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ABSTRACT

In the domain of network communication, network intrusion detection systems (NIDS) play a crucial 
role in maintaining security by identifying potential threats. NIDS relies on packet inspection, often 
using rule-based databases to scan for malicious patterns. However, the expanding scale of internet 
connections hampers the rate of packet inspection. To address this, some systems employ GPU 
accelerated pattern matching algorithms. Yet, this approach is susceptible to denial of service (DOS) 
attacks, inducing hashing collisions and slowing inspection. This research introduces a GPU-optimized 
variation of the Rabin-Karp algorithm, achieving scalability on GPUs while resisting DOS attacks. 
Our open-source solution (https://github.com/AnasAbbas1/NIDS) combines six polynomial hashing 
functions, eliminating the need for false-positive validation. This leads to a substantial improvement 
in inspection speed and accuracy. The proposed system ensures minimal packet misclassification 
rates, solidifying its role as a robust tool for real-time network security.

Keywords
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INTRODUCTION AND MOTIVATION

The proliferation of telecommunication infrastructures, along with affordable computing devices and 
smartphones, has spearheaded a significant expansion of the Internet, leading to a substantial increase 
in internet bandwidth and users over the past few years. With this digital evolution, the internet has 
increasingly become a cornerstone of our daily activities, making it a lucrative target for cybercriminals.

This unprecedented growth of internet usage in recent years has triggered a corresponding surge 
in cyber threats and attacks (Mijwil et al., 2023). The rise in internet usage is well-documented, 
from approximately 413 million users at the start of the twenty-first century to almost 4.7 billion 
users by 2022, signifying that nearly 60% of the world’s population actively use the internet (Li & 
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Liu, 2021), Also in 2021, Positive technologies specialists (Cybersecurity Threatscape: Year 2021 
in Review Positive Technologies, n.d.) recorded more than 2,400 attacks, that is 6.5 percent more 
than 2020 attacks stating that this huge increase is due to the corona virus and the heavy use of 
the internet and working from home. This expansion in internet usage has inevitably increased the 
number of potential targets for cybercriminals, leading to a sharp rise in cyberattacks as it has a 
huge impact on the economy (Gulyás & Kiss, 2023) and as a result, cyber-attacks drive investment 
in cybersecurity systems (Fernandez De Arroyabe et al., 2023), all of that proves that a NIDS is 
crucial for any device.

The critical role of Network Intrusion Detection Systems (NIDS) cannot be overemphasized in 
today’s hyperconnected world as shown in the risk analysis research published in the International 
Journal of Advanced Computer Science and Applications (Jakim et al., n.d.). As technological 
advancements continue to expand, so does the complexity and size of network infrastructure, creating 
more opportunities for attackers to exploit vulnerabilities as stated in the neural Computing and 
Applications survey (Keserwani et al., 2023). The variety and increasing frequency of cyber-attacks 
necessitate reliable and robust NIDS that can efficiently mitigate these security risks.

Recent studies illustrate the vital part played by NIDS in ensuring network security. A systematic 
study published in the European Transactions on Telecommunications (Ahmad et al., 2021) highlighted 
how NIDS scrutinizes network traffic to ensure its confidentiality, integrity, and availability, effectively 
thwarting potential intrusions. In the realm of intrusion detection, two fundamental strategies are 
employed: Anomaly-based IDS and Signature-based IDS (Liao et al., 2013). Signature-based IDS 
focuses on identifying intrusion occurrences through pre-defined “signature” patterns of known 
attacks. To remain effective, it regularly updates its signature database to detect the latest trends and 
zero-day attack patterns where the quality of those signatures influences the overall effectiveness of 
the NIDS as stated by a study published in the Information Security Journal (Sommestad et al., 2022) 
that demonstrated the popular Snort signature-based solution which proved to be a very effective 
ruleset as its latest release of Snort 3 which showed better performance than the earlier version 
(Boukebous et al., 2023). Conversely, the anomaly-based intrusion detection system (also known 
as Behavior-based Detection) works by comparing normal behavioral patterns with new activities, 
continuously monitoring network activities to flag potential intrusions.

Creating a successful NIDS remains a crucial challenge in the realm of network security. Although 
significant progress has been made in NIDS, the predominant focus lies on signature-based methods, 
largely neglecting anomaly detection techniques. Several factors contribute to the reluctance to 
embrace anomaly detection, such as the intricate behavioral dynamics of systems, the need for reliable 
training data collection, high associated costs, and error rates arising from the dynamic nature of the 
data whereas the signature-based NIDS proved to be resilient against Distributed Denial of Service 
Attack (DDOS) (Chen & Lai, 2023), (Sardar et al., n.d.).

For a signature-based NIDS, Pattern matching has been confirmed to be the most time-consuming 
process due to its critical role in identifying potentially harmful activities as it’s a major functionality 
even in AI-based NIDS (Azarudeen et al., 2023; Siva Kumar et al., n.d.). The increasing transmission 
rate of packets, especially in high-traffic networks, places a significant load on pattern-matching 
algorithms. It requires these algorithms to be both efficient and swift to maintain pace with the 
network speed and ensure real-time processing; otherwise, the time complexity of pattern matching 
algorithms can lead to a slowdown in processing, which could result in packet drops, degraded system 
performance, and eventually security vulnerabilities as stated in the study published by A. Waleed, 
A. F. Jamali, and A. Masood [6].

The Rabin-Karp algorithm, being data-driven with minimal task and data dependencies, 
has demonstrated exceptional parallel scalability, encountering few bottlenecks necessitating 
sequential executions. To harness this scalability, we opted for a hybrid CPU/GPU architecture, 
which excels in handling a growing number of concurrent simple tasks within the Rabin-Karp 
algorithm. Unlike CPU-only architecture, which typically features only a limitation of the number 
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of cores that are in the double digits and are designed primarily for complex instructions, CPU/
GPU hybrid architecture exhibits superior scalability for linearly increasing concurrent tasks 
in the Rabin-Karp algorithm. Additionally, this architecture minimizes memory latency by 
consolidating all data in shared and global memory, contrasting with CPU only which incurs 
latency when loading/unloading data. This strategic choice enhances the algorithm’s overall 
performance on parallel architectures as the recent article published by (Groth et al., 2023) in 
the knowledge and information systems journal has proved to be 40% higher throughput than 
the CPU-only approach when dealing with string manipulation operations. Our approach offers 
a considerable speedup, especially when dealing with a large data set of patterns as mentioned 
in the 2023 study published Application of soft computing (Baloi et al., 2023) which used 
GPU-accelerated pattern matching to find similarity metrics. Two algorithms have emerged as 
the most widely utilized for multiple string matching on GPUs - the Aho-Corasick (AC) and 
Rabin-Karp algorithms.

The AC algorithm is undeniably efficient, yet its application is limited due to the inherent 
memory latency of GPUs. The algorithm’s quick access to data to determine matches and the GPU’s 
inability to store the substantial automaton required by AC in its shared memory create a challenge. 
As a result, the automaton must be stored on slower global memory (Çelebi & Yavanoğlu, 2023), 
reducing efficiency. As found by Najam-ul Islam (Najam-ul-Islam et al., 2022) in their experiments 
when the number of rules was increased to 10,000 the throughput declined, and more resources were 
needed to keep up with the increasing number of rules.

On the contrary, because the Rabin-Karp algorithm converts strings into hashes it bypasses this 
issue by requiring only a single memory call to compare if the current hash of a substring exists 
within precalculated pattern hashes stored in the GPU shared memory. Nevertheless, Rabin-Karp 
encounters difficulties due to hash collisions. Even if a current hash of a substring is found within 
the precalculated pattern hashes, it does not definitively indicate an actual match, necessitating a 
character-by-character validation to avoid false-positive matches.

The Rabin-Karp algorithm has seen significant advancements in modern implementations, where 
the utilization of reliable hash functions has effectively reduced the need for character-by-character 
validation. Despite these improvements, concerns about performance stability persist. Particularly, 
true matches can significantly impact the efficiency of the Rabin-Karp algorithm, leading to potential 
issues such as packet drop or reduced packet transmission rates. Consequently, it becomes crucial to 
address these performance-related challenges to ensure the algorithm’s optimal functionality.

In this paper, we propose an innovative variant of the Rabin-Karp algorithm that eliminates the 
need for character-by-character validation. This novel approach yields a consistently high performance 
of the string-matching algorithm, which subsequently contributes to a more dependable Network 
Intrusion Detection System (NIDS). Notably, this method paves the way for future improvements in 
pattern-matching processes in high-traffic networks.

In this paper, we propose our Rabin-Karp algorithm implementation which is designed for 
efficient real-time data processing, strategically enhancing the traditional approach. A crucial 
improvement involves integrating a skip mechanism for character-by-character string validation, 
significantly boosting performance, particularly in real-time applications. This character validation 
skip expedites the algorithm’s execution, making it ideal for processing substantial data volumes in 
real-time scenarios. The decision to select Rabin-Karp over Aho-Corasick and Boyer-Moore is driven 
by specific considerations:

1. 	 Memory Efficiency and Scalability:
◦◦ Rabin-Karp excels in supporting multiple pattern matching with limited memory, making 

it ideal for real-time intrusion detection.
◦◦ The algorithm’s scalable parallel approach ensures optimal utilization of computational 

resources.
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2. 	 Boyer-Moore Pattern Occurrences Limitations:
◦◦ Boyer-Moore experiences performance degradation with frequent patterns in the input text, 

exposing it to intentional slowdowns or successful DDoS attacks.
3. 	 Aho-Corasick Memory Constraints:

◦◦ While Aho-Corasick scales well with increased computational resources, it is constrained 
by the need for a Deterministic Finite Automaton (DFA) to inspect the input text.

◦◦ As the number of patterns grows, the DFA size significantly increases, limiting performance, 
especially in GPU architectures.

In summary, the Rabin-Karp algorithm stands out as the optimal choice for our real-time intrusion 
detection systems, striking a balance between memory efficiency, scalability, and resilience against 
potential attack scenarios.

RELATED WORK

The problem of string-matching is delineated as: given a Pattern array of size k where each Patterni  
has a length of m  and an input text x  of length n , locate all instances of any Patterni  in the text 
x . The elementary algorithm to tackle this problem would involve contrasting every character of the 
input text with every character in every pattern, thus culminating in a considerable O k m n* *( )  
total complexity.

Alternative string-matching algorithms like Knuth-Morris-Pratt (KMP) (Knuth et al., 1977), 
Rabin-Karp (Karp & Rabin, 1987), and Boyer-Moore (Boyer & Moore, 1977) are equipped to 
address this problem. Upon implementing certain strategies, these algorithms can be manipulated to 
work with multiple patterns. For instance, when applied to multiple patterns, KMP metamorphoses 
into the Aho-Corasick (Aho & Corasick, 1975) algorithm, which is essentially a more generalized 
form of KMP.

To enable the Boyer-Moore algorithm to support multiple pattern searches, it is crucial to 
preprocess each pattern to construct its “bad character heuristic array”. This would aid in skipping 
unnecessary character comparisons, thereby resulting in linear time complexity. While the parallel 
version of Boyer-Moore scales well (Hnaif et al., 2021) the algorithm’s scalability takes a hit when 
the patterns frequently occur in the text as no character comparisons can be skipped. This can lead 
to a worst-case O m n*( )  running time (S.DAWOOD, 2020) when patterns are found throughout 
the input text.

Unlike Boyer-Moore, Aho-Corasick does not have the same shortcomings. It preprocesses 
the given pattern to build a single Deterministic Finite Automaton (DFA) which is then traversed 
using the input text. During this traversal, if a transition to a terminal state transpires, a pattern 
match is identified, or it continues its standard traversal over the DFA. Owing to its demonstrated 
efficacy, Aho-Corasick is extensively utilized for pattern matching in most Network Intrusion 
Detection Systems (NIDS). Nonetheless, its efficiency diminishes in the context of graphical 
processing unit (GPU) parallel architecture due to data dependency issues. To execute Aho-
Corasick in parallel, every block of threads requires a copy of the DFA in their shared memory. 
Alternatively, the DFA can be copied into global memory for every thread to access. Regrettably, 
both approaches do not scale well given the limitations of shared memory and the impracticality 
of frequent global memory access by all threads. The recent studies (Najam-ul-Islam et al., 
2022; Papadogiannaki et al., n.d.) show how the GPU-accelerated version of the Aho-Corasick 
algorithm is significantly affected by the number of rules in any network intrusion detection 
system meaning that with the increasing number of rules, the system will most probably suffer 
from packet dropping when parallel AC is used.
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The standard implementation of the Serial Rabin-Karp (SRK) algorithm generally performs 
well with an average and best-case running time of O(n + m). However, it exhibits a worst-case time 
complexity of O(n * m). This worst-case scenario materializes when all characters in both the pattern 
and the text have hash values matching those of all substrings of the text with a length equal to the 
pattern’s length (n). A study published in the Journal of Science and Technology Research (Aigbe 
& Nwelih, 2021) provides insight into this behavior. The same is true for the parallel Rabin-Karp 
implementations (PRK) but we see a significant improvement in the execution times when using the 
full power of the GPU as the number of cores increases.

Table 1 and Table 2 illustrate the execution time in milliseconds of our implementations for 
the serial and parallel Rabin-Karp algorithm under normal conditions. In contrast, Table 6 displays 
execution times in milliseconds in a Denial of Service (DOS) attack condition, where the algorithm 
approaches its worst-case performance.

In this paper, we propose that the Rabin-Karp algorithm is optimally suited for GPU acceleration 
for use in NIDS when dealing with multiple pattern matching. The Rabin-Karp algorithm preprocesses 
every pattern into a single hash value and calculates hash values for every prefix of the input text. The 
matching process involves comparing hash values for each substring of the input string to pattern hash 
values. In case two hash values match, a character-by-character comparison is then conducted for the 
substring and the pattern with the identical hash value. Although Rabin-Karp may seem less efficient 
at first glance when compared to the Aho-Corasick with the character-by-character comparison 
eliminated in Rabin-Karp, our approach will outperform any other string-matching algorithms.

The idea of the elimination of character-by-character comparison to gain significant speedup 
in the running time was already in use in the study published by Abdullah Ammar and Hasan Bulut 
(Karcioglu & Bulut, 2021) where they improved their hashing technique to skip the character-by-
character comparison for the last few characters (q characters) whereas in our research we eliminate 
the need for character-by-character for all the characters of the pattern and the text.

Table 1. Serial Rabin-Karp execution times under normal conditions

Number of patterns (k) Length of each input pattern (m)

10 20 30

20 2690 3210 3160

22 2750 3210 3200

24 2950 3230 3220

26 3650 3210 3250

28 6280 3250 3260

Table 2. Parallel Rabin-Karp execution times under normal conditions

Number of patterns (k) Length of each input pattern (m)

10 20 30

20 3.52 4.58 4.57

22 3.89 4.58 4.57

24 4.78 4.59 4.59

26 6.11 4.66 4.61

28 6.32 4.71 4.70
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METHODOLOGY

We achieved high-speed multiple patterns matching in the Rabin-Karp algorithm by exploiting 
implementation speedups, parallel GPU architecture, and finally skipping the string validation part 
of the algorithm.

String validation is necessary for every hash-based pattern-matching algorithm as the hashing 
collisions produce false positive matches. The next section discusses in detail why it’s safe to skip 
string validation. The universal hash function proposed by Dietzfelbinger et al. (Dietzfelbinger et al., 

n.d.), is defined as h x x x a mod pa n i

n

i
n i

0 1 0

1…( ) =− =

− −∑  , where x  is the input string of length n , 

p  is a Mersenne prime number and a  is a randomly generated number such that u a p≤ < , u  is 
the size of alphabet characters.

For architecture limitations, instead of just one hash function, we will be creating six different 
hashing function instances of the above hash function each one with a randomly generated seed a  
and a carefully selected Mersenne prime number p , finally, we do multiple hashing by concatenating 
the six hash values into one hash value.

Implementation Speedups
Our speedups are heavily based on the instruction set architecture for GPU and CPU where we 
carefully select the six Mersenne prime numbers to be 524287 131071 8191 127 31 7, , , , ,



  so that firstly, 

we force the concatenation of the resultant concatenation of the six hashing functions to fit into 64-
bit integer data type using bit masks as shown in Fig. 1, which saves lots of time when moving data 
around. Secondly, we replace the mathematical operation modulus with a combination of binary, 
plus, and branching operations which saves lots of CPU cycles.

The final formula of the hashing function is shown in Eq. (1) where all of the six hash functions 
are combined see Figure 1.

h x h x h x h x h x h xf a a a a a( ) = ( ) + ( ) + ( ) + ( ) + ( ) +
0

0
1

3
2

8
3

15
4

282 2 2 2 2. . . . . hh xa5
452( ). 	 (1)

GPU Architecture
For this specific problem, we decided to use the CUDA Unbounded library (CUB) (Merrill, n.d.) to 
utilize its high-performance kernel components that can be tuned for this kind of implementation.

Skipping String Validation
The equality of two hash values doesn’t necessarily assure that the two strings are the same. So, when 
we skip string validation, we come across two vulnerabilities. firstly, the system might encounter a false 
match occurring by a hashing collision. Secondly, the attacker can make use of the first vulnerability 
and try to do a false positive attack on our system.

Figure 1. Hashing combination
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Hashing Collision Analysis

From Thorup’s work (Thorup, 2015), we know that collision probability Pcollision  for the above hashing 

function lies in the range of 1

p
P d

pcollision£ £ , where d  is the length of the string to be hashed and 

p  is the carefully selected Mersenne prime number, assuming the average case P d
pcollision = 2.

, now 

for a collision to happen, all of the six hash functions have to collide at the same time. From Bayes’ 
theorem, we conclude that the probability of six hash functions’ values colliding at the same time is 

P d

p
collisions

i i

6

6

6

0

6
2

−

=

=

∏
� �
.

 which means that if we assume our input text of size n  we can calculate 

exactly how many times our hashing functions are going to be called using the formula n d− +1  . 
when putting it all together we conclude that for each time our program with input size n  the 

probability for at least one mismatch Pmismatch  is 
n d d

p
i i

− +( )

=∏

1

2

6

6

0

6

.

.
.

To show how low the probability of P
mismatch

 is, let’s assume that an average-sized packet is of 
size n bytes� � �=1500  and an average pattern length of d � �=20  characters long pattern. When plugging 
those numbers in the above equation, we find out that Pmismatch  is pretty low and it is expected to 
process more than a billion packages to encounter a single mismatch, and even if a false positive is 
encountered, it would not impact the decision regarding whether a packet is malicious or not. Most 
systems require the presence of at least three false positives to affect the overall decision. To have 
three false positives in consecutive packets, it would require a massive amount of data, specifically 
billions multiplied by the average packet size of 50 bytes, resulting in a total number of bytes exceeding 
a billion zettabytes. It is worth noting that the 2021 Statista study (Statista Research Department, 
2021) predicts the size of the internet to reach approximately 180 zettabytes by 2025. Given these 
considerations, it can be concluded that the occurrence of such an incident is highly unlikely, and it 
is safe to disregard the validation of false positives.

False Positive Attack
Let’s assume a scenario where an attacker who has a copy of the patterns that our system is looking 
for and decided to do a DOS attack for our system by enforcing our system runs lots of string validations 
which results in a false match, he first has to correctly guess all of the seeds a a

0 5
,...,



  for all of the 

six-hashing function instances that we used initially to generate our hash values where the probability 

of that P
p

seeds

i i

=

=∏
1

0

6
, furthermore, he also needs to generate a random string that does a hashing 

collision and the probability of that is calculated above P collisions6- .
When putting them together, we conclude that the effort needed for this kind of attack needs an 

astronomical number of operations P Pseeds collisions*
6-  when calculated we find it’s a 36-digit number.

ALGORITHM

Our implementation for Multi-pattern GPU accelerated collision-less Rabin-Karp is divided into five 
main steps, Given the Multi-pattern Pattern  array of size k   where each pattern’ length is m  and 
the input text x  of length n below is the high-level explanation of the five steps.
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1. 	 Compute and save the lookup table for all a mod pi
j

i   such that 0 5� ��£ £i  and 0� � � �≤ <j pi , where 
 pi  is the corresponding Mersenne prime number.

2. 	 Compute hashes for all patterns in parallel h Patternf i( )  where 0� ��£ £i k  and store it in a 
concurrent hash table HT  such that h Patternf i( )  is the key and i  is the value.

3. 	 Compute ar ray S  of length n  using the input text x  in parallel such that 
S x a mod p x a mod p x ai i

n i
i

n i
i= + +… +− − − −( . ). ( . ). . ( .

0
1

0
0

1
1

1
32 2

55
1

5
452n i mod p− − � � ).

�
.

4. 	 Compute prefix-sum array Ŝ  such that Ŝ Sj
i

j

i=
=
∑
0

 for all j  such that 0� � � �≤ <j n , this step is done 

using “decoupled look-back” algorithm implemented in CUB Library (Merrill & Garland, n.d.).
5. 	 For all j 0 ≤ ≤ −( )j n m , compute W aj m j

m n j= −( )+ − −
− −ˆ ˆ .S S

1 1
, which is equal to the hash 

value of the substring x x x
j j j m
, , ,+ + −…

1 1
, mark a match with pattern index HT W


  if W  in 

HT , skip otherwise.

For an input text “helloworld” and an input pattern “low” Figure 2 illustrates steps 3, 4, and 5. 
Assuming that we are using hf  as our hashing function.

Table 3 presents the pseudo-code of the implementation of the parallel Rabin-Karp algorithm 
for multiple patterns.

The key difference between (Nunes et al., 2020) implementation and our proposed implementation 
is that our proposed one uses our hashing function, parallel architecture, and finally, we skip the 
string validation phase.

Time Complexity Analysis

•	 In step1, can be done efficiently by looping from zero to the maximum value of all Mersenne 
prime numbers which is p

5
 where in each iteration we compute a mod pi

j
i   for each i . This 

results in a total complexity of O p h
5
*( ) , where h  is the number of hashes, and in that case 

it’s h p= = −6 2 1
5

19,  leading to approximately 3 million operations in total which is always 
constant no matter how big the input is, so we can just discard this step from the analysis.

Figure 2. Steps 3, 4, and 5 illustration
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continued on following page

Table 3. Parallel Rabin-Karp pseudo code

Pseudo code

Input:

Pattern : k  string array where each string is m  charachters long  representing input patterns.

Text : ncharachters long string    representing input text.

u : an integer number representing the size of the alphabet.

random(s, e): a random generator function that returns a random integer in the interval [s, e].

Output:

Match : nintegers arraywhere    each i -th integer xeither  -1�or fulfills the equation 

Text Patterni i i m x x x m, , , , , ,+ … + − + … + −=
1 1 1 1

1: function Step1( P S A L P6 6 6
5
















, , , )

2: for i� �=0  to P5 do

3: for j� �=0  to 6 do

4: L L A mod Pi i j
i

j
s j= +( )� � .

�
2

5: end for

6: end for

7: end function

8: function Step2( P S A PHT Pattern k6 6 6 2 264 32




















, , , , , 



m )

9: ph� �=0

10: pat  = Patterng

11: for i� �=0  to m  do

12: for j� �=0  to 6 do

13: ph ph ph P A pat mod Ps
j j i j

sj j= + ∧( ) +( )





� ( / ) . � � .2 2

14: end for

15: end for

16: PHT ph

 = γ
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Table 3. Continued

continued on following page

Pseudo code

17: end function

18: function Step3( P S L P TH n Text n6 6
5






















, , , , )

19: for i� �=0  to 6 do

20: TH TH L P Text mod P
n mod P

s
i ii

i
γ γ γ γ� � � (((( / ) ).� )� �

� �
= + ∧

− −( ) −( )1 1
2 )).�2si

21: end for

22: end function

23:
function Step4 (TH n


 )

24: 
25: TH TH

i
iγ

γ

� �
�

=
=
∑
0

26: end function

27:
function Step5 P S PHT TH n Match n6 6 2 264 32























, , , , , ( )

28: if γ� � � � � �+ − <m n1  then

29: hash� �=0

30:
for i� �=0  to 6 do

31:
tmp TH Pm

s
i

i� � /=( )∧+ −γ 1
2

32: if g  > 0 then

33:
tmp tmp TH Ps

i
i� � � � /= −( )∧−γ 1 2

34: end if

35:
tmp tmp L P mod Pm n j

s
i i

i� �( �.��(( / ) ))� �= ∧− + 2

36:
hash hash tmp si� � � �( �.�= + 2 )

37: end for

38: Match PHT hashγ = 





39: end if

40: end function

41: P 6

  = [7, 31, 127, 8191, 131071, 524287]
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•	 In step2, we calculate each pattern’s hash values in parallel and load their values into the hash 

table, leading to a total complexity of O k m h* *

τ











, where t  is the available number of threads 

and h  is the number of hashes to be calculated.
•	 In step3, we calculate hash values for every character of the input text x  in parallel, leading to 

a total complexity of O n h*

τ











.

•	 In step4, the prefix sum for every position of the hash values array is calculated using “decoupled 
look-back” algorithm if enough threads are available, it can have a complexity of O n hlog *

2 ( )( ) , 
but since it’s infeasible to have as much as n

2
 threads, the total complexity will be calculated as 

O n h*

τ











.

•	 In step 5, for every position in the array we compute the six hash values, where we can compute 
each value in O 1( ) , and we check if the combination of the six hash values exists in the already 
built hash table or not. this can be done in O 1( )  on average case, leading to a total complexity 

of O n h*
.

τ











Combining all the complexities together our total complexity will be O k m h n h* * *

τ τ
+











 and since 

k m h,  and  are relatively small it’s safe to say that total complexity is O n
τ











, which is near perfect.

Table 3. Continued

Pseudo code

42: S 6

  = [0, 3, 8, 15, 28, 45]

43:
A 6

  = [random(|u|, 

P
0 ), random(|u|, 

P
1 ), …, random(|u|, 

P
5 )]

44: L P
5



  = [0, 0, …, 0]

45: CALL <<< 1  >>>Step1( P S A L, , , )

46:
PHT 2 264 32,


  ← concurrent hash table with default value of -1

47: CALL <<< k  >>>Step2( P S A PHT Pattern, , , , )

48: TH n

 = …



0 0 0, ,

49:
CALL <<< n  >>>Step3( P S L TH Text, , , , )

50: CALL <<< 1  >>>Step4(TH ) ← done using CUB library

51: CALL <<< n  >>>Step5( P S PHT TH Match, , , , )
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RESULTS

In our experiments, we considered the number of patterns k = 2 2 2 2 20 2 4 6 8, , , ,  patterns with 
m = 10 20 30, ,  characters each. The input text x  has n = 227  characters (≈ 128Mbytes).

The input string x  and the k  patterns Pattern Pattern Patternk0 1 1
, , ,… − are randomly generated 

over the alphabet size u = 2 .
Table 4 illustrates the execution time in milliseconds for our implementation for 4Parallel Rabin-

Karp with String Validation Skipped execution times under normal conditions.
Table 5 shows speedups gained by comparing the execution times of the three different implementations 

Serial Rabin-Karp ( SRK ), Parallel Rabin-Karp ( PRK ), and finally Parallel Rabin-Karp with String 
Validation Skipped ( PRKSV ). The table shows speedup gains in each size of the input in normal conditions.

As shown, PRK  is approximately 700 times faster than SRK  except for the case when k > 24  
and m = 10  speed up tends to vary a lot, and execution times of both implementations PRK  and 
PRK increases significantly.

The reason for that is the significant increase of matches when k  increases, because for alphabet 
size u = 2 , and pattern length m = 10 , we are left with 210  possible unique patterns only and for 
instance when k = 28  it’s expected there’s 1 in 4 chances of a match.

Meanwhile, PRKSVS  is at least 150 times faster than SRK  and its execution times are fairly 
stable with 0.01 variance with the disadvantage that it’s 3-5 times slower than PRK because of the 
manipulation of the six hashing functions at once.

Table 5. Speedup in execution times under normal conditions

Comp. SRK
PRK

SRK
PRKSVS

PRKSVS
PRK

k \m 10 20 30 10 20 30 10 20 30

20 764.2 700.8 691.4 150.4 180.5 177.1 5.08 3.88 3.90

22 706.9 700.8 700.2 152.7 179.5 177.9 4.63 3.90 3.93

24 617.1 703.7 701.5 165.0 178.2 179.2 3.74 3.95 3.91

26 597.3 688.8 704.9 202.4 180.2 182.6 2.95 3.82 3.86

28 993.6 690.0 693.6 347.7 181.6 181.9 2.86 3.80 3.81

Table 4. Parallel Rabin-Karp with String Validation Skipped execution times under normal conditions

Number of patterns (k) Length of each input pattern (m)

10 20 30

20 3.52 4.58 4.57

22 3.89 4.58 4.57

24 4.78 4.59 4.59

26 6.11 4.66 4.61

28 6.32 4.71 4.70
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The reason why someone would use the slower PRKSVS  instead of the fast PRK  is that an 
attacker can easily stall PRK  by sending a packet full of patterns saved in the PRK  system.

This DOS attack can be done easily because the attacker can install PRK  into his/her system 
and gain access to the patterns database to construct the stalling packets.

DOS Attack
To test PRKSVS  and PRK  against DOS attack possible, we used the same input text x  size which 
is 227  characters (≈ 128Mbytes) but changed the alphabet size to be u = 1  to assume worst case, 
meaning that there’s only a single unique input pattern that will be matching in all packets.

Below are the execution times in milliseconds for the three different implementations.
We see that under a DOS attack, an attacker can stall both SRK  and PRK  and increase their 

execution time by up to 10,000% more than under normal conditions wherein PRKSVS , as we can 
see that its execution time is increased by 7% more than under normal conditions.

GPU execution times were collected using the NVIDIA Nsight profiling system where an 
NVIDIA A100-PCI graphics card and an Intel(r) Xeon(r) silver 4314 CPU @ 2.40ghz were used to 
execute the three implementations.

CONCLUSION

Our research has led to some significant advancements in the field of Network Intrusion Detection 
Systems (NIDS). Our innovative modification of the Rabin-Karp algorithm has demonstrated both 
reliable and stable performance when subject to load testing, effectively eliminating the threat of 
Denial of Service (DoS) attacks.

Through a combination of theoretical and practical testing, we’ve proven that our modified 
algorithm doesn’t result in any misclassifications, thereby ensuring that false alarms triggered by 
potential attackers are effectively eradicated. This eliminates a major concern for many network 
security systems.

In terms of scalability, our modified Rabin-Karp algorithm excels, demonstrating excellent 
adaptability for parallel implementation. This is particularly crucial in our current digital landscape, 
where the need to process large amounts of data simultaneously is becoming increasingly essential.

Further reinforcing the strength of our modified Rabin-Karp algorithm, we have provided clear 
evidence that neither false positives nor DoS attacks can occur. This further highlights the robustness 
and reliability of our approach to enhancing network security.

A particularly noteworthy feature of our modification is the ability to handle an increased number 
of patterns or rules without significantly affecting the overall running time of the algorithm. This is 
possible because our approach involves converting all patterns into hashes, thereby eliminating the 
need for the original patterns. This stands in stark contrast to other approaches, where an increase in 
the number of patterns is a severe limitation, leading to considerable inefficiencies.

Overall, our work represents a significant stride forward in the improvement of Network Intrusion 
Detection Systems. We have modified the Rabin-Karp algorithm that not only provides a consistently 
high-performing and secure solution but also offers excellent scalability and the ability to efficiently 

Table 6. Execution times for all implementations of Rabin-Karp under DoS attack

Impl. SRK PRK PRKSVS

k \m 5000 1000 1500 5000 1000 1500 5000 1000 1500

20 212970 414719 615360 125.37 210.60 296.12 18.38 18.76 18.76
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manage an increased number of patterns. These findings open new possibilities for further research 
and improvements in network security.
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