
DOI: 10.4018/JOEUC.336482

Journal of Organizational and End User Computing
Volume 36 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

IoT Real-Time Production Monitoring 
and Automated Process Transformation 
in Smart Manufacturing
Xiangqian Wang, East China Normal University, China & Pingdingshan University, China

Haifeng Hu, Pingdingshan University, China*

Yuyao Wang, Lamar University, USA

Zhaoyu Wang, Fujian Normal University, China

ABSTRACT

Conventional automobile manufacturing plants involve intricate assembly, testing, and debugging 
processes heavily reliant on manual operations. This study aims to explore the application of industrial 
internet of things (IIoT) and deep learning algorithms to achieve process automation in manufacturing. 
Firstly, utilizing IIoT technology, OPC UA, and point cloud fitting techniques, a comprehensive 
modeling of most equipment and materials within the factory is conducted, constructing a digital 
twin (DT) model as a virtual representation of actual equipment. Subsequently, the study innovatively 
introduces the deep Q network algorithm, facilitating the automatic transition of the production 
process and improving production efficiency. Through comparison with ten baseline models, the 
proposed model demonstrates an improvement in production efficiency of at least four percentage 
points compared to other models. Experimental validation confirms the effectiveness of the proposed 
model in the smart factory for electric vehicle manufacturing.
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INTROdUCTION

The establishment of intelligent factories has emerged as a significant global trend in the manufacturing 
sector, aimed at enhancing production efficiency, reducing costs, and achieving more flexible and 
sustainable manufacturing processes through the adoption of advanced technologies and digital 
solutions. Illustrative construction cases, such as the intelligent manufacturing transformation 
implemented by China’s Haier Corporation, which involved technologies like the Internet of Things 
(IoT), cloud computing, and big data analytics, have resulted in the development of intelligent 
home appliance manufacturing facilities. This intelligent factory construction project has elevated 
the flexibility and adaptability of production lines, facilitated customized manufacturing, reduced 
product time-to-market, and strengthened market competitiveness. The process automation of electric 
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vehicle manufacturing factories is currently a highly prominent research direction in the intelligent 
manufacturing landscape (Bathla et al., 2022). The investigation into this technology encompasses 
various aspects such as the enhancement of factory production efficiency, optimization of production 
resource utilization (Zhang & Dilanchiev, 2022), and the promotion of environmentally friendly 
manufacturing (Yang et al., 2022). First, it is poised to significantly enhance production efficiency. 
Traditional automotive manufacturing plants involve intricate assembly, testing, and debugging 
processes heavily reliant on manual operations. The introduction of automation technologies (Li et 
al., 2022b), such as robots and intelligent assembly lines, can substantially reduce the time devoted 
to manual operations and elevate the operational efficiency of production lines. The improvement 
in production efficiency aids in reducing manufacturing costs, facilitating quicker and more flexible 
production responses to rapidly changing market demands. Secondly, it is expected to contribute 
to the improvement of the quality and consistency of electric vehicles (Jiménez‐Ramírez et al., 
2023). Given the intricate nature of the components and systems in electric vehicles, errors during 
manufacturing can result in a decline in product quality. The introduction of automated processes 
can mitigate human errors and variations, ensuring more precise manufacturing and consequently 
enhancing overall product quality and consistency. Thirdly, it holds the potential to reduce energy 
consumption (Salman et al., 2022) and carbon emissions (Kumar et al., 2022). Automation technologies 
enable the optimization of production processes, precise control of energy usage, and the reduction 
of unnecessary waste, thereby rendering the manufacturing process more environmentally friendly 
and aligning with the overall eco-friendly philosophy of electric vehicles. Fourthly, it aids in driving 
the digitization transformation of the manufacturing industry (Favoretto et al., 2022). Through 
the integration of advanced technologies such as intelligent manufacturing and big data analytics, 
production shop floors can achieve higher levels of digital management and monitoring. This not 
only facilitates real-time tracking of production processes and optimization of resource allocation but 
also enhances production efficiency through data analysis, providing a more scientifically grounded 
basis for business decision-making. Therefore, research into the automation of processes in electric 
vehicle manufacturing plants holds crucial reference value for a nation’s industrial strategy formulation. 
With the increasing global attention on the electric vehicle industry, an in-depth investigation into the 
application of artificial intelligence technologies in electric vehicle manufacturing can provide robust 
support for the development of national industrial policies (Srivastava et al., 2022). On a global scale, 
this contributes to elevating a nation’s industrial competitiveness and strengthening its technological 
leadership in the field of electric vehicles.

Currently, deep learning technology has found numerous applications in the automation of factory 
production processes (Tercan & Meisen, 2022), and these innovative applications have profound 
impacts on enhancing production efficiency (Salman et al., 2022), improving product quality, reducing 
costs, and driving digital transformation. Due to its capability to learn and comprehend vast amounts of 
production data, deep learning enables intelligent decision-making, resource optimization, and waste 
reduction through real-time monitoring and analysis of data on the production line, thereby achieving 
a higher level of production efficiency. Deep learning empowers production systems with autonomous 
learning and adaptability, fostering the progression of factories toward intelligent manufacturing. 
This enhances the autonomy and adaptability of production systems, reducing dependence on human 
intervention and achieving a more highly automated production process (Zhou et al., 2022a).

Given that deep learning technology allows real-time monitoring and control of product quality 
through the analysis of sensor data and image recognition, it is often utilized to predict potential quality 
issues, take preemptive measures, reduce defect rates, and enhance the stability of product quality. 
At the level of each module within a factory, deep learning technology holds significant potential in 
energy management subsystems. By intelligently adjusting equipment operation based on the analysis 
of energy usage data in the production process, the system can optimize energy utilization, reduce 
energy consumption, and achieve a more environmentally friendly and sustainable manufacturing 
process (Musbah et al., 2022).
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Furthermore, deep learning technology contributes to monitoring and analyzing the safety 
conditions within a factory (Moradi et al., 2022). By real-time identification of hazards and monitoring 
employee behavior, the system can preemptively alert potential safety risks, thereby ensuring the 
safety of the factory’s production processes. In summary, the application of deep learning technology 
in factory production processes not only injects new vitality into traditional manufacturing but also 
provides innovative directions for the future of manufacturing. Through the integration of advanced 
technologies such as big data and cloud computing, it becomes possible to construct a more 
intelligent, flexible, and sustainable manufacturing system, propelling the manufacturing industry 
towards digitization and intelligence. The current commonly employed deep learning models for the 
construction of smart factories include:

1.  Convolutional Neural Network (CNN): Primarily used for image recognition and processing, 
it is suitable for handling visual information in factories. In smart factories, CNNs are employed 
for tasks such as product quality inspection, defect identification, and real-time monitoring on 
production lines. Their advantage lies in their ability to extract features from images, enabling 
efficient and accurate visual analysis (Hsu et al., 2022).

2.  Recurrent Neural Network (RNN): Suited for processing sequential data, such as time series or 
continuous data in processes. In smart factories, RNNs can be utilized for predicting equipment 
failures, detecting anomalies in production lines, and modeling dynamic changes during the 
production process. Their advantage lies in possessing memory capabilities, allowing them to 
handle data with strong temporal dependencies (Kannen & Subasi, 2023).

3.  Long Short-Term Memory (LSTM): A specialized type of RNN designed for handling long 
sequential data, addressing the issues of vanishing, and exploding gradients in traditional RNNs. 
In smart factories, LSTMs find applications in modeling time series data, such as predicting 
equipment performance and optimizing energy consumption. Their advantage lies in better 
capturing long-term dependencies (Wahid et al., 2022).

4.  Generative Adversarial Network (GAN): Mainly used for generating new data samples, 
commonly employed for data augmentation and synthesis. In smart factories, GANs can 
be used to simulate production environments, generate virtual data for model training, and 
enhance the generalization performance of models. Their advantage lies in generating realistic 
data (Zhou et al., 2022b).

5.  Reinforcement Learning (RL): Employed for decision-making, RL learns optimal strategies 
through interaction with the environment. In smart factories, RL can be applied to optimize 
production scheduling, formulate equipment control strategies, and optimize resource allocation. 
Its advantage lies in its ability to autonomously learn and adapt to complex production 
environments (Lei et al., 2023).

This study is aimed at exploring the application of Industrial Internet of Things (IIoT) (Gupta et 
al., 2022) and deep learning algorithms to achieve production process automation in an established 
Chinese smart factory for electric vehicles. The design rationale of the proposed method encompasses 
several key steps. Firstly, leveraging IIoT technologies, OPC UA (Domínguez et al., 2022), and 
point cloud fitting techniques (Fan & Zhang, 2022) to model most devices and materials within the 
factory. This initial step aims to comprehensively model factory equipment by integrating IoT-based 
advanced physical information gathering and Poisson surface reconstruction-based three-dimensional 
point cloud technologies, constructing a digital twin (DT) model (Wang et al., 2022b). Secondly, by 
using a specific mapping algorithm, the DT model serves as a virtual mapping of the actual devices, 
providing real-time and highly accurate references for subsequent production process automation. 
Utilizing DT technology, the factory undergoes equipment behavior modeling and real-time monitoring 
of equipment status (Nie et al., 2021). By monitoring and analyzing real-time data from the digital 
twin model, the system can accurately simulate and predict equipment behavior, facilitating real-time 



Journal of Organizational and End User Computing
Volume 36 • Issue 1

4

monitoring of equipment status within the factory. This capability offers crucial support for achieving 
refined management and an immediate response to potential issues. Finally, within the Manufacturing 
Execution System (MES) (Shojaeinasab et al., 2022), the innovative introduction of the deep Q-network 
algorithm (Zeng et al., 2022) facilitates the automated transformation of the production process 
and enhances production efficiency. The incorporation of the deep Q-network algorithm enables 
the system to optimize decisions within the production process, realizing autonomous control and 
optimization of the production process. This innovative approach provides robust technical support 
for the intelligent production of the smart factory.

This study presents a novel solution through the integration of DT technology and deep learning 
algorithms for the automation of production processes in a Chinese electric vehicle smart factory. 
There are three main innovations:

1.  Comprehensive Application of DT Models: The system innovatively employs a comprehensive 
approach using Industrial Internet of Things (IIoT) technology, OPC UA, and point cloud fitting 
techniques to extensively model the equipment and materials within the factory, constructing a 
DT model. This integrated application establishes a highly accurate mapping relationship between 
the virtual model and the actual devices. The DT model not only facilitates real-time monitoring 
of device status but also provides a real-time and accurate reference for subsequent production 
process automation, thus laying a solid foundation for the intelligence of the factory.

2.  Application of DT Technology in Equipment Behavior Modeling and Real-Time Monitoring: 
Through the application of DT technology, the system engages in equipment behavior modeling 
and real-time monitoring of equipment status within the factory. The innovation lies in the system’s 
ability to accurately simulate and predict equipment behavior by monitoring and analyzing real-
time data from the DT model. This capability provides crucial support for achieving refined 
management and immediate responses to potential issues.

3.  Introduction of the Deep Q Network Algorithm in the Manufacturing Execution System: 
The introduction of the deep Q network algorithm into the Manufacturing Execution System 
(MSE) represents the third innovation in this system. This algorithm innovatively achieves 
the automation transformation of the production process and enhances production efficiency. 
Through the deep Q network algorithm, the system can learn and optimize decisions within the 
production process, realizing autonomous control and optimization. This autonomous learning 
and optimization capability provides robust technical support for the intelligent production of 
the smart factory, offering valuable insights for the future development of industrial intelligence.

The proposed methodology demonstrates a thoughtful and practical approach, offering valuable 
insights for the intelligent transformation of the industrial sector.

This article is organized as follows: We will introduce the recently related work in Section 
2. Section 3 presents the proposed methods: overview, digital twin modeling for factories based 
on OPC UA and point cloud fitting, real-time monitoring of factory status based on digital twins, 
automation of production processes based on digital twins, and deep learning. Section 4 introduces 
the experimental part, including practical details, comparative experiments, and a case study. Section 
5 includes a conclusion and an outlook.

RELATEd wORK

Industrial Internet of Things and digital Twin
The application of IIoT and DT technology in smart manufacturing injects new vitality into modern 
manufacturing, offering enterprises a more efficient, intelligent, and sustainable production approach. 
The deep integration of information technology and physical systems, as exemplified by the IIoT, 
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facilitates interconnectivity among devices. Through real-time data collection from sensors, equipment, 
and process flows, IIoT establishes a production environment characterized by real-time monitoring 
and control. DT technology further enriches this concept by virtually representing physical systems, 
creating a digital counterpart known as a DT model. The establishment of a DT model typically 
involves digitizing, connecting, and continuously updating representations of physical equipment. 
The entire application process can be delineated into steps such as data collection, data transmission, 
data processing, and model updates, ensuring synchronization between the DT and the actual physical 
systems (Chen et al., 2023a).

DT technology brings multiple advantages to smart manufacturing. Firstly, real-time monitoring 
and data analysis empower manufacturing enterprises to swiftly respond to changes in the production 
environment, enhancing production line flexibility and adaptability. Secondly, through the combined 
use of IIoT and DT technology, enterprises can achieve remote monitoring and maintenance of 
equipment, reducing downtime and maintenance costs. The comprehensive understanding of 
equipment status provided by the DT model aids in preemptively addressing potential faults and 
making informed decisions for intelligent maintenance. Currently, DT technology finds widespread 
applications across various facets of the manufacturing industry. In production planning and 
scheduling, enterprises can intelligently optimize the allocation of production resources through 
digital modeling and real-time monitoring of the entire production process. In quality control, the 
high-precision simulation of production processes by DT models facilitates real-time monitoring 
and prediction of product quality, thereby enhancing the stability of product quality. Regarding 
equipment maintenance, the integration of sensor data collection from IIoT and model updates from 
DT technology enables remote monitoring and intelligent maintenance of equipment, reducing 
downtime and improving equipment utilization rates.

Furthermore, in the development of smart factories, OPC UA (Open Platform Communications 
Unified Architecture) technology is extensively applied, offering an efficient, secure, and highly 
interoperable solution for industrial automation systems. Functioning as a communication protocol, 
OPC UA facilitates seamless integration among diverse devices and systems in smart factories through 
a unified information model and standardized data exchange mechanisms. In practical application 
scenarios, OPC UA supports various communication mechanisms, including publish-subscribe and 
request-response, enabling the collaborative operation of devices from different manufacturers and 
enhancing the coordination and flexibility of the production process. Moreover, OPC UA provides 
robust security mechanisms encompassing encryption and authentication, ensuring the confidentiality 
and integrity of data, and effectively addressing the escalating network security threats in smart 
factory environments. Simultaneously, OPC UA supports the standardization of information models 
in smart factories, enabling devices and systems to share consistent data structures and semantics, 
thereby simplifying the complexity of data interpretation and integration. This standardization not 
only enhances system maintainability but also reduces the costs associated with system integration.

dT and Production Process Modeling
DT technology demonstrates outstanding application prospects in the modeling of production processes 
in smart factories. Through the utilization of DT technology, enterprises can achieve a highly accurate 
reproduction and simulation of physical production systems, providing real-time and comprehensive 
digital representations of production processes. This capability enables enterprises to conduct real-
time monitoring, analysis, and optimization of production processes. Additionally, DT models can 
be employed to simulate various production scenarios, offering decision-makers comprehensive 
data support. The modeling process of DT typically includes steps such as digital representation, 
connecting the model to the physical world, and real-time data updates to ensure synchronization 
between the model and the actual production system. Initially, digital representation involves digitizing 
physical elements such as actual equipment and process flows to construct a virtual DT model. The 
connecting phase involves utilizing Industrial Internet of Things (IIoT) technology to establish a 
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connection between the DT model and actual equipment, collecting real-time data on equipment 
operations, production parameters, and more. The real-time update phase involves continuously 
updating the DT model through feedback mechanisms to maintain synchronization with the actual 
production process. This modeling approach enables DT models to promptly reflect changes in actual 
production, providing decision-makers with an accurate data foundation.

However, there are some limitations in the current application of DT technology. Firstly, there 
are constraints related to data quality and real-time capabilities. Building accurate and trustworthy DT 
models necessitates high-quality production data that needs to be continuously updated to maintain the 
model’s authenticity. In certain circumstances, due to limitations in data collection and transmission, 
DT models may not fully and accurately reflect the actual production status, potentially impacting 
decision-making accuracy. Furthermore, the implementation of DT technology requires significant 
technological investment and specialized knowledge. Establishing DT models involves knowledge 
from multiple domains, including IoT technology, data analytics, simulation modeling, and more. 
For some small and medium-sized enterprises, this may result in high costs and resource-intensive 
requirements (Li et al., 2022a).

Intelligent Automation of Production Processes
The application of intelligent production planning algorithms in modern manufacturing holds the 
promise not only to enhance production efficiency and optimize resource utilization but also to reduce 
costs, providing significant competitive advantages for businesses. Common intelligent production 
planning algorithms include genetic algorithms, simulated annealing, particle swarm optimization, 
and ant colony optimization. From existing research, these algorithms demonstrate outstanding 
performance, particularly in precision and real-time capabilities. By integrating advanced data 
collection techniques and big data analytics, these algorithms can monitor and analyze key parameters 
in the production process in real-time, enabling rapid responses to change in market demands and 
fluctuations in the manufacturing environment. Furthermore, these algorithms exhibit intelligent and 
personalized production planning capabilities. Through technologies like deep learning and machine 
learning, algorithms can learn from historical data, predict market trends, and formulate more flexible 
and efficient production plans, thereby improving resource utilization and efficiency. Additionally, 
intelligent production planning algorithms contribute to optimizing supply chain management, 
ensuring smooth circulation of raw materials, semi-finished goods, and finished products, reducing 
inventory costs, and enhancing product delivery efficiency (Zhou et al., 2022a).

However, there are notable drawbacks to the application of intelligent production planning 
algorithms. Firstly, the implementation of these algorithms may require substantial data and 
technological investments. Obtaining high-quality production data and maintaining complex 
algorithmic systems could result in high construction costs compared to potential profits. Secondly, 
the robustness and stability of these algorithms need further improvement. In complex and dynamic 
manufacturing environments, algorithms may be susceptible to noise and outliers, leading to 
instability in production planning. Therefore, further research and innovation in intelligent production 
manufacturing process automation algorithms are necessary to overcome these challenges and further 
propel the development of smart manufacturing.

METHOd

System Overview
In the automated production factory of electric vehicles, the design and implementation of the core 
software system cluster are crucial for improving production efficiency, optimizing resource utilization, 
and ensuring product quality. This cluster typically includes multiple subsystems, and the systems 
discussed in this article encompass the following key subsystems:
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1.  Production planning and scheduling subsystem (Oluyisola et al., 2022): This forms the 
foundation of the core software system, including the development of Manufacturing Execution 
Systems (MES), Advanced Planning and Scheduling Systems (APS), Energy Management 
Systems (EMS), Predictive Health Management Software (PHM), and Maintenance, Repair, and 
Operations (MRO) software. This component is responsible for translating market demands and 
ordering information into specific production plans and optimizing the allocation of production 
resources through intelligent scheduling algorithms. The production planning and scheduling 
system needs to be closely integrated with the supply chain management system to ensure accurate 
supply of raw materials and components, thereby ensuring the continuous and stable operation 
of the production line. Among these, the Manufacturing Execution System (MES) serves as the 
central control of the entire production process. The MES system, connected to equipment control 
systems and sensor networks on the production line, achieves real-time monitoring, control, 
and data collection of the production process. This system has a high level of automation and is 
capable of adjusting production parameters, monitoring equipment status, and providing timely 
feedback to the Production Planning and Scheduling System, achieving intelligent and adaptive 
production processes.

2.  Enterprise management subsystem: This forms the foundation of factory management and 
includes the development of Enterprise Resource Planning Systems (ERP), Supply Chain 
Management Systems (SCM), Customer Relationship Management Systems (CRM), Human 
Resources Management (HRM), Quality Management Systems (QMS), Asset Performance 
Management Systems (APM), and other software.

3.  Data analysis and big data subsystems (Wang et al., 2022a): This is an emerging 
component in the core software system. By collecting, storing, and analyzing vast amounts 
of data generated during the production process, the factory can gain profound insights, 
optimize production processes, and improve production efficiency. Data analysis and big 
data technologies also provide predictive maintenance capabilities for smart factories. By 
analyzing equipment operational data, potential faults can be identified in advance, reducing 
downtime and improving equipment availability.

4.  Design subsystem: This subsystem is essential for ensuring the factory can manufacture 
high-quality products. It includes model libraries for automobile design, process libraries, 
basic knowledge libraries, and comprehensive optimization software for the entire process in 
the automobile industry. It also encompasses the integrated platform software for the design, 
production, and operation/maintenance of automobiles, as well as comprehensive control platform 
software for automobile production. Additionally, it includes some generic software such as 
Computer-Aided Design (CAD), Computer-Aided Engineering (CAE), Computer-Aided Process 
Planning (CAPP), Computer-Aided Manufacturing (CAM), Electronic Design Automation (EDA), 
Product Data Management (PDM), and others.

5.  Quality management subsystem: This subsystem is a crucial component to ensure the quality 
of electric vehicle production. The system conducts quality inspection and control at various 
nodes in the production process, ensuring that products meet standard requirements. The Quality 
Management System collaborates with the MES system to respond in real-time to any anomalies 
in the production process, preventing an increase in defective rates.

6.  Human-Machine Interaction (Bathla et al., 2022) Subsystem: This subsystem is vital for 
presenting information from the entire core software system to operators in an observable and 
comprehensible manner. The HMI subsystem, through intuitive graphical interfaces, displays key 
information such as production plans, equipment status, and quality data, facilitating operators 
in making rapid decisions.

A detailed system architecture is shown in Figure 1.
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digital Twin Modeling for Shop Floor Based on OPC UA and Point Cloud Fitting
This system employs OPC Unified Architecture (OPC UA) technology for real-time data collection 
in the factory and constructs a digital twin model based on point cloud fitting. The entire process can 
be divided into the following detailed steps: The first step involves clearly defining the objectives 
and scope of shop floor digital twin modeling, including the equipment, processes to be modeled, 
and the required real-time monitoring and control information. The key to this step is ensuring 
clear modeling objectives, which aid in the subsequent design and implementation of the system. In 
the second step, deploy OPC UA servers within the shop floor to ensure effective communication 
between the servers and various types of equipment in the shop floor. Configure device interfaces to 
enable the OPC UA server to obtain real-time data from the equipment, including but not limited to 
temperature, humidity, and equipment status. The third step entails deploying laser scanners or other 
3D sensors on the equipment in the shop floor to capture point cloud data from the surfaces of the 
devices. This step needs to cover all equipment that requires modeling to ensure comprehensive 3D 
information is obtained. In the fourth step, process the collected point cloud data, removing noise and 
outliers. Subsequently, apply point cloud fitting algorithms to fit the processed point cloud data into 
highly accurate 3D models. This system utilizes a Poisson surface reconstruction (PSR) algorithm 
to achieve high-precision fitting of shop floor equipment:

M V E F= ( ), ,  (1)

where V  denotes points, E  denotes edges, and F denotes faces. Firstly, the objective implicit function 
F x( )  is computed so that the gradient of F x( )  at each P  point is the normal vector V  at that 
point, and the dispersion is taken to get the Poisson equation:

∇⋅ ∇( )−∇⋅ = ⇔ = ∇⋅F V F V0 ∆  (2)

The F x( )  is represented by adaptive octree, and the marching cube is applied to extract the 
isosurfaces of the function, and the resulting Mesh mesh data contains topological information, 
domain information.

Figure 1. A detailed architecture of this smart manufacture system
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Due to occlusion, the point cloud data obtained from a certain angle is incomplete. In this study, 
a machine learning algorithm is used to predict the set of points at the occluded location to maximize 
the possible information complementation of the modeled object. The fifth step involves integrating 
real-time data collected by OPC UA with the 3D models obtained through point cloud fitting to 
construct the digital twin model of the shop floor. By mapping real-time data to the corresponding 
equipment models, the digital twin model can accurately reflect real-time information on the status 
and operating parameters of the equipment on the shop floor. Perform validation of the digital twin 
model by comparing it with the actual scene and checking for accuracy. If discrepancies are identified, 
make appropriate optimizations and adjustments to ensure the digital twin model accurately reflects 
the actual shop floor situation. In the sixth step, achieve real-time synchronization between the digital 
twin model and the actual shop floor equipment using OPC UA technology. Feed real-time data, 
such as equipment status and production parameters, back into the digital twin model to maintain 
its real-time nature. Simultaneously, if changes occur in the shop floor equipment, such as adding 
new equipment or adjusting equipment positions, use point cloud fitting technology to model new 
equipment or refit adjusted equipment, ensuring a high degree of synchronization between the digital 
twin model and the actual shop floor equipment. In the final step, utilize the constructed digital twin 
model to develop various application scenarios, such as equipment status monitoring, production 
process simulation, and fault diagnosis. Through the digital twin model, achieve comprehensive 
monitoring and intelligent control of the shop floor production process, thereby enhancing production 
efficiency and quality. The principle of this step is shown in figure 2.

Real-Time Monitoring of Shop Floor Status Based on digital Twins
This section describes the mapping algorithms for mapping the binary state, enumerated state, and 
numeric variable state of devices within the smart factory from the physical world to the digital twin 
model, respectively.

1.  Binary states involve devices with Boolean indicator values that can only be true or false. The 
mapping algorithm for binary states can be expressed by the following equation:

BiIND IND Val n True False n SampleN
IND

= 


 ∈ { } ∀ ∈  

{ }# , , ,0  (3)

Figure 2. The principle of digital twin modeling by using OPC UA and point cloud fitting
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In this equation, BiIND  represents the set of Boolean indicators and Val n
IND
[ ]  is an indicative 

value of the BiIND  is at the sample time n , and the SampleN  is the total number of sampling 
points of BiIND . The indicated value can only be true or false.

2.  Enumerating states involves devices with enumerable indication values, and all possible values 
form a finite set of states. The mapping algorithm can be expressed in the following equation:

EnumIND IND Val n StatusSet s s s n
IND IND mIND

= 


 ∈ = …{ } ∀ ∈#

1 2
, , , , 00,SampleN



{ }  (4)

In this equation, EnumIND  represents the set of enumerable indicators, Val n
IND
[ ]  is the indicated 

value of the EnumIND  is at sample time 𝑛, and StatusSet
IND

 is the finite set of all possible states 
of the EnumIDN . The indicated values can have states different from the finite set.

3.  Numerical variable states involve devices with numerical indicator values, such as a robotic arm 
with rotatable joints. The mapping algorithm can be expressed in the following equation:

NumIND IND f Val n Val n Values n Sa
IND IND IND

= = 


( ) 



 ∈ ∀ ∈, ,0 mmpleN



{ }  (5)

In this formulation, NumIND  denotes the set of numerical indicators, f · �( )  denotes the mapping 
method of the 𝑗th NumIND , and Values

IND
 is the data range in the physical device side. The mapping 

algorithm maps the data on the physical device side to the NumIND  values on the digital twin side.
For the data obtained after mapping, in order to prevent anomalies in the data collected by the 

IoT subsystem from the physical world, this system has devised anomaly detection algorithms. These 
algorithms are employed to analyze and identify abnormal samples from the input time-series data 
originating from the physical world. In the presence of abnormal samples, the system will choose to 
either eliminate or re-sample the data.

The whole mapping relationship from the physical world to the DT model is shown in Figure 3.

Production Process Automation Based on dT and dQN Algorithms
This smart factory uses a deep-Q-network (DQN) algorithm for production process decision 
optimization in the MES system, which is based on the principle of training an agent to make near-
optimal production decisions in real time. Incorporating the DQN algorithm for production process 
scheduling in smart factories brings numerous advantages. Firstly, the DQN algorithm enables 
intelligent scheduling in complex and dynamic production environments through the learning and 
optimization of decision-making strategies. Secondly, the DQN algorithm can dynamically adapt 
to changes in production, enhancing the flexibility and adaptability of the manufacturing process 
by continuously learning and optimizing, thereby more effectively addressing uncertainties and 
fluctuations in production. Additionally, the DQN algorithm maximizes production efficiency by 
optimizing resource utilization and task allocation, leading to reduced production costs and improved 
output quality.

The DQN algorithm is a deep reinforcement learning (RL) algorithm (Pengcheng et al., 2022) 
that uses a neural network called Q-network to approximate the optimal action-value function 
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Q s a,( ) . s  represents the current state of the factory and a  represents the action to be taken. This 
system s  is set as an N-tuple: s = {workshop 1 production rate, workshop 2 production rate, 
workshop 3 production rate...workshop N production rate}. And a  represents the action to be 
taken, and the set of actions is A Î  {workshop 1 increase production rate by 1 unit, workshop 1 
decrease production rate by 1 unit, workshop 2 increase production rate by 1 unit, workshop 2 
decrease production rate by 1 unit, workshop N increases production rate by 1 unit, workshop N 
decreases production rate by 1 unit}.

The DQN algorithm uses two key strategies to improve performance: experience replay and fixed 
parameters. Experience replay involves storing past experiences in replay memory, which is then used 
to randomly sample and train the Q network. This helps to break the correlation between successive 
experiences and improves the stability of learning. Fixed parameters are used to categorize the Q 
network into two versions: the online Q network and the target Q network. The online network is used 
to select actions in the current time step, while the target network provides target values for training. 
The parameters of the target network are regularly updated using the parameters of the online network.

In summary, the fundamental process of the DQN algorithm is as follows: (1) Define the state 
space of the problem s , representing the different states observed by the algorithm during the learning 
and decision-making process. (2) Action selection: Choose an action a  based on the current state 
using a specified policy. (3) Execute action and observe reward r : Execute the selected action and 
observe the reward returned by the environment, along with the new state next s_ . This process 
simulates the interaction between the agent and the environment. (4) Experience replay: Store the 
executed actions and observed results in an experience replay buffer. (5) Target value computation: 
Utilize a neural network to approximate the Q-value function (action-value function) and calculate 
the Q-values for each possible action in the current state. This Q-value represents the long-term return 
of choosing a particular action. (6) Optimization based on the loss function: Define a loss function 
that measures the disparity between the model’s predicted Q-values and the target Q-values. Update 

Figure 3. The mapping relationship from the physical world to the DT model
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the parameters of the neural network through an optimization algorithm, gradually aligning the 
predicted Q-values with the target Q-values. (7) Iterate the aforementioned learning process, 
continually updating the parameters of the neural network to enhance the model’s decision-making 
performance in the environment.

In this smart factory decision-making algorithm for production process automation, the DQN 
algorithm is combined with a digital twin (DT) to build a DQN production process optimizer. This 
optimizer uses the DT as input data to the algorithm to provide real-time information about the 
equipment. After the optimizer retrieves the necessary input data from the DT, real-time interaction 
between the optimizer and the DT is achieved, and the optimizer subsequently trains its internal deep 
neural network based on the retrieved input data.

The principle of this algorithm is shown in Figure 4.

The production process optimization algorithm based on DT and DQN algorithms is represented 
in the form of pseudo-code as shown in Algorithm 1.

Algorithm 1. Process of a single DQN model training with DT data input

# Initialize parameters 
env = Digital_Twin_Input() 
agent = DQNAgent(state_size, action_size) 
# Training DQN using Digital Twin data 
Initialize num_episode 
for episode in range(num_episodes): 
    s = env.reset() 
    total_reward = 0 
    while (Loss()> m) 
        # Choose action using e -greedy strategy
        a = agent.act(s) 

Figure 4. The principle of the DQN process optimum algorithm
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        # Execute action, observe next state, reward, and done 
flag 
        next_s, reward, done = env.step(a) 
        next_s = np.reshape(next_s, [1, s_size]) 
        # Train DQN model using experience replay 
        agent.train(s, a, reward, next_s, done) 
        # Update state and total reward 
        s = next_s 
total_reward += reward 
    end while 
end for

EXPERIMENT

Experimental design
We conducted a simulation experiment for the automated optimization of intelligent manufacturing 
processes utilizing the Deep Q Network (DQN) model from deep reinforcement learning. The objective 
of the experiment was to validate the capability of the DQN model for performing intelligent production 
decision tasks within a smart factory environment, aiming to maximize production efficiency and 
resource utilization. Data were extracted from a running digital twin model of an electric car automated 
manufacturing plant, constituting a dataset encompassing products, equipment, and manufacturing 
processes within the smart factory. This dataset provided a realistic and highly simulated environment 
for the DQN model to learn and optimize intelligent decision-making.

In the experiment, Network Architecture Search (NAS) techniques were employed to optimize 
the Deep Q Network model. This involved tuning the network architecture, hyperparameters such as 
learning rate, discount factor, and experience replay buffer size, ensuring stable convergence during 
training, and enhancing the model’s learning capabilities in complex decision environments.

It is noteworthy that, to ensure the accuracy and authenticity of the data from the digital twin 
factory, the collection of factory environment data was aligned with the real-time scenarios in the 
digital twin model. Additionally, the experiment paid special attention to the generalization ability of 
the DQN model in complex shop floor environments, ensuring superior performance when scheduling 
various production stages.

To validate the performance of the model, this study conducted a comparative analysis by 
examining 10 baseline models for intelligent manufacturing task scheduling, drawn from literature 
over the past three years.

Model #1 (Mzili et al., 2023): Proposed a spotted hyena optimization algorithm in order to identify 
and implement optimal schedules for jobs in a flow shop environment.

Model #2 (Qiu et al., 2023): Proposed an improved memory algorithm (MA) which combines a 
genetic algorithm (GA) with educational operators to solve integrated production scheduling 
decision problems.

Model #3 (Azevedo et al., 2023): Developed a multi-objective optimization model for improving 
production scheduling performance metrics to help managers make decisions related to job 
scheduling.

Model #4 (Fontes et al., 2023): Considered the minimization of two optional performance metrics, 
duration and exit time, and the optimal solution of the model is solved by the Mixed Integer 
Linear Programming (MILP) algorithm.
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Model #5 (Bamoumen et al., 2023): Proposed an algorithm that combines the MILP algorithm and 
an algorithm similar to the Greedy Randomized Adaptive Search Procedure (GRASP) to solve 
the problem of automated scheduling of production processes.

Model #6 (Chen & Liu, 2023b): Combined discrete-time simulation methods to establish a delivery 
date change response model and constructed dynamic scheduling rules using gene expression 
programming (GEP) algorithms to realize dynamic production planning.

Model #7 (Tang et al., 2023): Proposed a heuristic algorithm based on learning mechanisms and 
ant colony optimization for solving the collaborative scheduling problem.

Model #8 (Kang et al., 2023): Proposed a multi-strategy individual adaptive mutation difference 
evolutionary algorithm (MSIADE) for this production scheduling problem.

Model #9 (Saqlain et al., 2023): Proposed a flexible job scheduling algorithm based on Monte Carlo 
tree search for scheduling highly complex jobs in a real-time job environment.

Model #10 (Wang et al., 2023): Proposed a hybrid genetic algorithm based on variable neighborhood 
search (GAVNS) for solving the production scheduling problem.

Literature #1, 2, 6, 7, 8, 10 are strategies based on genetic algorithms, literature 3, 4, 5 are 
strategies based on optimization methods, and literature 9 is a strategy based on solution space search.

This study inputs production demands and resource consumption data from smart factories into 
these models. Multiple models are employed to provide production planning schemes for various 
shop floors within the factory during a specific period. Subsequently, diverse evaluation metrics are 
utilized to compare the planning results of multiple schemes. Performance metrics included production 
efficiency per unit time, resource utilization rate, energy consumption during manufacturing (RMB), 
raw material consumption during manufacturing (RMB), and total daily downtime (hours). Through 
these metrics, we will assess the application potential and optimization effects of the DQN model 
in real factory environments.

dataset
The dataset used in this experiment is derived from a recently established smart electric vehicle 
manufacturing plant. This newly constructed facility serves as a rich source of data, encompassing 
various workshops within the factory. The dataset includes detailed information on production tasks, 
equipment statuses, and process parameters, among other aspects. The real-time data stream from 
sensors deployed throughout the factory provides insights into factors such as temperature, humidity, 
and equipment states, as well as detailed information on production efficiency and output. This 
comprehensive dataset from the entire factory ensures robust testing of the proposed algorithms in 
a realistic and dynamic production environment.

The reason for not adopting public datasets is that intelligent manufacturing tasks often occur in 
a specific environment, facing a particular production task and a set of specific production equipment. 

Table 1. Attributes of the experimental dataset extracted from the smart manufacturing generation environment

Attribution name Attribution value

Number of workshops 5

Number of equipment 30

Number of products 15

Data generation time 2023.1.1 ~ 2023.1.31

Data set size 20.1G

Number of data samples 9522
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For such algorithms, generalization ability and robustness are not the primary considerations; stability 
of the algorithm and enhancement of actual production capabilities are the most crucial factors to be 
considered. Therefore, algorithm optimization for intelligent manufacturing tasks must directly use 
real data from the production environment so that the trained model can achieve optimal performance 
in actual production scenarios.

COMPARISON STUdy

Comparison of This Paper’s Method with Baseline Models
As we can see from the experimental results, the DQN model, combined with digital twin 
technology, comprehensively considers the complex correlations in the actual production process, 
making the model more intelligent and adaptable. As a result, it achieves superior performance 
in production scheduling.

From the experimental results, there are several reasons why the proposed DQN model 
outperforms these 10 baseline models in production scheduling.

First, compared to optimization models #3, 4, 5, the DQN model utilizes deep reinforcement 
learning technology, enabling real-time and automated production task scheduling in complex 
manufacturing environments and adapting flexibly to evolving production demands. The comparison 
results of production efficiency per unit time and total daily downtime show this advantage in Figure 5.

Second, in contrast to evolutionary computation-based models #1, 2, 6, 7, 8 and 10, the DQN 
model demonstrates superior generalization capabilities, accommodating variations in different 
workshops and production stages, thereby enhancing its applicability in real factory settings. The 
comparison results of energy and raw material consumption during manufacturing show this advantage 
in Figure 6.

Table 2. Comparison results with ten baseline models

Model Production efficiency 
per unit time

Resource 
utilization 

rate(%)

Energy 
consumption during 

manufacturing(RMB)

Raw material 
consumption during 

manufacturing(RMB)

Total daily 
downtime(h)

Mode1 #1 
(Mzili et al., 2023) 89% 75% 12.52K 344.34K 1.04

Mode1 #2 
(Qiu et al., 2023) 63% 70% 18.24K 315.62K 0.75

Mode1 #3 
(Azevedo et al., 2023) 96% 64% 12.76K 301.46K 0.26

Mode1 #4 
(Fontes et al., 2023) 70% 64% 15.53K 291.51K 0.92

Mode1 #5 
(Bamoumen et al., 2023) 74% 65% 19.92K 310.42K 1.06

Mode1 #6 
(Chen & Liu, 2023b) 67% 81% 14.67K 291.53K 1.04

Mode1 #7 
(Tang et al., 2023) 70% 83% 19.12K 295.62K 0.67

Mode1 #8 
(Kang et al., 2023) 59% 78% 15.51K 285.93K 0.49

Mode1 #9 
(Saqlain et al., 2023) 80% 90% 13.54K 272.34K 0.42

Mode1 #10 
(Wang et al., 2023) 71% 83% 15.22K 289.23K 0.39

Our Model 100% 95% 11.12K 242.14K 0.13
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Additionally, compared to model #9, the DQN’s feature learning based on deep learning 
facilitates more effective planning and decision-making for complex production tasks, improving 
the overall performance of the model. The comparison results of the resource utilization rate show 
this advantage in Figure 7.

Finally, with the integration of digital twin technology, the DQN model comprehensively considers 
intricate correlations in actual production processes, enhancing its intelligence and adaptability, 
resulting in superior performance in production scheduling.

Comparison of Model Scheduling Performance in the Final Assembly workshop
We conducted a production data analysis in the final assembly workshop of the factory, and the 
experimental results unequivocally demonstrate the superior performance of our proposed DQN 
production automation scheduling model compared to other models. Through real-time scheduling of 
production tasks, the DQN model effectively enhanced assembly efficiency and optimized resource 
utilization. The experimental results are shown in Table 3.

The results’ differences between models in the final assembly workshop are shown graphically 
in Figures 8a-8e.

As a key workshop in the assembly line of a smart factory, the optimization of production process 
scheduling is especially critical in the process of efficiently assembling pre-produced parts into a 
complete vehicle. From the collected experimental result data, the DQN-based production process 

Figure 5. The comparison results of production efficiency per unit time and total daily downtime

Figure 6. The comparison results of energy and raw material consumption during manufacturing
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Figure 7. The comparison results of resource utilization rate

Table 3. Comparison results in final assembly workshop

Model

Production 
efficiency 
per unit 

time

Resource 
utilization 

rate(%)

Energy 
consumption during 
manufacturing(1000 

RMB)

Raw material 
consumption during 
manufacturing(1000 

RMB)

Total daily 
downtime(h)

Mode1 #1 
(Mzili et al., 2023) 85% 75% 2.04 12.46 0.01

Mode1 #2 
(Qiu et al., 2023) 76% 69% 1.64 12.37 0.02

Mode1 #3 
(Azevedo et al., 2023) 68% 62% 2.04 12.36 0.03

Mode1 #4 
(Fontes et al., 2023) 84% 78% 1.82 12.34 0.02

Mode1 #5 
(Bamoumen et al., 2023) 94% 93% 1.69 12.33 0.01

Mode1 #6 
(Chen & Liu, 2023b) 98% 93% 1.86 12.31 0.04

Mode1 #7 
(Tang et al., 2023) 94% 93% 1.72 12.30 0.02

Mode1 #8 
(Kang et al., 2023) 82% 75% 2.24 12.28 0.07

Mode1 #9 
(Saqlain et al., 2023) 85% 85% 1.79 12.22 0.03

Mode1 #10 
(Wang et al., 2023) 92% 89% 1.57 12.18 0.02

Our Model 100% 95% 1.31 12.13 0.01
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Figure 8a. Comparison of production efficiency per unit time

Figure 8b. Comparison of resource utilization rate
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Figure 8c. Comparison of energy consumption during manufacturing

Figure 8d. Comparison of raw material consumption during manufacturing
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automation scheduling model makes the smart factory in the final assembly shop have multiple 
evaluation indexes with multiple advantages compared with the 10 baseline models.

Case Study
To validate the impact of the DQN algorithm on the production capacity improvement of the smart 
factory, a case study was conducted to compare the manufacturing of electric vehicles in the factory 
before the system went live with the situation after the system went live. The productivity changes 
of the smart factory before and after the system went live are shown in Table 4.

A graphical representation of the changes before and after the system go-live is shown in Figure 9.

Figure 8e. Comparison of total daily downtime

Table 4. The productivity changes of the smart factory before and after the system go-live

Time
Production 

efficiency per 
unit time

Resource 
utilization 

rate(%)

Energy 
consumption during 

manufacturing(RMB)

Raw material 
consumption during 

manufacturing(RMB)

Total daily 
downtime(h)

Before 32% 54% 19.56K 311.31K 1.32

After 100% 95% 11.12K 242.14K 0.13

Figure 9. Graphical representation of the changes before and after the system go-live
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After implementing intelligent production scheduling algorithms based on deep learning and 
digital twin in the smart electric vehicle factory, there has been a significant improvement in factory 
production efficiency. Possible reasons for this improvement include, firstly, the application of deep 
learning technology, which enhances the algorithm’s ability to understand and learn from the complex 
production environment, improving its capacity to handle large-scale data and complex external factors. 
This aids the model in more accurately predicting key information, such as production demands and 
equipment status changes, facilitating more intelligent and real-time production task scheduling. 
Secondly, the introduction of digital twin technology provides a virtual simulation environment based 
on the actual factory, modeling the real production processes through digital twin models, thereby 
increasing the practicality of the algorithm.

From Figure 9, it can be observed that, following the implementation of the DQN model for factory 
production process scheduling, there is a notable reduction in the daily downtime of the system. The 
emergence of this phenomenon can be attributed to the real-time adaptability of the DQN model. 
With the dynamic changes in the production environment, the model can swiftly adjust the scheduling 
scheme, mitigating issues that static scheduling, traditionally employed, is unable to flexibly address. 
Consequently, this capability reduces the probability of equipment downtime.

Additionally, algorithms based on deep learning and digital twin can comprehensively consider 
the complex correlations between various production processes, including collaborative operations 
among devices and the impacts between different manufacturing processes. This comprehensive 
consideration makes the algorithm more intelligent, allowing it to make more precise and rational 
scheduling decisions, thereby maximizing production efficiency.

CONCLUSION

Study Conclusion
This study aims to address challenges in optimizing the production process of a smart factory. The 
research proposes resolving issues related to process automation in intelligent manufacturing by 
introducing smart algorithms and digital twin technology. The primary approach involves leveraging 
deep reinforcement learning techniques, specifically an enhanced Deep Q Network (DQN) model, to 
achieve real-time and automated scheduling of production tasks within the factory. The research seeks 
to enhance algorithmic performance and overcome limitations by introducing innovative methods 
and making full use of the advantages offered by smart algorithms and digital twin technology. The 
goal is to improve production efficiency and resource utilization in the electric vehicle industry. The 
effectiveness of the proposed methods is briefly demonstrated through a simulation experiment and 
a case study.

In addition, although this study does not improve the DQN algorithm, the combination of the 
digital twin model and the relational mapping algorithm from the physical world to the DT model 
proposed in this study can be seen as an improvement to the DQN model as a solution to the task of 
automated scheduling of the production process in an electric vehicle smart factory.

Outlook
It can be anticipated that the integration of solutions incorporating digital twins and DQN models 
will contribute to elevated levels of automation, enhanced flexibility in production scheduling, 
and more sustainable operational models in the construction and operation of smart factories. This 
integration is expected to further propel the digital transformation and intelligent development of 
the manufacturing industry.

Currently, there is room for improvement in the performance of our algorithm, especially in 
real-time and distributed scheduling. To address this deficiency, we plan to design and introduce 
more optimized artificial intelligence algorithms. This will involve in-depth research into scheduling 
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algorithms to enhance their efficiency and accuracy. Additionally, we will explore more flexible 
distributed scheduling methods to adapt to complex production environments.

Another notable deficiency is the lack of robustness in anomaly monitoring in the smart factory. 
Despite significant advancements in enhancing the level of automation in the system, there is still room 
for improvement in anomaly monitoring and automatic recovery capabilities. To address this issue, 
we plan to strengthen the design of the anomaly monitoring system and introduce more intelligent 
and sensitive monitoring technologies. Simultaneously, we will focus on improving the system’s 
automatic recovery capabilities in response to anomalies, aiming to minimize the need for manual 
intervention. This improvement will contribute to enhancing the stability and reliability of the system.

Although the current production of electric vehicles has achieved a high level of automation, 
there are still some stages that require manual intervention. To further reduce human intervention in 
the system, we plan to explore more automation and intelligent solutions. This includes conducting 
in-depth research on stages that currently involve manual intervention to identify potential automated 
alternatives. By incorporating more advanced machine learning and automation technologies, we 
aim to achieve a greater degree of autonomy in the electric vehicle production process, ultimately 
enhancing overall production efficiency.

This study aims to optimize the production processes in smart factories through the integration 
of intelligent algorithms and digital twin technology. By enhancing the Deep Q Network (DQN) 
model within the framework of improved deep reinforcement learning, the research focuses on real-
time and automated scheduling of production tasks within the factory, aiming to enhance production 
efficiency and resource utilization. The study proposes improvement strategies in terms of optimizing 
algorithm performance, strengthening anomaly monitoring and automatic recovery capabilities, 
as well as reducing manual interventions. In summary, this research endeavors to provide a novel 
algorithm and presents an effective technological application for the field of intelligent manufacturing, 
contributing positively to the development of more intelligent and efficient production processes in 
the electric vehicle industry.
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