformer- based code
summarization approach for smart contracts. In Proceedings of 2021 IEEE/ACM 29th International Conference
on Program Comprehension (ICPC 2021) (pp. 1–12). IEEE. doi:10.1109/ICPC52881.2021.00010

Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., & Oliva, A. (2014). Learning deep features for scene recognition
using places database. Advances in Neural Information Processing Systems, 27, 426–435.

Zhou, L., Qin, K., Cully, A., Livshits, B., & Gervais, A. (2021). On the just-in-time discovery of profit-generating
transactions in DeFi protocols. In Proceeding of the 42nd IEEE Symposium on Security and Privacy (SP 2021)
(pp. 919-936). IEEE. doi:10.1109/SP40001.2021.00113

Zhou, Z., Wang, B., Gu, B., Ai, B., Mumtaz, S., Rodriguez, J., & Guizani, M. (2020). Time-dependent pricing for
bandwidth slicing under information asymmetry and price discrimination. IEEE Transactions on Communications,
68(11), 6975–6989. doi:10.1109/TCOMM.2020.3001050

Zhuang, Y., Liu, Z., Qian, P., Liu, Q., Wang, X., & He, Q. (2020). Smart contract vulnerability detection
using graph neural network. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence—IJCAI 2020 (pp. 3283–3290). ACM. doi:10.24963/ijcai.2020/454

http://dx.doi.org/10.1016/j.scico.2023.103076
http://dx.doi.org/10.1109/ICPC52881.2021.00010
http://dx.doi.org/10.1109/SP40001.2021.00113
http://dx.doi.org/10.1109/TCOMM.2020.3001050
http://dx.doi.org/10.24963/ijcai.2020/454

